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Abstract

Model-based speech enhancement methods, such as vector-Taylor series-based methods (VTS),
share a common methodology: they estimate speech using the expected value of the clean speech
given the noisy speech under a statistical model. We show that it may be better to use the expected
value of the noise under the model and subtract it from the noisy observation to form an indirect
estimate of the speech. Interestingly, for VTS, this methodology turns out to be related to the
application of an SNR-dependent gain to the direct VTS speech estimate. In results obtained on
an automotive noise task, this methodology produces an average improvement of 1.6 dB signal-
to-noise ratio, relative to conventional methods.
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1 Introduction

Model-based speech enhancement methods, such as
vector-Taylor series-based methods (VTS), share a com-
mon methodology: they estimate speech using the ex-
pected value of the clean speech given the noisy speech
under a statistical model. We show that it may be better
to use the expected value of the noise under the model
and subtract it from the noisy observation to form an
indirect estimate of the speech. Interestingly, for VTS,
this methodology turns out to be related to the applica-
tion of an SNR-dependent gain to the direct VTS speech
estimate. In results obtained on an automotive noise
task, this methodology produces an average improve-
ment of 1.6 dB signal-to-noise ratio, relative to conven-
tional methods.

2 VTS-Based Methods

In high-resolution noise compensation techniques [1],
the speech and noise are modeled by Gaussians or Gaus-
sian mixture models in the short-time log-spectral do-
main for the sake of perfect reconstruction of the signal
from the spectrum. Here we condition the short-time
speech log spectrum xt at frame t on a discrete state st.
We assume that the noise is quasi-stationary, so we posit
only a single Gaussian for the noise log spectrum nt:

p(xt, st) = p(st)N (x|µ
x|st

,Σ
x|st), (1)

p(nt) = N (nt|µn
,Σn). (2)

The log-sum approximation [1] uses the log of the ex-
pected value (with respect to the phase) in the power
domain to define an interaction distribution over the ob-
served noisy spectrum yf,t in frequency f and frame t:

p(yf,t|xf,t, nf,t)
def

= N (yf,t | log(exf,t + enf,t), ψf ), (3)

where ψf is a variance that handles phase effects.
The likelihood and posterior integrals required to per-

form inference in this model are intractable due to the
nonlinear interaction function in (3). In iterative vector
Taylor series, also known as Algonquin [2], this limita-
tion is overcome by linearizing the interaction function
at the current posterior and iteratively refining the pos-
terior. At each step, this linearization leads to a linear
Gaussian model. Denoting by z̃s = [x̃s; ñs] the lineariza-
tion point for state s, we can easily obtain the posterior
state probabilities p(s|y; (z̃s′)s′), the posterior mean of
the speech µ

x|y,s;z̃s
and that of the noise µ

n|y,s;z̃s
, as

well as their joint posterior covariance.
The conventional method uses the speech posterior

expected value to form a minimum mean-squared error
(MMSE) estimate of the log spectrum:

x̂ =
∑

s

p(s|y; (z̃s′)s′)µx|y,s;z̃s
. (4)

For each frame t, the MMSE speech estimate is combined
with the phase θt of the noisy spectrum to produce the
complex spectral estimate,

X̂t = ex̂t+iθt . (5)

We shall refer to this estimate as the VTS MMSE.
∗
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3 Proposed Method

Model-based approaches typically combine noisy
phases with estimated speech energies. This is problem-
atic in situations where speech has significant energy but
is still masked by noise. In these situations, the noisy
phases are more appropriately combined with estimated
noise energies. Model-based estimates of the noise ac-
complish precisely that. Thus, an interesting approach
may be to indirectly compute the speech by subtracting
the noise estimate from the noisy speech. We can write
the noise MMSE estimate as

n̂ =
∑

s

p(s|y; (z̃s′)s′)µn|y,s;z̃s
. (6)

We can then subtract it from the observed speech to
estimate the complex spectra:

X̌t = Yt − en̂t+iθt =
(

eyt − en̂t

)

eiθt , (7)

which we shall refer to as the indirect VTS log-spectral
estimator. The latter expression is reminiscent of spec-
tral subtraction, but it is more sophisticated: unlike
spectral subtraction, the noise estimate being subtracted
in a given time-frequency bin is estimated under statis-
tical models of speech and noise, given the observation.
In fact, it can be shown that, for small ψf , indirect VTS
is approximately equivalent to an SNR-dependent sup-
pression rule applied to the VTS estimate X̂t, with gain
g =

√
r/(

√
1 + r + 1), where r = ex̂t−n̂t is the VTS

estimate of the SNR, and we neglect the influence of
overlap-add in the resynthesis.

In addition to the proposed estimation process, we
investigated three other factors, each of which indepen-
dently helps increase the average signal-to-distortion ra-
tio (SDR) improvement in empirical evaluation. The
first is to impose acoustic model weights αf for each
frequency f . These weights differentially emphasize the
acoustic-likelihood scores as compared to the state pri-
ors. This only affects estimation of the speech-state pos-
terior, which becomes:

p(s|y; (z̃s′)s′) =
∏

f
p(yf |s; z̃f,s)αf

∑

s′

∏

f
p(yf |s′; z̃f,s′)αf

. (8)

The weights were chosen to follow a Gamma distribu-
tion over frequency with its mode at 1875 Hz, and a
shape parameter of 37 Hz, such that the distribution de-
cays to low values at 0 Hz and at the Nyquist frequency
(8000 Hz).

A second factor is the use of truncation to the region
of feasibility to address errors in the VTS iterations. The
exact log-sum model does not allow MMSE estimates of
the speech or noise that are greater than the observa-
tion by any significant margin. However, in the VTS
approximation, the speech and/or noise estimates can
be much greater than the observation, depending on the
linearization point. A simple remedy for this is to trun-
cate the speech and noise estimates so that they do not
exceed the observation.

A third factor investigated here concerns the estima-
tion of the noise model’s mean from a non-speech seg-
ment of data, assumed to occur in the first few frames.



Fig. 1 Evolution of the SDR improvement depend-
ing on the VTS iteration number for the VTS MMSE
and the speech obtained from the noise MMSE (indirect
VTS), with and without truncation to the interaction
function. Average SDR improvements for classical al-
gorithms are shown for comparison.

The conventional method is to estimate the noise model
using the mean of the non-speech frames in the log-
spectral domain. Instead we investigated taking the
mean in the power domain. This has the benefit of re-
ducing the influence of small outliers, and thus providing
a smoother estimate. The variance about the mean was
calculated in the usual way.

4 Evaluation

The sampling rate was 16 kHz. Time-frequency anal-
ysis was performed using a frame length of 640 sam-
ples, 50% overlap and a sine window for analysis and re-
synthesis. The noisy speech data was obtained by syn-
thetically mixing clean speech from the TIMIT database
with car noise randomly extracted from the CU-Move
corpus, at various randomly sampled signal-to-noise ra-
tio (SNR) levels. The speech model GMM consisted of
256 components which were trained on the clean speech
training data.

The results are given in terms of signal-to-distortion
ratio, signal-to-interference ratio (SIR) and signal-to-
artifact ratio (SAR). For comparison, we show results for
two classical speech enhancement algorithms: spectral
subtraction (’SS’) [3] and the state-of-the-art algorithm
combining Optimally-Modified Log Spectral Amplitude
Estimator and Improved Minima Controlled Recursive
Averaging (’OMLSA-IMCRA’) [4, 5].

We first look at the behavior of the speech MMSE, re-
ferred to as ’VTS MMSE’, and the speech obtained from
the noise MMSE, refered to as indirect VTS speech esti-
mate or simply ’indirect VTS’. The evolution of the SDR
improvements depending on the VTS iteration number
(1 meaning no re-estimation of the expansion point) is
shown in Fig. 1. Focusing first on the red dashed curve,
we see that, when the speech and noise posteriors are
not truncated to the observation, the VTS MMSE can
suffer unless at least two VTS iterations are performed.
It is not clear that further improvements can be gained
beyond the second iteration. Using the truncation tech-
nique described above on the posteriors leads to an in-
crease in SDR improvement from +6.3 dB to +8.0 dB
for the VTS MMSE without iteration, and VTS itera-
tions lead to no improvements in our setup. The VTS

Table 1 Comparison of the mean SDR, mean SIR and
mean SAR for two existing algorithms, VTS MMSE and
the proposed indirect VTS method.

Algorithm SDR SIR SAR

No Processing 9.0 9.0 57.6
SS 13.9 18.3 17.3
OMLSA-IMCRA 18.1 22.9 20.5
VTS MMSE 17.0 19.3 21.6
indirect VTS 18.6 23.0 21.2

Table 2 Influence of various factors on the perfor-
mance in terms of SDR improvement for the VTS
MMSE and the indirect VTS. −pm: no power-domain
mean for the noise and use of log-domain mean instead;
−tr: no truncation on the speech and noise MMSE;
−aw: no acoustic model weights; −all: −{pm, tr, aw};
all: {pm, tr, aw}.

Algorithm all −pm −tr −aw −all

VTS MMSE 8.0 7.5 6.2 7.4 3.1
indirect VTS 9.6 9.4 9.4 9.3 9.0

MMSE performances with and without truncation be-
come very similar after VTS re-estimation. On the other
hand, the proposed indirect VTS method, in blue, shows
consistently high performance, outperforming OMLSA-
IMCRA on the task, and does not gain from VTS iter-
ations. Numerical results are presented in Table 1.

We now consider the other experimental factors: the
use of acoustic model weights in the likelihood, aw, use
of truncation of the posteriors to the observation, tr, and
estimation of the noise mean in the power domain, pm.
We show in Table 2 the SDR improvements obtained for
the VTS MMSE and the indirect VTS when all three
of these factors are used, all, when one of them is dis-
carded, and when all three of them are discarded. We
can see that each of them contributed significantly to
improve the performance of both the VTS MMSE and
indirect VTS. While indirect VTS seems less sensitive
to the use of these factors, they each provided roughly
an increase in average SDR improvement of +0.2 dB,
altogether providing a +0.6 dB improvement.
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