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Abstract

Noise compensation techniques for robust automatic speech recognition (ASR) attempt to im-
prove system performance in the presence of interference from acoustic signals in the envi-
ronment other than the speech being recognized. In feature-based noise compensation, which
includes speech enhancement, the features extracted from the noisy speech signal are modified
before being sent to the recognizer by attempting to remove the effects of noise on the speech fea-
tures. These methods are discussed in Chapter 12. Model compensation approaches, in contrast,
are concerned with extending the acoustic model of speech to account for the effects of noise. A
taxonomy of different approaches to noise compensation is depicted in Figure 1.1, which serves
as a road map to the present discussion.

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part
without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include
the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of
the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or
republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All
rights reserved.

Copyright c©Mitsubishi Electric Research Laboratories, Inc., 2012
201 Broadway, Cambridge, Massachusetts 02139



MERLCoverPageSide2



12
Factorial Models for Noise Robust
Speech Recognition

John R. Hershey1, Steven J. Rennie2, Jonathan Le Roux1

1Mitsubishi Electric Research Laboratories
2IBM Thomas J. Watson Research Center

12.1 Introduction
Noise compensation techniques for robust automatic speech recognition (ASR) attempt to
improve system performance in the presence of acoustic interference. In feature-based noise
compensation, which includes speech enhancement approaches, the acoustic features that are
sent to the recognizer are first processed to remove the effects of noise (see Chapter 9). Model
compensation approaches, in contrast, are concerned with modifying and even extending the
acoustic model of speech to account for the effects of noise. A taxonomy of the different
approaches to noise compensation is depicted in Figure 12.1, which serves as a road map for
the present discussion.

The two main strategies used for model compensation approaches are model adaptation
and model-based noise compensation. Model adaptation approaches implicitly account for
noise by adjusting the parameters of the acoustic model of speech, whereas model-based
noise compensation approaches explicitly model the noise and its effect on the noisy speech
features. Common adaptation approaches include maximum likelihood linear regression
(MLLR) [56], maximum a posteriori (MAP) adaptation [32], and their generalizations
[17, 29, 47]. These approaches, which are discussed in Chapter 11, alter the speech acoustic
model in a completely data-driven way given additional training data or test data. Adaptation
methods are somewhat more general than model-based approaches in that they may handle
effects on the signal that are difficult to explicitly model, such as nonlinear distortion and
changes in the voice in reaction to noise (the Lombard effect [53]). However, in the presence
of additive noise, failing to take take into account the known interactions between speech and
noise can be detrimental to performance.

Model-based noise compensation approaches, in contrast to adaptation approaches,
explicitly model the different factors present in the acoustic environment: the speech, the
various sources of acoustic interference, and how they interact to form the noisy speech
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Figure 12.1 Noise compensation methods in a Venn diagram. The shaded region represents
model-based noise compensation, the subject of this chapter. Note that the term “model” in
“model compensation” refers to the recognizer’s acoustic model, whereas in “model-based noise
compensation,” it refers to the models of additive noise.

signal. By modeling the noise separately from the speech, these factorial models can
generalize to combinations of speech and noise sounds not seen during training, and can
explicitly represent the dynamics of individual noise sources. A significant advantage of
this approach is that the compensated speech features and recognition result are jointly
inferred, unlike in feature-based approaches. The recognizer’s model of speech dynamics
can be directly employed to better infer the acoustic states and parameters of the interference
model. Similarly, the model of acoustic interference and its dynamics can be utilized to more
accurately estimate the sequence of states of the speech model. Performing these inference
processes jointly allows the recognizer to consider different possible combinations of speech
and interference.

Approaches that lie somewhere between feature-based and model-based noise
compensation include uncertainty decoding [19, 57], which is discussed in Chapter 17, and
missing-feature methods [85, 68], which are discussed in Chapters 14, 15 and 16. These
methods involve additional communication from the feature enhancement algorithm to the
recognizer about the uncertainty associated with the enhanced features being estimated.
Model-based compensation approaches can be seen as taking the idea of uncertainty decoding
to its logical conclusion: by placing the enhancement model inside the recognizer, the
information about uncertainty is considered jointly in terms of the noise model and the full
speech model of the recognizer.

Difficult obstacles must be overcome in order to realize the full benefit of the model-based
approach. A primary challenge is the complexity of inference: if implemented naively, joint
inference in factorial models requires performing computations for each combination of the
states of the models. Because of the potential combinatorial explosion, this is prohibitively
expensive for many real applications. Alleviating these problems continues to be a core
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challenge in the field, and therefore efficient inference is a central theme in this chapter.
Another challenge is the dilemma of feature domains. In feature domains where the

interaction between speech and noise is additive, isolating the phonetic content of the speech
signal can be difficult. This is because phonetic content is imparted to speech by the filtering
effect of the vocal tract, which is approximately multiplicative in the power spectrum.
However, in the log spectrum domain the vocal tract filter is additive. Speech recognizers
exploit this by using features that are linear transforms of the log spectrum domain. In such
domains, the effect of noise is nonlinear, and compensating for it becomes difficult. As such,
a major focus of research has been to derive tractable inference algorithms by approximating
the interaction between speech and noise in the log spectrum domain.

This chapter presents the fundamental concepts and current state of the art in model-based
compensation, while hinting along the way at potential future directions. 1 First, the general
framework of the model-based approach is introduced. This is followed by a review of the
feature domains commonly used for representing signals, focusing on the way in which
additive signals interact deterministically in each domain. A probabilistic perspective on
these interaction functions and their approximations is then presented. Following this, several
commonly used inference methods which utilize these approximate interaction functions
are described in detail. Because computational complexity is of paramount importance in
speech processing, we also describe an array of methods which can be used to alleviate the
complexity of evaluating factorial models of noisy speech. The chapter concludes with a
discussion of many promising research directions in this exciting and rapidly evolving area,
with a focus on how complex and highly structured models of noise can be utilized for robust
speech recognition.

12.2 The Model-Based Approach

Model-based approaches start with probabilistic models of the features of speech and the
noise, and combine them using an interaction model, which describes the distribution of
the observed noisy speech given the speech and noise. To make this explicit we will need
some notation: p(x) denotes a probability distribution. In the case that x is a discrete random
variable, p denotes a probability mass function, and if x is a continuous random variable,
it denotes a probability density function (pdf). To simplify notation, we shall specify the
random variable considered as a subscript, for example, px(x), only when required to avoid
confusion. Assume that we have probabilistic models for the features of the clean speech, xt,
and the noise nt at time t: p(xt|sxt) and p(nt|snt ), which depend on some states sxt and snt . In
the context of speech recognition, the clean speech model is typically a hidden Markov model
(HMM), which describes the dynamical properties of speech via transition probabilities over
the unobserved states sxt . The interaction model then describes the conditional probability of
the noisy speech given the clean speech and the noise, p(yt|xt,nt). Inference in the model-
based method involves computing one or more of the following basic quantities: the state
likelihood p(yt|sxt , snt ), the joint clean speech and noise posterior p(xt,nt|yt, sxt , snt ), and
the clean speech estimate E(xt|yt, sxt , snt ) for a given hypothesis of the speech and noise
states sxt and snt . The state likelihood, which is needed in speech recognition to compute the

1Additional perspectives and background material may be found in recent reviews on this topic [13, 30].



4 Factorial Models for Noise Robust Speech Recognition

posterior probability of state sequences, involves the integral

p(yt|sxt , snt ) =

∫
p(yt|xt,nt)p(nt|snt )p(xt|sxt) dxt dnt. (12.1)

The joint posterior of the speech and noise features can be computed using the above integral:

p(xt,nt|yt, sxt , snt ) =
p(yt|xt,nt)p(nt|snt )p(xt|sxt)

p(yt|sxt , snt )
. (12.2)

The expected value of the speech features, used in feature-based compensation, can then be
obtained as follows:

E(xt|sxt , snt ) =

∫
xt p(xt,nt|yt, sxt , snt ) dxt dnt. (12.3)

For uncertainty-decoding approaches, a measure of uncertainty such as the posterior
variance, Var(xt|sxt , snt ), would also need to be computed (see Chapter 17 for more details).
Note that there are typically mixture components for each state, so that p(xt|sxt) =∑
cxt
p(xt|cxt)p(cxt |sxt). In the rest of this chapter, we neglect mixture components to avoid

clutter, as introducing them is straightforward and irrelevant to the main problem of
computing the above integrals.

Given this general framework, what remains is to show how the above integrals can
be accurately and efficiently estimated in the feature domains commonly used in speech
modeling. To that end, we turn to the interaction functions that result from analysis of signals
in different feature domains.

12.3 Signal Feature Domains
We shall present here the different representations of a signal commonly involved in
automatic speech recognition, introduce the corresponding notations, and describe the
interaction functions between clean speech and noise in each domain. Due to the complexity
of these interactions, and in particular due to the nonlinear transformations involved,
approximations are often required. We shall point them out as we proceed, and mention the
conditions under which they can be considered to be justified.

We assume that the observed signal is a degraded version of the clean signal, where
the degradation is classically modeled as the combination of linear channel distortion and
additive noise [1]. The flow chart of the basic front-end signal processing is shown in
Figure 12.2. Denoting by y[t] the observed speech, x[t] the clean speech, n[t] the noise signal
and h[t] the impulse response of the linear channel-distortion filter, we obtain the following
relationship in the time domain, where ∗ denotes convolution:

y[t] = (h ∗ x)[t] + n[t]. (12.4)

The frequency content of the observed signal is then generally analyzed using the short-
term discrete Fourier transform (DFT): overlapping frames of the signal are windowed
and the DFT is computed, leading to the complex short-term spectrum. Let us denote by
Yt,f (respectively, Xt,f and Nt,f ) the spectrum of the observed speech (respectively, the
clean speech and the noise) at time frame t and frequency bin f , and by Hf the DFT of h
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Figure 12.2 Basic front-end signal processing showing the notation used throughout the chapter for
different feature domains.

(assumed shorter than the window length). Under the so-called narrowband approximation,
the relationship between the complex short-term spectra can be written as:

Yt,f ≈ HfXt,f +Nt,f . (12.5)

Note that this approximation can only be justified for a short channel-distortion filter
and a smooth window function (i.e., whose Fourier transform is concentrated at low
frequencies) [48]. This approximation is extremely common in frequency-domain source
separation [42, 87].

We are now ready to transform (12.5) to the power spectrum domain:

|Yt,f |2 = |Hf |2|Xt,f |2 + |Nt,f |2 + 2|Hf ||Xt,f ||Nt,f | cos(φt,f ), (12.6)

where φt,f is the phase difference betweenHfXt,f andNt,f . The third term is often assumed
to be zero, leading to the following approximate interaction:

|Yt,f |2 ≈ |Hf |2|Xt,f |2 + |Nt,f |2. (12.7)

This approximation is commonly justified by noticing that the expected value of the cross-
term |Hf ||Xt,f ||Nt,f | cos(φt,f ) is zero if x and n are assumed statistically independent.
However, the expected value being equal to zero does not tell us much about the particular
value taken at a given time-frequency bin. A slightly stronger argument to justify the above
approximation is that of the sparsity of audio signals: if the speech and noise signals are
sparse in the time-frequency domain, their cross-term is likely to be very small most of the
time. Nonetheless, this term is not equal to zero in general, and we will see that the influence
of the cross-term is actually very complex.

In order to reduce the influence of pitch (and thus reduce the within-class variance relative
to the between-class variance when recognizing phonemes or sub-phonemes), the power
spectrum is converted to the so-called mel power spectrum. The mel power spectrum is
obtained by filtering the power spectrum using a small number L (typically 20 to 24 at
a sampling rate of 8 kHz, 40 at 16 kHz) of overlapping triangular filters with both center
frequencies and bandwidths equally spaced on the mel scale, believed to well approximate
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the human perception of frequency. Denoting by Ml,f the response of filter l in frequency f ,
the mel power spectrum of the observed signal is defined as

‖Y m
t,l‖2 =

∑
f

Ml,f |Yt,f |2, (12.8)

with similar definitions for that of the clean speech, ‖Xm‖2, and of the noise, ‖Nm‖2. As
the number L of filters is typically much smaller than the number F of frequency bins,
considering the mel power spectrum implies reducing the dimensionality of the features.
Moreover, apart from reducing the influence of pitch, it also implicitly changes the weight
given to the data as a function of frequency, in particular down-weighting the contribution
of high frequencies. In terms of noise robustness, the mel domain has a beneficial effect for
voiced speech in broadband noise: it gives preferential weight to the peaks of the spectrum,
which are likely to correspond to the harmonics of speech, where the signal-to-noise ratio
(SNR) is greatest. This is easy to see in the log mel domain, since log

∑
f Ml,f |Yt,f |2 ≈

maxf log(Ml,f |Yt,f |2). Finally, we shall see that, as a side effect, it also leads to greater
accuracy in the log-sum approximation, which is introduced in Section 12.4.3.

We can now obtain an analog of (12.6) on the mel spectra:

‖Y m
t,l‖2 = ‖Hm

t,l‖2‖Xm
t,l‖2 + ‖Nm

t,l‖2 + 2
√
‖Hm

t,l‖2‖Xm
t,l‖2‖Nm

t,l‖2 α
m
t,l, (12.9)

where the two newly introduced quantities

‖Hm
t,l‖2 =

∑
f Ml,f |Hf |2|Xt,f |2

‖Xm
t,l‖2

(12.10)

αm
t,l =

∑
f Ml,f |Hf ||Xt,f ||Nt,f | cos(φt,f )√
‖Hm

t,l‖2‖Xm
t,l‖2‖Nm

t,l‖2
(12.11)

incorporate complex interactions between the various terms. These terms are typically not
handled using the above formulae but through approximate models, as shown later in this
chapter.

In order to deal with the very wide dynamic range of speech, and motivated by
considerations on the roughly logarithmic perception of loudness by humans, the power
spectrum and mel power spectrum are often converted to the log domain. We define the
log power spectrum of the observed signal as

yt,f = log(|Yt,f |2) (12.12)

with analogous definitions for the log power spectra of the clean speech xt,f , the noise nt,f ,
and the channel distortion hf . This leads to the following interaction function in the log
power domain:

yt,f = log
(

ehf+xt,f + ent,f + 2e
hf+xt,f+nt,f

2 cos(φt,f )
)
. (12.13)

Similarly to the log power spectrum, we define the log mel power spectrum of the noisy
speech as

ymt,l = log(‖Y m
t,l‖2) (12.14)
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and analogously for the log power spectra of the clean speech, xmt,l, the noise, nmt,l, and the
channel distortion, hmt,l. The interaction function in the log mel power domain becomes

ymt,l = log
(

eh
m
t,l+x

m
t,l + en

m
t,l + 2e

hm
t,l+xm

t,l+nm
t,l

2 αm
t,l

)
. (12.15)

To decorrelate the features, and focus on the envelope characteristics of the log mel power
spectrum, which are likely to be related to the characteristics of the vocal tract, most speech
recognition systems further compute the so-called mel cepstrum, which consists of the low-
frequency components of the discrete cosine transform (DCT) of the log mel power spectrum.
Introducing the DCT matrix Cm of size K × L, where K is the number of mel cepstral
coefficients (typically around 13), the mel cepstrum of the noisy signal is defined as

ỹm
t = Cmym

t , (12.16)

with similar definitions of the mel cepstra of the clean speech, x̃m
t , the noise, ñm

t , and the
channel distortion, h̃m

t . As the matrix Cm is typically not invertible, the interaction function
in the mel cepstrum domain is generally approximated by

ỹm
t = Cm log

(
eD

m(h̃m
t +x̃m

t ) + eD
mñm

t + 2eD
m h̃m

t +x̃m
t +ñm

t
2 ◦αm

t

)
, (12.17)

where Dm is a pseudoinverse of Cm, such as the Moore–Penrose pseudoinverse, and ◦
denotes the element-wise product.

Notice that the interaction becomes more and more complicated and nonlinear as we move
closer to the features that are used in modern speech recognizers. When we consider using
probabilistic models of the speech and noise in the feature domain, the more complicated the
interaction function is, the less tractable inference becomes. To make matters worse, state-
of-the-art systems do not stop at the mel cepstrum, but introduce further transformations
that encompass multiple frames. These include linear transformations of several frames of
features, such as the so-called delta and delta-delta features and linear discriminant analysis
(LDA) as well as nonlinear transformations such as feature-based minimum phone error
(fMPE). Except for the simplest cases, model-based noise compensation with such features
has not yet been addressed. We shall thus limit our presentation mainly to static (i.e., single
frame) features.

12.4 Interaction Models
For each of the feature domains introduced above, we have shown that a domain-specific
interaction function describes how noisy features relate to those of the clean speech and the
additive noise. In feature domains such as the complex spectrum, which contain complete
information about the underlying signals, the interaction function is deterministic. However,
in feature domains that omit some information, the unknown information leads to uncertainty
about the interaction, which in the model-based approach is described using a probabilistic
interaction function. In general, the model-based approach thus requires a distribution
p(yt|xt,nt) over the observed noisy features yt given the speech features xt and the noise
features nt. The definition of this function varies depending on the feature domain. In the
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feature domains most used for modeling speech, approximations are generally required to
make inference tractable. In this section, we review interaction models for log spectrum
features, as well as some of their extensions to the mel spectrum domain and the mel
cepstrum. From here on we omit time subscripts to simplify notation, bearing in mind that
we are modeling the interaction in a particular time frame t.

12.4.1 Exact Interaction Model

We consider for now the modeling of speech and noise energy in the log power spectrum
domain. In (12.13), the unknown phase and channel are a source of uncertainty in the
relationship between the power spectra of the speech and noise. In the log power spectrum,
the effect of the acoustic channel is well approximated as an additive constant, for stationary
reverberation with an impulse response of length less than a frame. We can thus model the
channel implicitly as part of the speech feature, to simplify our discussion, with little loss in
generality. See [13] for a review in which it is explicitly included in the interaction model.
The difference in phase φf between the speech and noise signals is a remaining source of
uncertainty

p(yf |xf , nf , φf ) = δ
(
yf − log

(
exf + enf + 2e

xf+nf
2 cos(φf )

))
. (12.18)

We need to compute
∫ π
−π p(yf |xf , nf , φf )p(φf ) dφf . We define αf = cos(φf ) and derive

pαf
(αf ) from pφf

(φf ), noting that cos(φf ) = cos(−φf ), so that for φf ∈ (−π, π), we have
two solutions to |φf | = cos−1(αf ):

pαf
(αf ) =

pφf
(φf ) + pφf

(−φf )∣∣∣∂ cos(φf )
∂φf

∣∣∣ =
pφf

(cos−1(αf )) + pφf
(− cos−1(αf ))√

1− α2
f

. (12.19)

Given a distribution over αf , the log spectrum interaction model can be written generally as

p(yf |xf , nf ) = pαf
(αf )

∣∣∣∣ ∂yf∂αf

∣∣∣∣−1

(12.20)

= pαf

(
1

2

(
eyf−

xf+nf
2 − e

xf−nf
2 − e

nf−xf
2

)) 1

2
eyf−

xf+nf
2 , (12.21)

where αf is obtained as a function of yf , xf and nf from (12.13).
If we assume that the phase difference between speech and noise φf is uniformly

distributed, pφf
(φf ) = 1

2π , then a change of variables leads to

pαf
(αf ) =

1

π
√

1− α2
f

. (12.22)

This is a shifted beta distribution: pαf
(αf ) = 1

2Beta
(αf+1

2 ; a = 1
2 , b = 1

2

)
where

Beta(x; a, b) = xa−1(1− x)b−1 Γ(a+b)
Γ(a)Γ(b) [23]. Indicating uniform phase by U(φ), we

substitute (12.22) yielding:

pU(φ)(yf |xf , nf ) =
1

2π eyf−
xf+nf

2√
1− 1

4

(
eyf−

xf+nf
2 − e

xf−nf
2 − e

nf−xf
2

)2
(12.23)
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(a) Contour plot of exact interaction model (b) Surface plot of exact interaction model

Figure 12.3 (a) Contour plot of the exact density in the log spectrum pU(φ)(yf = 0|xf , nf ) and
(b) surface plot of the same, showing how the function is unbounded at the edges. Contour line spacing
is logarithmic and the function has been truncated to fit in the plot box.

as shown in [37], where it is called the devil function after its tortuous shape. Note that
interesting alternate expressions for the same quantity can be obtained after some algebraic
manipulations:

pU(φ)(yf |xf , nf )

=
1
π eyf√(

e
yf
2 + e

xf
2 + e

nf
2

)(
− e

yf
2 + e

xf
2 + e

nf
2

)(
e

yf
2 − e

xf
2 + e

nf
2

)(
e

yf
2 + e

xf
2 − e

nf
2

)
(12.24)

=
1
π eyf√(

eyf + exf + enf
)2 − 2

(
e2yf + e2xf + e2nf

) . (12.25)

Later, we discuss application of similar derivations to the mel domain considered in [90].
In the amplitude domain, a similar distribution is known in the wireless communications
literature as the two-wave envelope pdf [21].

Figures 12.3(a) and 12.3(b) show the exact interaction density function (12.23). The
interaction density is highly nonlinear, and diverges to infinity along the edges of the feasible
region. The edge toward the bottom left of Figure 12.3(a), where xf < 0 and nf < 0, results
from cases where the phase difference is zero and the signal amplitudes add up to the
observation. The two other edges, where xf > 0 or nf > 0, result from cases where the
signals have opposing phase and cancel to generate the observed signal.
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Unfortunately, with (12.23), the integral in (12.1) is generally intractable, leaving sampling
as the only viable approach for inference (see for example [37]). Therefore, there have been
a series of approaches based on approximate interaction functions, especially in the mel
domain, to which we will turn after discussing more basic approximations in the log spectrum
domain.

12.4.2 Max Model

Approximating the sum of two signals in a frequency band as the maximum of the two
signals is an intuitive idea that roughly follows our knowledge of masking phenomena in
human hearing2, and can be justified mathematically. Expressing (12.13) in the form:

yf = max(xf , nf ) + log

(
1 + e−|xf−nf | + 2e−

|xf−nf |
2 cos(φf )

)
, (12.26)

we can see that when one signal dominates the other, the second term approaches zero, taking
the effect of phase along with it. This motivates the max approximation:

yf ≈ max(xf , nf ), (12.27)

which can be interpreted probabilistically using a Dirac delta:

pmax(yf |xf , nf )
def
= δ
(
yf −max(xf , nf )

)
. (12.28)

Note that more general models based on the max approximation could be defined by
additionally modeling the uncertainty associated with the approximation. For example, the
approximation error could be modeled as Gaussian, and, optionally, made dependent on
SNR. Such modeling has been thoroughly investigated for the log-sum approximation, as
described below, but, to the best of our knowledge, has not yet been investigated for the max
approximation.

Remarkably, the max approximation is the mean of the exact interaction function (12.23)
[66]3:

E(yf |xf , nf ) =

∫
yf pU(φ)(yf |xf , nf ) dyf = max(xf , nf ). (12.29)

The max approximation was first used for noise compensation in [62]. Shortly thereafter, in
[91], it was used to compute joint state likelihoods of speech and noise and find their optimal
state sequence using a factorial hidden Markov model.

Inference in the max model is generally intractable when p(x|sx) or p(n|sn) have
dependencies across frequency, as do, for example, full-covariance Gaussians. However, for

2A high intensity signal at a given frequency affects the human hearing threshold for other signals at that
frequency (signals roughly 6 dB below the dominant signal are not heard), and nearby frequencies, with diminishing
effect, as a function of frequency difference. Consult [59] for details.

3While [66] reverts to an integration table to complete the proof of (12.29), it can be shown from (12.26) by notic-
ing that ∀η ∈ [0, 1),

∫
log(1 + η2 + 2η cos(θ)) dθ =

∫
log |1 + ηeiθ|2 dθ = 2Re(

∫
log(1 + ηeiθ) dθ) = 0,

where θ is integrated over [0, 2π). After a change of variable z = ηeiθ , this can be obtained using Cauchy’s integral
formula f(a) = 1

2πi

∮
γ
f(z)
z−a dz applied to the holomorphic function f : z 7→ log(1 + z) defined in the open disk

{z ∈ C : |z| < 1} of the complex plane, with a = 0 and on the circle γ of center 0 and radius η. The case η = 1
results from simple computations and amounts to showing

∫ π
0 log(sin(θ)) dθ = −π log(2).
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(a) Empirical interaction function for the log spectrum. (b) Empirical interaction function for an average of five
power spectrum bins.

Figure 12.4 Histograms representing empirical measurements of the interaction function for (a) the
log spectrum domain and (b) an average of five power spectrum bins typical of the mel spectrum
domain.

conditionally independent models of the form p(x|sx) =
∏
f p(xf |sx), the state likelihoods

and the posterior of (x,n) given the states can be readily computed, as shown below.
Moreover, the max model is also highly amenable to approximate inference when explicitly
evaluating all state combinations is computationally intractable, as described in Section 12.6.

12.4.3 Log-Sum Model

The log-sum model, used in [60, 27] based on the additivity assumption in the power
domain [7], uses the log of the expected value in the power domain to define an interaction
function:

yf ≈ log E(eyf |xf , nf ) = log(exf + enf ), (12.30)

which can then be interpreted probabilistically using

plogsum(yf |xf , nf )
def
= N (yf ; log(exf + enf ), ψf ), (12.31)

where Ψ is a variance intended to compensate for the effects of phase. In the limit as ψf → 0,
plogsum(yf |xf , nf ) becomes a Dirac delta function, leading to the model investigated in [20].

In the case of the log mel spectrum, which is closer to the features used by a recognizer,
matters are made worse by the lack of a closed form expression for p(yml |xml , nml ). This
situation arises because the mel quantities are averages across frequency, but the signal
interaction involves the whole frequency domain, as can be seen for example in (12.11). On
the other hand, since the mel frequency domain averages together multiple bins, the effect
of phase averages out. In this case, the log-sum approximation becomes more accurate, as
shown in Figure 12.4(b).

However, the log-sum approximation does not account for the changing variance of ymf
as a function of the SNR stemming from the complicated phase term in (12.9). Various
approximations have been proposed to handle this [49, 15, 90, 86, 84].
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12.4.4 Mel Interaction Model

Although directly integrating out phase in the mel spectrum interaction (12.15) is intractable,
a frequently used approximation is to assume that the term αm

l in (12.15) has a known
distribution, p̃(αm

l ), that is independent of xml and nml . Using this approximation, we can
directly use (12.21):

pmel(y
m
l |xml , nml ) ≈ p̃αm

l

(
1

2

(
ey

m
l −

xm
l +nm

l
2 − e

xm
l −nm

l
2 − e

nm
l −xm

l
2

)) 1

2
ey

m
l −

xm
l +nm

l
2 (12.32)

Unfortunately, it is still intractable to perform exact inference in this model. Hence, in
[90], the integrals in (12.1) are computed by Monte Carlo, using a truncated Gaussian
approximation to p̃(αm

l ). The shifted beta distribution mentioned earlier also has the feature
that it can approximate a Gaussian for parameters a and b such that ab� 1, so perhaps it
could be used as a unifying distribution, with empirically trained parameters, to handle the
full range of cases. Approximate inference methods are discussed in Section 12.5.

12.5 Inference Methods
We have defined a number of interaction models, and now turn to inference methods for these
interaction models. The main quantity of interest for speech recognition is the state likelihood
p(y|sx, sn) defined in (12.1). The posterior distribution of speech and noise p(x,n|y, sx, sn)
defined in (12.2) is also important but can often be computed using the same approximation
methods as the likelihood. Figures 12.6 and 12.7 show how different the likelihoods can be
for the various approximate inference methods described in this section.

12.5.1 Max Model Inference

The likelihood of the speech and noise features, x and n, under the max model is:

pmax(y|x,n) =
∏
f

pmax(yf |xf , nf )

=
∏
f

δ(yf −max(xf , nf )). (12.33)

For models of the form p(x|sx) =
∏
f p(xf |sx) with conditionally independent features

given the states (e.g., diagonal-covariance Gaussians), the state likelihoods and the posterior
ofx given the states can be readily computed. Define the probability density of the event xf =

yf given state sx as pxf (yf |sx), and the probability of the event that xf ≤ yf as Φxf (yf |sx)
def
=

p(xf ≤ yf ) =
∫ yf
−∞ p(xf |sx)dxf , which is the cumulative distribution function (cdf) of xf

given sx evaluated at yf .
For a given combination of states sx, sn, the cdf of yf under the model factors for

independent sources [62, 76]:

p(yf ≤ yf |sx, sn) = p(max(xf , nf ) ≤ yf |sx, sn)

= p(xf ≤ yf , nf ≤ yf |sx, sn)

= Φxf (yf |sx)Φnf (yf |sn). (12.34)
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(a) Prior density (b) Posterior density

Figure 12.5 Inference under the max interaction model for clean speech xf and noise nf , for
a single combination of states. In (a) the conditional prior p(xf , nf |sx, sn) = p(xf |sx)p(nf |sn) is
shown for a single feature dimension. The support of the likelihood function pmax(yf |xf , nf ) =
δ (yf −max(xf , nf )), for yf = 0, is represented by a thick contour. The state likelihood p(yf =
0|sx, sn) is the integral along this contour. The feature posterior p(xf , nf |sx, sn, yf = 0), which is
proportional to the product of the prior and likelihood functions, is shown in (b).

The density of yf is obtained by differentiating the cdf:

p(yf |sx, sn) =
d

dyf

(
Φxf (yf |sx)Φnf (yf |sn)

)
= pxf (yf |sx)Φnf (yf |sn) + pnf (yf |sn)Φxf (yf |sx). (12.35)

The density of y then is:

p(y|sx, sn) =
∏
f

(
pxf (yf |sx)Φnf (yf |sn) + pnf (yf |sn)Φxf (yf |sx)

)
. (12.36)

Inference under this model is illustrated in Figure 12.5, and compared to other methods in
Figures 12.6 and 12.7.

In the case that the p(x|sx) or p(n|sn) have dependencies across frequency, such as with
full-covariance Gaussians, inference in the max model is generally intractable. When the
conditional joint cdf of y is differentiated with respect to each dimension of y, we obtain an
expression having 2F terms:

p(y|sx, sn) =
∑

F∈P([1..F ])

∂Φx(y|sx)
∂{yf}f∈F

∂Φn(y|sn)
∂{yf ′}f ′∈F̄

, (12.37)

where F ⊂ [1..F ] is any subset of the feature dimensions, F̄ is its complement, and the
power set P([1..F ]) is the set of all such subsets. A set F of feature indices corresponds to a
hypothesis that xf > nf , f ∈ F , or in other words that x dominates in the selected frequency
bands. When computing these quantities we would typically start with the joint pdf for each
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source, and integrate to obtain the term of interest:

∂Φx(y|sx)
∂{yf}f∈F

=

∫
RF̄

px(yF ,yF̄ |sx)dyF̄ , (12.38)

where we denote a subset of the variables indexed by setF as yF = {yf}f∈F , and the region
of integration is the negative half-space of yF̄ defined by RF̄ =

⊗
f∈F̄ (−∞, yf ]. These

integrals are intractable, in general, for conditionally dependent models. Such integrals are
also used in the marginalization approach to missing data methods as discussed in Chapter
14, and are a source of difficulty in applying these methods in the cepstral domain.

The equations above can be directly generalized to the case of multiple independent
sources, as shown in [76]. In the general case of conditionally dependent features, there
are then KF terms in the conditional pdf of y, where K is the number of source signals.
In the case of conditionally independent features, the model factorizes over frequency, and
only univariate forms of the integrals above have to be computed. However, there remains an
exponential number of combinations of the states of each source that need to be considered.
Approximate techniques for addressing this computational issue are discussed below in the
section on efficient inference methods.

12.5.2 Parallel Model Combination

In an approach known as parallel model combination (PMC), [28] makes use of the log-
sum approximation, and assumes that the conditional probability ppmc(yf |sx, sn) is a normal
distribution in the log spectrum or log mel spectrum domain. Moment-matching is then used
in the power domain to estimate the parameters of ppmc(yf |sx, sn). To avoid clutter, we
omit conditioning on the states and simply write ppmc(yf ) in this section. For simplicity,
we present the method using diagonal-covariance models. The method is straightforward to
extend to the case where the models are full-covariance [28], or are defined in a transformed
domain such as the mel cepstrum, although at considerable additional computational cost.
PMC defines ppmc(yf ) = N (yf ; µ̂yf , σ̂yf ), and chooses the mean µ̂yf and the variance σ̂yf
so that

EN (yf ;µ̂yf
,σ̂yf

)(|Yf |2) = E(|Xf |2) + E(|Nf |2)

VarN (yf ;µ̂yf
,σ̂yf

)(|Yf |2) = Var(|Xf |2) + Var(|Nf |2).
(12.39)

As xf ∼ N (xf ;µxf , σxf ), the following identities hold:

E(|Xf |2) = E(exf ) = eµxf
+ 1

2σxf

Var(|Xf |2) = Var(exf ) = (eσxf − 1)e2µxf
+σxf ,

(12.40)

and similarly for nf . These identities can be inverted for yf to yield

µ̂yf = log EN (yf ;µ̂yf
,σ̂yf

)(|Yf |2)− 1

2
σ̂yf

σ̂yf = log

(
1 +

VarN (yf ;µ̂yf
,σ̂yf

)(|Yf |2)

(EN (yf ;µ̂yf
,σ̂yf

)(|Yf |2))2

)
.

(12.41)
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Substituting (12.39) and then (12.40) into (12.41) yields

µ̂yf = log
eµxf

+ 1
2σxf + eµnf

+ 1
2σnf

e
1
2 σ̂yf

σ̂yf = log

(
1 +

(eσxf − 1)e2µxf
+σxf + (eσnf − 1)e2µnf

+σnf

(eµxf
+ 1

2σxf + eµnf
+ 1

2σnf )2

)
.

(12.42)

In other words, PMC assumes that the distributions of the clean speech and the noise are
log-normal, and approximates the sum of two log-normal distribution as another log-normal
distribution whose parameters are estimated by moment-matching in the power domain.
This method is known as the Fenton–Wilkinson method [24]. Returning to writing state-
conditional models, and with the parameters of ppmc(yf |sx, sn) in hand, the state likelihood
can now be evaluated. Note that this method does not supply an estimate of the speech
features given the noisy features.

PMC is the result of three approximations: the log-sum approximation, the assumption
that p(yf |sx, sn) is Gaussian in the log domain, and the Fenton–Wilkinson approximation,
which uses moment-matching in the power domain instead of moment-matching in the log
domain. The latter is problematic because the mean and variance in the power domain are not
sufficient statistics of a log-normal distribution. Because of this, the mean and variance of the
true conditional distribution p(yf |sx, sn) in the log domain are generally different from those
estimated by the Fenton–Wilkinson method, as can be seen in Figure 12.6, where the Fenton–
Wilkinson approximation is compared to Monte-Carlo approximations of the true conditional
distribution. A Monte-Carlo method known as data-driven PMC was developed in [28, 30] to
address this problem. Data-driven PMC estimates the mean of y by sampling from the prior
distributions of speech and noise, and computing the empirical mean of the noisy speech
under the log-sum approximation. Other log-normal approximation methods for the sum of
independent log-normal distributions have been proposed which instead directly estimate the
sufficient statistics in the log domain [82, 69, 95]. Section 12.5.3 concerns another method
that in some cases abandons the assumption that p(yf |sx, sn) is log-normal altogether.

12.5.3 Vector Taylor Series Approaches

Unlike PMC, the vector Taylor series (VTS)-based approaches do not assume that the
conditional probability distribution p(yf |sx, sn) is Gaussian in the log spectrum or log mel
spectrum domain. Instead they linearize the log-sum interaction function (12.31) about an
expansion point that is optimized for each observed yf . The resulting conditional probability
distribution is non-Gaussian and performs better in general than the PMC approximation.
As an added benefit, the method yields estimates of the clean speech and is amenable to
feature-based and model-based methods. The early VTS work of [60] was further developed
by completing the probabilistic framework and introducing iterations on the expansion point
in an algorithm known as Algonquin [26, 50], which we describe here. Although the original
algorithms included reverberation of the speech in the framework, we here relegate these
channel components to the speech model for simplicity.

Here, we present the algorithm for general full-covariance models, and omit the
dependency on states of each model for simplicity of notation. Note that for diagonal-
covariance models, the features decouple and can be handled using the formula below
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Figure 12.6 Comparison of the probability distribution p(yf |sx, sn) under Gaussian priors for the
speech and noise for different interaction models and inference methods. In all cases, the speech prior
has mean 4 dB, and standard deviation 1 dB, and the noise prior has mean 0 dB and standard deviation
10 dB. The MC uniform phase is a Monte-Carlo approximation to the exact interaction model in the
log spectral domain with uniform phase (the devil function), (12.21), using the max-model control
variate method of [37]. MC Gaussian phase factor is the Monte-Carlo approximation to (12.53) with α
variance 0.2, using a similar control variate approach. Both Monte-Carlo estimates are here computed
with 10 000 samples per value of yf . The max model and PMC (Fenton–Wilkinson) approaches are
straightforward, whereas VTS approaches depend upon the expansion point and iteration. Here, we
show VTS expanded at the prior mean.

independently for each feature. To handle the joint posterior, we concatenate x and n to
form the joint vector z = [x>n>]> and use the function g(z) = log(ex + en), where the
logarithm and exponents operate element-wise on x and n. Using a first-order Taylor series
expansion at the point z0, the conditional distribution plogsum(y|x,n) introduced in (12.31)
is approximated as

plogsum(y|z) ≈ plinear(y|z; z0) = N (y; g(z0) + Jg(z0)(z − z0),Ψ) (12.43)

where Ψ = (ψf )f and Jg(z0) is the Jacobian matrix of g, evaluated at z0:

Jg(z0) =
∂g

∂z

∣∣∣∣
z0

=
[
diag( ∂g∂x ) diag( ∂g∂n )

]∣∣
x0,n0

=
[
diag( 1

1+en0−x0
) diag( 1

1+ex0−n0
)
]
.

(12.44)

We assume that x and n are independent and Gaussian distributed when conditioning on
the corresponding speech and noise states (which we here omit):

p(x) = N (x;µx,Σx), p(n) = N (n;µn,Σn). (12.45)
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Figure 12.7 Comparison of the same probability distributions as Figure 12.6, but with different
Gaussian priors for the speech and noise. Here, the speech prior has mean 2 dB, and standard deviation
1 dB, and the noise prior has mean 0 dB and standard deviation 2 dB. In this case, the prior is close
to the point where the max model is less accurate (0 dB SNR). PMC, on the other hand, appears to do
better because the variances of speech and noise are closer to each other. VTS also is more accurate
because the expansion point at the prior is closer to the posterior mode.

Hence, z is Gaussian distributed with mean and covariance

µz =

[
µx

µn

]
, Σz =

[
Σx 0
0 Σn

]
. (12.46)

This leads to a simple linear Gaussian model with a Gaussian prior p(z) and a Gaussian
conditional distribution plinear(y|z; z0) whose mean is a linear function of z and whose
covariance is independent of z. It is an easy and classical result in Bayesian theory that both
plinear(y; z0) and the posterior plinear(z|y; z0) are then Gaussian, and that their mean and
covariance can be easily computed from those of the prior and the conditional distribution. In
particular, we can obtain the mean and covariance of the posterior by completing the square
with respect to z in the exponent of plinear(y|z; z0)p(z). The covariance Σz|y turns out to
be independent of y:

Σz|y =
[
Σ−1

z + Jg(z0)>Ψ−1Jg(z0)
]−1

, (12.47)

while the mean is given by

µz|y = Σz|y
[
Σ−1

z µz + Jg(z0)>Ψ−1(y − g(z0) + Jg(z0)z0)
] def

=

[
µx|y
µn|y

]
. (12.48)
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Figure 12.8 Comparison of the probability distribution p(yf |sx, sn) for VTS computed with different
expansion points, using the same priors as Figure 12.6. Expansion points are a) the prior mean (prior)
which is the most commonly used expansion point, b) the posterior mean, (MMSE) estimated using the
MC Gaussian phase factor method shown in Figure 12.6, c) the point having maximum likelihood
(ML) under the linearization, and d) the mode of the posterior distribution (MAP) on the log-sum
approximation curve, computed by grid search. Note that the latter is discontinuous because it switches
from one mode of the posterior to another which has greater posterior density, but less likelihood when
integrated under the linearization.

By further integrating out z in plinear(y|z; z0)p(z), we obtain the mean and covariance of
p(y; z0):

µy = g(z0) + Jg(z0)(µz − z0), (12.49)

Σy = Ψ + Jg(z0)ΣzJg(z0)>. (12.50)

Note that although plinear(y; z0) is Gaussian for a given expansion point, the value of z0 is
the result of optimization and depends on y in a nonlinear way, so that the state likelihood is
non-Gaussian as a function of y.

We shall note as well that the posterior mean can be rewritten in a simpler and more
intuitive way using the above covariance:

µz|y = µz + ΣzJg(z0)>Σ−1
y (y − µy) . (12.51)

The posterior mean is thus obtained as the sum of the prior mean and a renormalized version
of the bias between the observed noisy speech and the predicted value of the noisy speech at
the prior mean given a linearization of the interaction function at z0.

The linearization point is important to the accuracy of the algorithm, as can be seen in
Figure 12.8, and theoretically should be near the mode of the “true” posterior obtained using
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Figure 12.9 Comparison of the probability distribution p(yf |sx, sn) for iterative VTS at different
iterations, using the same priors as Figure 12.6. The convergence properties of iterative VTS are shown
by plotting each of the first 20 iterations, followed by each of the last 10 iterations for a total of 30.
The fact that these last iterations still differ on the left-hand tail of the distribution indicates that the
algorithm is oscillating between different solutions. Here, the iterations are started at the prior mean,
but other expansion points lead to similar behavior. It is interesting to note that in this case, the minimum
of the last several iterations of VTS makes a nice approximation of the probability distribution given by
MC Gaussian phase factor shown in Figure 12.6.

plogsum(y|x,n) as the conditional probability. Therefore, whereas the initial linearization
point is at the prior mean, in each iteration the estimated posterior mean is used to obtain
a new expansion point z0 = µz|y . Because the interaction function is shift invariant, in the
sense that y + v = g(x+ v,n+ v) for any v, the linearization at z0 = [x0;n0] is a plane
tangent to g along the line in x, n defined by x− x0 = n− n0. Since y is observed,
this is equivalent, as illustrated in Figure 12.10, to linearizing at a point on the curve
determined by the observation y = g(x′0,n

′
0), defined by x′0 = µx|y + v, n′0 = µn|y + v,

where v = y − g(µx|y,µn|y). This point is not necessarily at the posterior mode along the
curve, so the expansion can be a source of trouble for the algorithm. Most notably, it does
not guarantee the convergence of the likelihood estimate which is known to fail in many
conditions [49], as illustrated in Figure 12.9. It may be better to pose the problem in terms of
finding the mode of the posterior distribution directly. Optimization methods such as quasi-
Newton methods involve differentiating the log posterior, and thus compute differentials of
g(x), but can step toward the optimum in a smoother and faster way [51].

Our discussion of VTS approaches above has assumed the use of source models based
in the log (mel) power spectral domain, rather than cepstral domain, and neglected the
explicit modeling of channel effects. Both circumstances can be readily handled in the VTS
framework, assuming that an invertible DCT matrix C is used to transform to the cepstral



20 Factorial Models for Noise Robust Speech Recognition

Figure 12.10 Illustration of the linearization procedure in VTS for a single frequency. The transparent
surface on top represents the log-sum interaction y = log(ex + en), while the plane below it is the
linearization of g, which is tangent to that surface at (x0, n0, g(x0, n0)), for (x0, n0) = (5, 8). This
plane is also tangent along the dash-dotted line, because g has the property that g(x+ v, n+ v) =
y + v for any v. The two solid curves represent y = log(ex + en) for y = 0 and y = g(x0, n0). The
dashed line is the tangent to 0 = log(ex + en) at (x0, n0) in the y = 0 plane.

domain. However, often the cepstra are generated by eliminating higher-order coefficients, in
order to minimize the influence of pitch, and the Moore–Penrose pseudoinverse is commonly
used. A more principled approach would be to supply a model of the upper cepstra so that
the transformation is invertible.

In general, recognizers model features of multiple frames rather than a single one. This
creates a model in which inference at the current frame is dependent upon previous frames.
In [16], models of both static (i.e., single frame) and dynamic (i.e., differences across frame)
features are used as priors for Algonquin. Although exact inference in such a model is
generally intractable, [16] made the expedient approximation of using point estimates of
the clean speech of previous frames to compute the priors of the current frame.

Unfortunately, as mentioned earlier, state-of-the-art speech recognizers use more complex
and non-invertible transformations of multiple frames, such as LDA or fMPE transforms.
Because of the nonlinearity and dimensionality reduction, further approximations would
be necessary to perform model-based noise compensation with such models. In general,
as previously mentioned, fleshing out the models to provide some distributions of the
dimensions that are normally discarded is one avenue of attack.



Factorial Models for Noise Robust Speech Recognition 21

(a) Contour plot of phase-factor model (b) Surface plot of phase-factor model

Figure 12.11 (a) Contour plot of phase factor approximation and (b) surface plot of the same. Contour
line spacing is logarithmic and the function has been truncated to fit in the plot box.

12.5.4 SNR-Dependent Approaches

SNR-dependent approaches [49, 20, 15], also known as “phase-sensitive” approaches, are
similar to the basic VTS model except that a Gaussian model is used for the phase factor
α in (12.9), rather than for the entire phase term. Thus, neglecting the channel effects, the
model is

y = log(ex + en + 2e
x+n

2 ◦α). (12.52)

The phase factor α ∈ [−1, 1]F is modeled as a zero mean Gaussian p(α) = N (α; 0,Σα)
truncated to the interval [−1, 1] in each dimension. The variance Σα is usually assumed to
be diagonal. Using (12.21), we then have

psnrdep(y|x,n) = Nα
(

1

2
(ey−

x+n
2 − e

x−n
2 − e

n−x
2 ); 0,Σα

) ∣∣∣∣diag

(
1

2
ey−

x+n
2

)∣∣∣∣ .
(12.53)

This distribution is illustrated in Figure 12.11. It is especially appropriate in the log mel
domain and corresponds closely to the empirical distribution shown in Figure 12.4(b).
Although the variance of α does not change as a function of SNR, the uncertainty of y
given x and n becomes a function of SNR due to the nonlinearity of the interaction. In [49],
in addition to modeling α as a Gaussian, the interaction was also approximated using

y = log(ex + en) + log

(
1 +

2

e
x−n

2 + e
n−x

2

◦α
)

≈ log(ex + en) +
2

e
x−n

2 + e
n−x

2

◦α. (12.54)
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Using this interaction function in (12.20) leads to a conditionally Gaussian likelihood
function:

psnrdepvar(y|x,n) = N
(
y; log(ex + en),A>ΣαA

)
. (12.55)

The matrix A
def
= diag

(
2/(e

x−n
2 + e

n−x
2 )
)
, where division is defined element-wise, is a

function of the SNR, x− n. In this case, the dependency of the uncertainty upon the SNR
clearly appears in the variance, which reaches a maximum for an SNR of zero.

In [15], posteriors of clean speech and likelihoods of noisy speech were computed using
(12.53), using an improved version of the VTS/Algonquin method, based on second-order
expansion of the joint distribution, psnrdep(y|x,n)p(x)p(n). The proposed algorithm was
used to estimate the likelihoods of noisy speech, the posterior mean of the clean speech and
to optimize the noise model given noisy speech.

12.6 Efficient Likelihood Evaluation in Factorial Models
Exact inference methods for robust ASR using factorial models require computing the joint
state likelihood p(y|sx, sn) ≡ p(y|sz), introduced in (12.1), for all combinations of speech
and noise states. Therefore, exact inference generally becomes computationally intractable
when the number of state combinations is large. Efficient approximate inference naturally
involves either reducing the amount of computation required to estimate p(y|sx, sn), reducing
the number of state combinations that are evaluated, or both.

12.6.1 Efficient Inference Using the Max Model

In Section 12.5.1, we showed that if the conditional prior distributions of speech and noise
have no statistical dependencies between features, the joint likelihood of a given combination
of speech and noise states under the max interaction model is given by:

pmax(y|sx, sn) =
∏
f

(
pxf (yf |sx)Φnf (yf |sn) + pnf (yf |sn)Φxf (yf |sx)

)
, (12.56)

For K explicitly modeled acoustic sources, the result becomes

p(y|{sk}) =
∏
f

∑
k

pxkf (yf |sk)
∏
j 6=k

Φxjf
(yf |sj), (12.57)

where sk denotes the acoustic state of the kth source xk, and {sk} denotes {sk}Kk=1 =
{s1, s2, . . . , sK}, a particular configuration of the state variables of each source.

An advantageous property of this likelihood function is that it is composed of terms with
factors that depend on the state of a single acoustic source. Therefore, the cost of computing
these factors scales linearly with the number of acoustic sources that are explicitly modeled.
However, exact inference using the max model requires that the product of sums in (12.36)
be computed for every combination of states, which scales exponentially with the number
of sources. This is true even for models in which the feature dimensions are conditionally
independent given the states.

The joint likelihood (12.57) is often approximated to depend only on the acoustic model
of a single source, for example, as done in [38], where p(yf |{sk}) ≈ pxif (yf |si), i =
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arg maxk µsk . This averts the cost of computing the cumulative distribution functions and the
additions and multiplications in (12.57), but inference still scales exponentially withK, since
the resulting likelihood function is, in general, different for every combination of states. In
the case that all Gaussians in all acoustic models share the same variance at each dimension,
the branch-and-bound algorithm in [80] can be applied to do an approximate search for the
MAP state configuration, but this approach also has exponential worst-case complexity, and
is not well suited for approximating the likelihoods of the states, because the upper bounds
produced during the search are very loose.

Recently, a new variational framework for the max model was introduced [77, 75, 78]. The
framework hinges on the observation that in each feature dimension, a latent hidden variable,
corresponding to the identity of the source that explains the data in that dimension, is being
integrated out in the sum in (12.57). Denoting the mask variable for feature f by df , and a
particular choice of mask values for all of the features by {df}

def
= {df}Ff=1, we have

p(y, {df}|{sk}) =
∏
f

p(yf , {df}|{sk}) (12.58)

=
∏
f

p
x
df
f

(yf |sdf )
∏
j 6=df

Φxjf
(yf |sj), (12.59)

where x
df
f and sdf denote the feature and state of the source that explains feature f . Note

that p(yf , {df}|{sk}) is simply the product of the probability that source df explains the
data, and all other source features have values less than the data. This lifted max model is
derived more rigorously in [78], and explicitly models which source explains each feature
dimension. The lifted max model has the special property that p(y, {df}|{sk}) factors over
the acoustic sources, which immediately implies that if the mask values {df} are known,
inference of the acoustic sources decouples. Since p(yf , {df}|{sk}) factors over frequency,
it also follows that if the state combination is known, then the inference of each df decouples
from the others. In general, it is intractable to compute all possible acoustic masks (2F ), or all
possible state combinations (

∏
k |sk|), but these properties can be exploited using variational

methods.
By Jensen’s inequality, the log probability of the data under the lifted max model can be

lower-bounded as follows:

log p(y) = log
∑

{sk},{df}

p(y, {sk}, {df}) (12.60)

≥
∑

{sk},{df}

q({sk}, {df}) log
p(y, {sk}, {df})
q({sk}, {df})

def
= L, (12.61)

for any probability distribution q on the states {sk} and masks {df}. The difference between
(12.60) and (12.61) is the Kullback–Leibler (KL) divergence between the exact posterior
under the model, p({sk}, {df}|y), and q({sk}, {df}) [44]:

D(q{sk},{df} || p{sk},{df}|y) = log p(y)− L, (12.62)

where we use the random variable notation for sk and df to indicate that the divergence is only
a function of their distribution and not their values. When q({sk}, {df}) = p({sk}, {df}|y),
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the bound is tight. By optimizing the variational parameters of q({sk}, {df}) to maximize
the lower bound L in (12.61), we at the same time minimize (12.62). The resulting q
distribution can be utilized as a surrogate for the true posterior p({sk}, {df}|y), and used
to make predictions. Because the joint distribution p(y, {sk}, {df}) factors, any form of
q({sk}, {df}) that factors over both {sk} and {df}makes optimizing the bound L in (12.61)
linear in the number of sources K, the number of features F , and number of states

∑
k |sk|.

For example, if q({sk}, {df}) =
∏
f q(df )

∏
k q(s

k), the bound L becomes:

L =
∑

{sk},{df}

∏
f

q(df )
∏
k

q(sk) log

∏
f px

df
f

(yf |sdf )
∏
j 6=df Φxjf

(yf |sj)
∏
k p(s

k)∏
f q(df )

∏
k q(s

k)

=
∑
f,k

(
qdf (k)

∑
sk

q(sk) log pxkf (yf |sk) + (1− qdf (k))
∑
sk

q(sk) log Φxkf
(yf |sk)

)
+
∑
f

H(qdf )−
∑
k

D(qsk || psk), (12.63)

as shown in [77], where H(qdf ) = −
∑
df
q(df ) log q(df ) denotes the entropy of qdf .

Clearly the bound can be computed without considering combinations of source states, or
combinations of feature mask configurations, and so scales linearly with the number of
sources, states per source, and feature dimension. Importantly, this implies that the chosen q
distribution can also be iteratively inferred in time linear in these variables. As described in
Section 12.7.2, these variational approximations and their extensions have been explored in
the context of multi-talker speech recognition.

12.6.2 Efficient Vector-Taylor Series Approaches

To make inference in VTS-based systems more efficient, the following approximations are
typically made:

• The noise is modeled by a single Gaussian to reduce the number of joint states to the
number of states in the speech model, so that |sz| = |sx|, where |s| denotes the number
of discrete values that the state s can take.

• The data likelihood plinear(y|sz; z0) is assumed to have a diagonal covariance matrix:

plinear(y|sz; z0) = N (y;µy|sz , Σy|sz) ≈ N (y;µy|sz ,diag(Σy|sz)),

µy|sz = g(z0) + Jg(z0)(µz|sz − z0),

Σy|sz = Ψ + Jg(z0)Σz|szJg(z0)>.

This reduces the cost of evaluating plinear(y|sz; z0) by a factor of F , the dimension of
y.

• The approximation of the conditional likelihood plogsum(y|x,n) as a Gaussian with
mean linear in x and n is shared by sufficiently similar speech states

plogsum(y|z) ≈ plinear(y|z, sz) ≈ plinear(y|z, srz , sz) (12.64)
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where the state srz is a “low-resolution” surrogate for the joint state sz, and |srz | � |sz|.
srz is often referred to in the speech literature as a “regression class variable” [31].
Similarly, hierarchical acoustic models, which consist of multiple acoustic models
trained at different model resolutions in terms of number of components can be used
to compute surrogate likelihoods using VTS-methods while “searching” for probable
state combinations.

The amount of computational savings brought by (12.64) depends on the specific
approximations made, and several have been proposed [30]. Techniques such as joint
uncertainty decoding (JUD) and VTS-JUD [57, 96], introduced in more detail in Chapter 17,
have the advantage that only |srz | sets of “compensation” parameters need to be computed,
but the parameters of all |sz| states of the acoustic model need to be transformed.
Predictive CMLLR (PCMLLR) [31], conversely, implements model compensation via a
feature transformation:

plinear(y|sz) ≈ pcmllr(y|sz, srz) = |Asrz | N (Asrzy + bsrz ;µx|sx ,Σx|sx) (12.65)

where Asrz and bsrz are estimated to minimize the KL divergence of pcmllr(y|sz, srz) from
plinear(y|sz), and the Jacobian determinant |Asrz | ensures that the distribution in the right-
hand side normalizes over y. Note that the parameters of the speech model are not modified.
Compared to model transformation methods that utilize diagonal-covariance approximations
of Σy|sz , PCMLLR has the advantage that correlation changes in the feature vector can
be modeled via Asrz . Such modeling has been shown to improve ASR performance [30].
Another important advantage is that the PCMLLR model can be adapted in a straightforward
manner like CMLLR [30].

The computational burden of computing likelihoods for all combinations of states in VTS
models can also be alleviated using variational methods. A variational form of Algonquin was
first discussed in [27], and is described in detail for the assumption of Gaussian posteriors
for x and n in [49]. These algorithms iterate between computing linear approximation(s) of
the log-sum function given the current estimate(s) of the speech and noise, and optimizing
a variational lower bound on the resulting approximation to the probability of the data to
update the speech and noise estimate(s) and acoustic likelihoods. The idea of conditioning
the variational posterior on auxiliary state variables to control the number of masks that are
inferred when doing inference in the max model [75, 78] could be similarly applied in the
Algonquin (or VTS) framework to control the number of Gaussians used to approximate the
posterior distribution of the features.

12.6.3 Band Quantization

Band quantization (BQ) is a technique that can be used to reduce the number of likelihoods
that need to be computed per dimension for models with conditionally independent features.
A band-quantized Gaussian mixture model (BQGMM) is a diagonal-covariance GMM that is
constrained as follows. At each feature dimension f , an additional discrete random variable
axf is introduced, and the feature distribution is assumed to be Gaussian given axf . The
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Figure 12.12 In band quantization, a large set of multidimensional Gaussians is represented using a
small set of shared one-dimensional Gaussians optimized to best fit the original set of Gaussians. Here,
we illustrate twelve two-dimensional Gaussians (solid ellipses). In each dimension, we quantize these
to a pool of four shared one-dimensional Gaussians (density plots on axes). The means of these are
drawn as a grid (dashed lines), on which the quantized two-dimensional Gaussians (dashed ellipses)
can occur only at the intersections. Each quantized two-dimensional Gaussian is constructed from the
corresponding pair of one-dimensional Gaussians, one for each feature dimension. In this example,
we represent 24 means and variances (12 Gaussians × 2 dimensions), using 8 means and variances (4
Gaussians × 2 dimensions).

mapping from GMM states cx to atoms axf is usually constrained to be deterministic:

p(x) =
∑
cx

πcxN
(
x;µcx ,σ

2
cx
)

(12.66)

≈
∑
cx

πcx
∏
f

N
(
xf ;µaxf (cx), σ

2
axf (cx)

)
. (12.67)

By design |axf | � |cx|, so the number of Gaussians per dimension is vastly reduced. Figure
12.12 illustrates the idea. This concept was pioneered in early speech recognizers to reduce
the computational load and promote generalization from small training sets [40, 5, 41, 6].

Despite the relatively small number of components |axf | in each band, taken across bands,
BQGMMs are capable of expressing |axf |F distinct patterns in an F -dimensional feature
space. The computation and storage requirements of a BQGMM relative to its corresponding
diagonal-covariance GMM are reduced by approximately a factor of |c

x|
|axf |

. For speech models,
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this factor is generally on the order of 100 for negligible loss in ASR performance. The
computational savings can be even more significant when using factorial models, which in
general scale exponentially with the number of acoustic sources that are distinctly modeled.
For example, in [38], BQGMMs are used to separate and recognize two simultaneously
speaking talkers, and their use speeds up the cost of a full evaluation of the likelihoods by
over three orders of magnitude. Importantly, band quantization can be applied to hierarchical
acoustic models to reduce their memory footprint, and, depending on the search parameters
used, deliver significant additional computational savings [4].

BQGMMs are generally estimated from an existing GMM, by clustering the Gaussians
in each dimension using K-means clustering, with the KL-divergence between Gaussians
as the distance metric [6]. More generally, BQGMMs can be identified by minimizing
the KL-divergence between the BQGMM and an existing GMM. This objective cannot be
analytically optimized. An analytic algorithm that uses variational techniques to approximate
the KL divergence between GMMs is presented in [36], and was used to construct speech
BQGMMs in [38].

12.7 Current Directions

We have reviewed some approaches to handling the problems of intractability in model-based
approaches, both at the mathematical level, due to the nonlinearity of feature transforms, and
at the computational level, due to the multiplicative number of state combinations for factorial
models. We now discuss a few interesting current research directions in model-based robust
ASR. The foregoing has focused on attempts to model signal interaction in feature domains
that are known to work well for speech recognition. An alternative is to investigate speech
recognition using feature domains in which signal interaction is easily modeled. Approaches
to enhancement based on basis decomposition of power spectra attempt to model speech and
noise directly in the power spectrum domain [81, 43, 74, 67].

Another direction is to investigate better modeling of speech and noise. The ability
to model the noise dynamics is one of the more promising aspects of the model-based
compensation framework. We discuss a model with simple linear dynamics on the noise
levels that shows strong potential for use within a model-based noise compensation scheme.
For more complex noise sources, such as an interfering speaker, noise compensation would be
hopeless without complex models of the dynamics of both the target and interfering signals.
However, some recent work on factorial HMMs shows that super-human speech recognition
is possible and can be performed with far less computation than originally thought [78].

Speech recognition has a history that began with recognition of clean speech, and hence
feature optimization has focused on extracting the filtering effects of the vocal tract and
eliminating sources of variance that were thought irrelevant to recognition. The voiced parts
of speech contain harmonics determined by the pitch, which carry the vocal tract information.
However, in non-tonal languages the pitch is largely independent of the words being said. In
noise, the situation changes: the harmonics are precisely the frequencies where the SNR is
greatest, and so it may be profitable to model the dynamics of pitch along with the vocal tract
information, in order to help extract the vocal tract information. Source-filter models also
allow the interaction model to operate in the full spectrum, while allowing the recognition
part of the model to operate in the filter domain. This type of model has been attempted for
speech separation in [34, 54, 46], and for music separation in, for example, [33], and is also
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used in HMM-based speech synthesis [97].
In the rest of this section, we discuss some of these ideas in more detail. In particular,

we discuss dynamic noise models, speech separation with factorial HMMs, and non-negative
subspace approaches to signal separation, and their potential use within a speech recognition
system.

12.7.1 Dynamic Noise Models for Robust ASR

A fundamental problem in robust ASR (and classification in general) is handling mismatch
between training and testing conditions in a highly efficient manner. Maximum Likelihood
Linear Regression (MLLR) techniques such as fMLLR, Maximum a Posteriori Linear
Regression (MAPLR), feature space MAPLR, etc. [28, 29, 10] are relatively simple, efficient
and generally effective approaches to speaker and environmental compensation, and are used
(in one form or another) by essentially all state-of-the-art ASR systems today.

However, as we have explained in detail in this chapter, additive noise has a highly
nonlinear effect in the log frequency domain. Factorial models of speech and noise can exploit
this relationship to learn efficient and representative models of the available training data. The
benefits of explicitly modeling canonical variables such as noise are much more pronounced
when mismatched data is encountered. Often very little adaptation data is available or very
rapid adaptation is preferred. Naturally, an efficient and accurate parameterization of the data
can be adapted much more rapidly and can be far more effective than brute-force methods.

The rapid adaptation of a noise model under a factorial representation of noisy speech is
an idea with roots tracing back over four decades to early work on front-end denoising using
spectral subtraction and Wiener filtering [7, 22]. Speech recognition systems are composed
of loosely connected modules: a speech detector, a noise estimator that operates on blocks
of data identified as speech-free, and a noise removal system, that produces a speech feature
estimate given an estimate of the noise. Ongoing research aims to develop more accurate
models of speech, noise, and their interaction, and jointly inferring their configuration
under the resulting probability model of the data. More recent, significant work on rapid
noise-adaptation includes investigations on dynamic forgetting factor algorithms for noise
parameter adaptation [2], stochastic online noise parameter adaptation [14], and dynamic
noise adaptation (DNA) [79, 71].

A distinguishing feature of DNA in this context is that noise is modeled as a random
variable with simple dynamics. DNA maintains an approximation to the posterior distribution
of the noise rather than a point estimate, which leads to better decisions about what frequency
bands are explained by speech versus noise. A limitation of these rapid noise adaptation
techniques is that they generally utilize very simple models of noise that are estimated
in online fashion, and maintain no long-term statistics about previously seen data. The
use of pre-trained models of noise to detect and reset the DNA noise tracker has been
investigated to an extent [79], as has condition detection (CD): the automatic detection of
when explicit noise modeling is not beneficial [72]. The latter approach allows for the use
of DNA with multi-condition models for the speech model and back-end acoustic models,
as is, without any system re-training, and improves the performance of state-of-the-art ASR
systems significantly.

Factorial switching models with pre-trained (conditionally) linear dynamical models for
speech and noise have also been investigated [18], and are described briefly in Chapter 9.



Factorial Models for Noise Robust Speech Recognition 29

Future work on dynamic noise modeling should focus on efficiently leveraging stronger
noise models that incorporate proven adaptation techniques, and incorporating/improving
algorithms that have recently been investigated for multi-talker speech recognition (as
described directly below), so that more structured acoustic interference, such as secondary
speech and music, can be accurately compensated.

12.7.2 Multi-Talker Speech Recognition Using Graphical Models

A hallmark of human perception is our ability to solve the auditory cocktail party problem:
even when restricted to a single channel, we can direct our attention to a chosen speaker
in the presence of interfering speech, and, more often than not, understand what was
said remarkably well. A truly exciting direction of current research in factorial modeling
for robust ASR has been the use of graphical models to realize super-human speech
recognition performance. These techniques have so far utilized HMMs to model each
explicitly represented speaker, and combined them with one or more of the interaction models
described in this chapter to realize multi-talker speech separation and recognition systems.

A fundamental challenge of multi-talker speech recognition is computational complexity.
As discussed in Section 12.6, in general, exact inference involves computing the likelihood
of all combinations of the states of the speakers. Exact inference also entails searching the
joint (dynamic) state space of the decoders, which also scales exponentially with the number
of speakers. In [35, 52, 38], the two-talker system used to outperform human listeners on the
PASCAL monaural speech separation and recognition task [11], utilized band quantization
(described in Section 12.6.3) to reduce the cost of acoustic labeling by an exponential factor,
and joint-state pruning, which, for this well-constrained task, was very effective at controlling
the complexity of the joint decoder. In [76] the idea of using loopy belief propagation
to iteratively decode the speakers was introduced. This technique reduces the complexity
of decoding from exponential to linear in the number of speakers, with negligible loss in
recognition performance. Shortly thereafter in [77], the new variational framework for the
max model described in Section 12.6.1 was introduced, and used to make inference linear in
the number of speakers. Later in [75, 78], this framework was extended so that the complexity
of inference could be precisely controlled. The resulting system was able to separate and
recognize the speech of up to five speakers talking simultaneously and mixed in a single
channel: a remarkable result, considering that the models necessary to describe the data
involve trillions of state combinations for each frame.

These recent advances in multi-talker speech recognition are significant, but several
important and exciting problems remain. First and foremost, it is important to emphasize that
existing algorithms have so far only been tested in reasonably well-constrained scenarios, and
artificially mixed data. The enhancement of these techniques to make them suitable for multi-
talker recognition of real data streams with significant background noise, channel distortion,
and less-constrained speaker vocabularies involves solving many interesting and challenging
problems, some of which we discuss briefly below.

For example, to the best of our knowledge, algorithms that select which and how many
speakers (or more generally acoustic sources) to explicitly model have yet to be investigated
for more than two concurrently active sources. For the case of two sources, a simple method
to detect clean conditions is described in [38]. This work, and existing work on speaker
segmentation (e.g., [8]) could be used as a starting point for future investigations. Another
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important direction of future work is to develop representative models of the acoustic
background that extract canonical acoustic components that can be composed to explain new,
previously unseen test data, and yet do not over-generalize. Current studies include matrix
factorization approaches, as described further below, and factorial models based on graphical
models with a distributed state representations, such as deep belief networks (DBNs) of
restricted Boltzmann machines (RBMs) for ASR [58], and factorial hidden DBNs of RBMs
for robust ASR [73].

In addition, relatively little work has been done on probabilistic models for speech
separation and recognition that employ multiple channels in a coherent model[70, 3, 83, 12].
With the availability of two or more channels in speech enabled devices rapidly becoming the
rule, rather than the exception, it seems inevitable that the best ASR systems will be those
that have multi-channel processing capabilities integrated directly into the acoustic scorer
and decoder.

12.7.3 Noise Robust ASR Using Non-Negative Basis Representations

We have so far shown how tremendous efforts need to be made in order to bring interaction
modeling in the domain of the speech recognizer. Another approach to the problem is to try
to perform recognition in a domain where the interaction can be conveniently modeled, such
as the magnitude or power domain. A promising angle of attack in this direction is to use
techniques based on non-negative matrix factorization (NMF) [55]. In the context of audio
signal processing, NMF is generally applied to the magnitude or power spectrogram of the
signal, with the hope that the non-negative low-rank decomposition thus obtained will extract
relevant parts [88].

In NMF approaches, the model for each source in a given frame (a small window of speech,
of approximately 40 ms) is defined by a set of weighted non-negative basis functions in the
power spectrum (or similar feature space). Inference involves concatenating the basis sets for
different sources into a single basis, and solving in parallel for the weights of all sources that
best reconstruct the signal. There is also work to include phase explicitly as a parameter [45],
which would allow for exact inference of the complete signal.

This type of approach has the advantage of speed because it avoids considering all
combinations of basis functions across speakers. It has proven extremely successful,
particularly for music signal transcription and source separation [92, 25], as described in
more details in Chapter 5 of this book. The original framework has been extended in many
directions. One has been to integrate better constraints, such as temporal continuity, into
the models while retaining their computational advantages [92, 94]. Another has been to
reformulate NMF in a probabilistic framework [9, 93], which enables posterior probabilities
and likelihoods to be computed. This also enables NMF to be used as a component in a
graphical model such as a speech HMM.

A recent trend of research has, like the speech separation approaches of the previous
section, focused on modeling multiple non-stationary sources through factorial models
[65, 89, 61, 64]. An exciting new direction takes this idea even further by using nonparametric
Bayesian methods to define factorial models with an unbounded number of factors [39, 63].
The beauty of these methods is that, despite their apparent complexity, they are able to acquire
models of all of the components of an acoustic scene. This makes them ideally suited to the
task of modeling complex and unknown signals. Applying this kind of approach to the speech
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recognition problem has, to the best of our knowledge, not yet been attempted, but we think
that it is a very promising direction for future research.
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Algonquin, see vector Taylor series

band quantization (BQ), 26–27, 29
band quantized GMM (BQGMM), 26
belief propagation, 29
BQ, see band quantization
BQGMM, see band quantized GMM

CMLLR, see constrained maximum
likelihood linear regression

constrained maximum likelihood linear
regression (CMLLR), 25

devil function, 8–10
DNA, see dynamic noise adaptation
dynamic noise adaptation (DNA), 28–29
dynamic noise models, 28–29

exact interaction model, 8–10

factorial models, 1–31
feature-based noise compensation, 1

interaction models, 7–12

joint uncertainty decoding (JUD), 25
JUD, see joint uncertainty decoding

lifted max model, 23–24
log power spectrum, 6
log-sum model, 11–12

efficient inference, 24–26
inference, 14–21

loopy belief propagation, 29

max model, 10–11
efficient inference, 22–24
inference, 12–14

maximum likelihood linear regression
(MLLR), 1

mel cepstrum, 7
mel interaction model, 12
mel spectrum, 5–7
microphone arrays, 30
missing-feature methods, 2
MLLR, see maximum likelihood linear

regression
model adaptation, 1
model compensation, 1
model-based noise compensation, 1–31
multi-talker speech recognition, 29–30

NMF, see non-negative matrix
factorization

noise compensation, 1
non-negative basis representations, see

non-negative matrix factorization
non-negative matrix factorization (NMF),

30–31
non-parametric Bayesian methods, 31

parallel model combination (PMC), 14–15
PMC, see parallel model combination
power spectrum, 5
predictive CMLLR, 25

RBM, see restricted Boltzmann machine
restricted Boltzmann machine (RBM), 30

speaker segmentation, 30
speech enhancement, 1
speech separation, 29–31

uncertainty decoding, 2, 4, 25
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phase factor approach, 21
SNR-dependent approach, 21

VTS, see vector Taylor series
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