
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Construction of Embedded Markov Decision
Processes for Optimal Control of

Non-Linear Systems with Continuous State
Spaces

Nikovski, D.; Esenther, A.

TR2011-081 December 2011

Abstract

We consider the problem of constructing a suitable discrete-state approximation of an arbitrary
non-linear dynamical system with continuous state space and discrete control actions that would
allow close to optimal sequential control of that system by means of value or policy iteration on
the approximated model. We propose a method for approximating the continuous dynamics by
means of an embedded Markov decision process (MDP) model defined over an arbitrary set of
discrete states sampled from the original continuous state space. The mathematical similarity
between sets of barycentric coordinates (convex combination) and probability mass functions is
exploited to compute the transition matrices and initial state distribution of the MDP. Barycentric
coordinates are computed efficiently on a Delaunay triangulation of the set of discrete states,
ensuring maximal accuracy of the approximation and the resulting control policy.

IEEE Conference o Decision and Control and Eurpoean Control Conference (CDC-ECC)

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part
without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include
the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of
the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or
republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All
rights reserved.

Copyright c©Mitsubishi Electric Research Laboratories, Inc., 2011
201 Broadway, Cambridge, Massachusetts 02139

MERLCoverPageSide2

Construction of Embedded Markov Decision
Processes for Optimal Control of Non-Linear

Systems with Continuous State Spaces
Daniel Nikovski and Alan Esenther

Mitsubishi Electric Research Laboratories

201 Broadway, Cambridge, MA 02139, USA

E-mail: {nikovski,esenther}@merl.com

Abstract—We consider the problem of constructing a suitable
discrete-state approximation of an arbitrary non-linear dynam-
ical system with continuous state space and discrete control
actions that would allow close to optimal sequential control of
that system by means of value or policy iteration on the ap-
proximated model. We propose a method for approximating the
continuous dynamics by means of an embedded Markov decision
process (MDP) model defined over an arbitrary set of discrete
states sampled from the original continuous state space. The
mathematical similarity between sets of barycentric coordinates
(convex combinations) and probability mass functions is exploited
to compute the transition matrices and initial state distribution
of the MDP. Barycentric coordinates are computed efficiently on
a Delaunay triangulation of the set of discrete states, ensuring
maximal accuracy of the approximation and the resulting control
policy.

Index Terms—optimal control, embedded Markov chains, dy-
namic programming, Markov decision process models

I. INTRODUCTION

Many dynamical systems have state spaces that are naturally
continuous, but can be controlled successfully by applying
controls from a relatively small discrete set, applied at dis-
crete moments in time. The state of such systems is a real-
valued vector x ∈ Rd , where d is the dimensionality of the
(continuous) state space of the dynamical system, and the
controls a ∈ A are discrete and belong to the set A. The
dynamics of the control system are described by the general
form xk+1 = f (xk,ak), where xk is the state of the system at
time tk, ak is the control applied at time tk, f is an arbitrary
non-linear function, and the system evolves in discrete time
such that tk = k∆t for a suitably chosen constant interval ∆t.

The goal of sequential optimal control is to select a sequence
of actions a0, a1, a2, . . . , such that some performance measure

dependent on the states traversed by the systems and the
controls applied to it is optimized. One example of such
a performance measure is the cumulative cost over a finite
horizon of K steps J = ∑

K
k=0 g(xk,ak)+h(xK), where g(xk,ak)

is a suitably chosen running cost, and h(xK) is a terminal
cost associated with the final state xK . Another possible
performance measure is the discounted cumulative cost over
an infinite horizon J = ∑

∞
k=0 γkg(xk,ak), where 0 < γ < 1 is a

discounting factor. General analytical methods for solving this
optimization problem exactly for arbitrary functions f , g, and
h are not known, although solutions for special cases have been
known and used for a long time, such as the linear quadratic
regulator (LQR) that can be applied when the control action
a is real-valued, the function f is linear, and the functions g

and h are quadratic in the state x and control a [1]. However,
in the general case, the function f is not linear, and the cost
functions g and h are not quadratic in the state and control.
In such cases, the optimal control has to be found by means
of numerical methods [2], or reinforcement learning [3], [4].

An alternative strategy for solving the optimal control
problem is to convert the continuous-state-space dynamical
system into a Markov decision process (MDP) with discrete
state space and solve it by means of existing algorithms such as
policy iteration and value iteration [5]. The algorithm proposed
in this paper is one such method.

A discrete-space MDP is described by a discrete set of
states S such that the MDP occupies one of these states
sk ∈ S at any time tk, and a transition probability function
p(sk+1|sk,ak) = Pr(sk+1|sk,ak) that expresses the probability
of being in state sk+1 at time tk+1 if the MDP was in state
sk at time tk and control (action) ak was applied at that time.
Similarly to the dynamical system described above, the MDP

evolves in discrete time (tk = k∆t), and the controls (actions)
a ∈ A are discrete and belong to a relatively small set A. The
goal is to optimize a performance measure R = ∑

K
k=0 r(sk,ak),

much like in the continuous case.

The similarities between the class of continuous-state-space
systems that we are considering, and MDPs, are that both
evolve in discrete time under the effect of a small number of
discrete actions, and both seek to optimize a performance crite-
rion defined over states and actions. The two major differences
are in the type of state used (continuous x ∈ Rd vs. discrete
s ∈ S) and in the way state evolution is described (function
f (x,a) vs. probability transition function p(sk+1|sk,ak)). The
objective of the conversion method, then, is to construct a state
set S embedded in Rd and a transition function p(sk+1|sk,ak)

for every triple (sk+1,sk,ak) such that sk+1 ∈ S, sk ∈ S, and
ak ∈ A. After the MDP is constructed, an optimal policy
ak = π∗(sk) that maps states to optimal controls can be found
for every sk ∈ S, by using well-known algorithms such as
policy iteration and value iteration [6], [4]. From this MDP
policy, a control law ak = µ∗(xk) for the continuous-state-space
system can be obtained, as described below.

II. A METHOD FOR CONSTRUCTING EMBEDDED MDPS

FOR DYNAMICAL SYSTEMS WITH CONTINUOUS STATE

SPACES

The proposed method is based on similarities in the mathe-
matical properties of probability functions and convex combi-
nations. A probability mass function specifies the probability
that a random variable is equal to some specified value. For
the case of MDPs, the transition function p(sk+1|sk,ak) is
such a (conditional) probability mass function, conditioned on
the starting state sk and the applied control ak. The random
variable for which the probability function is specified is the
successor state sk+1. If the size |S| of the state set S is N,
let s(1), s(2), . . . , s(N) be an enumeration of all states. The
elements of the transition function can then be defined as
pi

.
= Pr(sk+1 = s(i)|sk,ak) = p(s(i)|sk,ak). From the axiomatic

properties of probability mass functions, then, it is always true
that ∑

N
i=1 pi = 1, and 0≤ pi ≤ 1, i = 1, . . . ,N.

On the other hand, a convex combination of N vectors yi,
i = 1, . . . ,N is defined as ∑

N
i=1 ciyi, such that ∑

N
i=1 ci = 1, and

ci≥ 0, i= 1, . . . ,N. By comparing the two definitions, it can be
observed that probability mass functions and the set of coef-
ficients defining a convex combination obey exactly the same
mathematical constraints, and a valid probability function can
be used as coefficients of a valid convex combination, and vice

versa. We will use this fact to construct all transition functions
of the MDP as sets of coefficients for suitably defined convex
combinations.

x

x

x

1

2

(i)

y
p2

p3

p1

Figure II.1. A Delaunay triangulation on a set of vertices sampled from the
embedding two dimensional space. The dashed line shows the transition from
some starting state x(i) under action a resulting in end state y = f (x(i),a).
The simplex (here, triangle) containing the end state y is shown with a dotted
background, and the barycentric coordinates p1, p2, and p3 of y are computed
with respect to the vertices of that simplex. These coordinates are also the
transition probabilities from x(i) under action a to the states corresponding to
these vertices in the resulting MDP.

A. Conversion Algorithm

Step 1: The algorithm starts with selecting N states s(1),
s(2), . . . , s(N) such that each of them corresponds to a
continuous state x(i) ∈ Rd . Every x(i) is a point (vector) in
d-dimensional Euclidean space. We will call these points
anchor points and will denote the set of all anchor points by
X = {x(1),x(2), . . . ,x(N)}. Any selection method could be used,
for example sampling the continuous state space uniformly,
imposing a kind of a regular grid and using its vertices as
x(i), or following a set of trajectories using one or more preset
policies, and recording the resulting states. The last method
is especially applicable to systems where the accessible state
space is only a relatively small subset of the entire state space,
for example specific linear subspaces, or general manifolds.
After selection, the selected anchor points are stored in a
suitable data structure, for example the d-by-N matrix B,
where each column is one anchor point.

Step 2: Find the Delaunay triangulation DT (X) of the set
of points X [7], [8]. The Delaunay triangulation consists of
simplices, each of which has d + 1 vertices, such that each
of these vertices is a member of X , i.e., an anchor point. In
two-dimensional space (d = 2, the plane), the simplices are
triangles; in three-dimensional space (d = 3), the simplices
are tetrahedra, etc. Let there be M such simplices. Store the

Delaunay triangulation in a suitable data structure, for example
the d +1-by-M matrix D, where each column corresponds to
a simplex, and the d+1 entries in the column contain indices
to the anchor points in the matrix B.

Step 3: For every starting state s(i) and control a(l), repeat
the following sub-steps:

Step 3.1: Retrieve the anchor point x(i) that corresponds to
state s(i).

Step 3.2: Use the system function f of the continuous
dynamical system to find the successor point y of x(i) under
control a(l): y = f (x(i),a(l)). In general, the successor point y

does not coincide with any of the pre-selected anchor points
x(i), i = 1, . . . ,N.

Step 3.3: Find the simplex in DT (X) that contains point y.
To this end, traverse all M simplices in DT (X) and repeat the
following steps for every simplex m, m = 1, . . . ,M:

Step 3.3.1: Retrieve the last, d + 1st vertex of simplex m,
and store it in vector q.

Step 3.3.2: Create a d-by-d matrix E, whose column j

contains the difference vm, j − q between the j-th vertex of
simplex m (denoted here by vm, j) and the vector q, for
j = 1, . . . ,d.

Step 3.3.3: Find the d-dimensional vector c such that Ec =

(y−q) by solving the set of d simultaneous linear equations.

Step 3.3.4: Compute the d+1st element of the vector c as
cd+1 = 1−∑

d
j=1 c j.

Step 3.3.5: For every element c j, j = 1, . . . ,d+1, if c j < 0,
then simplex m does not contain point y; increase m by one and
go back to Step 3.3.1 to test the next simplex. If all c j ≥ 0,
j = 1, . . . ,d + 1, then this simplex contains point y; exit the
loop of Step 3.3, and go to the next step.

Step 3.4: At this point, the d+1-dimensional vector c con-
tains coefficients that define a valid convex combination such
that y = ∑

d+1
j=1 c jvm, j. Moreover, it defines a valid probability

transition function, since all of its entries are positive and sum
up to unity.

Step 3.5: In order to construct a complete transition prob-
ability distribution over all possible N successor states, we
perform the following step for each state s(i), i = 1, . . . ,N.
If s(i)corresponds to one of the vertices of the simplex m,
that is, x(i) = vm, j for some j, then the corresponding tran-
sition probability of the MDP is pi = Pr(sk+1 = s(i)|sk,ak) =

p(s(i)|sk,ak)
.
= c j; otherwise, pi

.
= 0.

Conceptually, we can think of this algorithm as a way of
converting the system dynamics represented by the function f

to an equivalent probabilistic representation involving only a

small set of points x(i) embedded into the original continuous
state space of the system. If the system starts in one of
these few points, the successor state y, in general, will not
coincide with another one of these points. However, we can
identify the d+1 points that define a simplex that completely
encloses the successor state y, and can think that the system
has transitioned not to point y itself, but to the vertices of this
simplex with various probabilities, instead. The probabilities
are equal to the convex decomposition of point y with respect
to the vertices of the simplex, also known as the barycentric
coordinates of that point within the simplex. The similarities
between convex combinations (barycentric coordinates) and
probability mass functions required by the MDP formalism
make this conversion possible.

In order to speed up computations, the inverse E−1of matrix
E can be pre-computed and stored for every simplex in the
Delaunay triangulation, and then used in step 3.3.3 to find
c using c = E−1(y− q), rather than solving a set of linear
equations every time.

Another possibility for computational speed up is to use
such an order of traversal of the simplices of the Delaunay
triangulation that would result in faster discovery of the
simplex containing the end point y. It is reasonable to expect
that, in most cases, the simplex that encloses the successor
state y will be generally closer to it than other simplices.
If the centroid of each simplex (i.e., the average of all its
vertex points) is pre-computed, and the Euclidean distance
between each centroid and y is computed, the simplices of the
Delaunay triangulation can be traversed in increasing order of
that distance in Step 3.3.

Finally, the set of N anchor points can be triangulated in
any other manner, if Delaunay triangulation is too expensive
in higher-dimensional state spaces. For d = 2, an efficient
O(NlogN) algorithm for computing Delaunay triangulations
exists [8]; for d > 2, (non-Delaunay) triangulations can be
computed by starting with an initial simplex of d +1 points,
and adding the remaining N−d−1 points one by one, each
time sub-dividing the simplex that contains the point into d+1
new simplices, or adding a new simplex, if no existing simplex
contains the point. Since finding the containing simplex takes
at most O(N) computation, the overall complexity of the
triangulation step is O(N2). This is also the complexity of
Step 3 of the algorithm, and hence the final complexity of
constructing the MDP.

B. Optimal Control Based on the Constructed MDP

Given a constructed MDP, an optimal policy a = π∗(s) for
that MDP can be found by means of policy iteration or value
iteration [6]. For example, for the discounted case, we can
evaluate the value function V (s(i)) of the MDP by means of
repeated applications of Bellman backups of the form

V (s(i)) = maxa{g(s(i))+ γ ∑
N
j=1 Pr(s(j)|s(i),a)V (s(j))}

= maxa{g(s(i))+ γ ∑
N
j=1 p jV (s(j))}

for each state s(i), i = 1,N, until convergence of the
value function V (s(i)). The optimal policy for the MDP is
then π∗(s(i)) = argmaxaQ(s(i),a), where we make use of the
auxiliary function Q(s(i),a) .

= g(s(i)) + γ ∑
N
j=1 p jV (s(j)). The

computational complexity of this solution is only O(Nd), since
in each iteration of the value iteration algorithm, a Bellman
backup is performed for each of the N anchor states, and,
although the sum is over all N successor states s(j), there
are non-zero transition probabilities to only d + 1 of them
(identified in Step 3.3. of the conversion algorithm above),
and they can be either stored explicitly during conversion, or
the transition probabilities can be placed in sparse matrices.

The ultimate goal, however, is to find a control law a =

µ∗(x) that is a mapping from the continuous state x, as
opposed to the discrete state of the MDP s. By recognizing that
our method introduces uncertainty about the state the system
is in, we can use several control strategies from the field of
partially observable Markov decision processes (POMDP) [9]:

Nearest anchor point: find the closest anchor point x(i) to
x in the embedding continuous space in terms of Euclidean
distance, and use the optimal action for the corresponding
MDP state s(i): a = π∗(s(i)).

Largest vote: find the simplex m that contains x, and
compute the barycentric coordinates c of x with respect to the
d+1 vertices vm, j, j = 1, . . . ,d+1 of that simplex, as described
in Step 3.3 of the algorithm above. Then, if a j = π∗(s(j)),
where s(j) is the state corresponding to vertex vm, j, we can use
c j as an individual vote for action a j, and execute the action
that has the highest cumulative vote over all d +1 vertices.

Highest expected merit: use the barycentric coordinates
to estimate the merit Q̂(x,a) of the individual action a taken
in state x as Q̂(x,a) = ∑

d+1
j=1 c jQ(s(j),a), and use the control

law µ∗(x) = argmaxaQ̂(x,a). Given that the barycentric co-
ordinates c can be interpreted as individual probabilities that
the MDP is in one of its discrete states, the function Q̂(x,a)

is indeed the exact expected merit of taking action a at the
continuous state x.

III. EXPERIMENTAL VALIDATION

The proposed method was validated on a mountain car test
problem popular in the field of reinforcement learning (Fig.
3.1) [3]. The task is to drive an under-powered car located in
a valley up a steep mountain road to the right. The difficulty
is that gravity is stronger than the car’s engine, and even at
full throttle the car cannot accelerate up the steep slope. The
only solution is to first move away from the goal and up the
opposite slope. Then, by applying full throttle the car can
build up enough momentum to carry it up the steep slope
even though it is slowing down the whole way. The reward is
−1 for all state/action combinations that do not result in the
goal (a position to the right of the valley, at the top of the right
slope), and 1 for states where the car is at the goal position
(regardless of the velocity and action). The three possible
actions are a(1) = +1, full throttle forward; a(2) = −1, full
throttle reverse; and a(3) = 0, zero throttle. The state of the
continuous system x = [l,v]T is described by the car’s position
l and velocity v. Assuming a control period of length one time
unit and simplified physics, the dynamical system is described
by the equations ([3]):

lk+1 = lk + vk

vk+1 = vk +0.001ak−0.0025cos(3lk)
The state variables were bounded by −1.2≤ l≤ 0.6, −0.7≤

v≤ 0.7; the starting state was l0 =−0.5, v0 = 0, and the goal
was defined as l ≥ 0.5.

Goal

Figure III.1. An under-powered car on a mountain slope that can reach
the goal only by means of building up momentum going up and down the
opposite slope.

The state space of the continuous system was sampled by
imposing a regular mesh grid on the two-dimensional state
space. In experiments, the number N of states of the MDP
was varied by changing the number n of rows, respectively
columns, of that grid, such that N = n2. The algorithm for con-
structing MDPs was implemented in Matlab, and the resulting

n N Iterations Steps to goal
3 9 273 150
4 16 247 108
5 25 232 140
6 36 431 102
7 49 253 171
8 64 313 127
9 81 351 133

10 100 301 103
20 400 284 137
50 2500 24 152

Table I
NUMBER OF ITERATIONS NECESSARY FOR CONVERGENCE OF VALUE

ITERATION, AND NUMBER OF STEPS UNTIL THE GOAL IS REACHED, FOR
VARIOUS SIZES OF THE STATE SET OF THE MDP.

MDP was solved by means of value iteration with discount
factor γ = 0.99, as implemented in a publicly available MDP
toolbox [10]. This toolbox uses sparse matrices to represent the
transition probabilities of the MDP, and benefits directly from
the sparsity of the transition probability functions computed
by the proposed method. After value iteration converged, the
resulting policy was executed, using the highest-expected-
merit control law, and the number of steps until the goal was
reached was recorded. Table 1 shows the experimental results
for several values of N, including the number of iterations
needed until the value function iteration converged.

The value function obtained for N = 400 after value iteration
has converged is shown in Fig. 3.2, and the trajectory to the
goal resulting from executing the resulting policy is shown in
Fig. 3.3.

Figure III.2. Value function for N = 400 states of the MDP.

Figure III.3. Trajectory resulting from executing the optimal policy deter-
mined by solving the MDP with N = 400 states. Darker/thicker line indicates
more recent points in the traversal along the trajectory.

IV. RELATED WORK

As noted above, many numerical methods for solving
optimal control problems have been proposed in the con-
trol systems, operations research, and reinforcement learning
communities. The specific instance of the problem that we
are considering in this paper, namely continuous state space
and discrete time and actions, is a special case of the more
general optimal control problem, where all variables (state,
actions, and time) are continuous. As such, it can be solved
by means of general optimal control methods, including both
indirect and direct methods. In indirect methods, the problem
is formulated as a two-point boundary-value problem, and its
solutions are the desired control and state trajectories. A dis-
advantage of such indirect methods is that solving boundary-
value problems numerically can be very difficult, error prone,
and computationally demanding. In direct methods, the state
and control trajectories are approximated by means of appro-
priate parametric approximators, and the corresponding pa-
rameters are estimated by means of general-purpose nonlinear
optimization methods. An example is the direct collocation
method, currently implemented in powerful modeling and
optimization tools and languages such as JModelica/Optimica
[11]. Although such methods can be very fast and effective,
the direct result of their computation is not a control law, but
an optimal state and control trajectory, whereas the method
proposed in this paper computes an entire control law over
the entire state space. Furthermore, the MDP constructed by
the proposed algorithm can be extended to handle uncertainty
in system dynamics by modifying its transition probabilities,

whereas direct optimal control methods would have to solve a
stochastic optimal control problem, which is much harder to
solve than the deterministic case.

The reinforcement learning and operations research com-
munities have also proposed multiple algorithms for solving
sequential optimal decision and control problems, commonly
incorporating the MDP framework. One of the dominant ideas
has been to use universal value function approximators, such as
feed-forward neural networks, radial-basis functions, k-nearest
neighbor, etc., to represent the value function of a sequential
decision problem over the entire state space of the problem,
and then minimize the residual in the Bellman equation at se-
lect points, fitting the parameters of the function approximators
in the process. To a certain degree, the method proposed in
this paper is based on the same idea for using a universal
function approximator to represent the value function, in
this case piecewise linear approximation over a collection of
simplices. However, two important differences exist. First, the
proposed method approximates the dynamical system by an
MDP, and then calculates the value function of the MDP
exactly, as opposed to approximating the value function of
the original system in the process of estimating it. This has
important consequences as regards the convergence guarantees
of the method. Since the method constructs a standard MDP,
the convergence of the solution procedure used, such as
value iteration, policy iteration, linear programming, etc., is
guaranteed, and the rates of convergence can be estimated
based on existing research [6]. In contrast, the convergence of
value iteration when used with an arbitrary universal function
approximator is not at all guaranteed, and research has shown
that many popular function approximator schemes may in fact
lead to divergence [12].

The second difference between the proposed method and
most solution methods from the field of reinforcement learning
such as Q-learning and TD(λ) is that such methods use the
system dynamics only as a source for sampling system transi-
tions, whereas the proposed method uses the system dynamics
directly for the exact calculation of the transition probabilities
of the MDP. This has the practical consequence that once
the MDP model is constructed, finding the optimal control
law over the entire state space is very fast (O(Nd)), whereas
estimating value functions and optimal control policies from
sampled system transitions can be excruciatingly slow.

V. CONCLUSION

A method for solving sequential optimal control problems
with arbitrary non-linear dynamics in continuous state spaces

was proposed, and its operation was verified on a popular test
problem. The method reduces the continuous-space dynamics
to a Markov decision process defined over a number of anchor
points sampled from the original state space. The embedding
d-dimensional continuous state space is triangulated into sim-
plices of d+1 vertices each, and the non-linear dynamics are
approximated over this triangulation by constructing suitable
transition probability functions of the MDP. Unlike previous
approaches, the states of the MDP are not the subdivisions of
the embedding spaces (simplices, in this case) themselves, but
the vertices of these simplices. Since the original dynamical
system will almost never be at one of these vertices, its
actual state x is represented as a probability function over
the vertices of the simplex that contains x. By exploiting
the mathematical similarities between barycentric coordinates
(convex combinations) and probability mass functions, it is
possible to treat the state x as a probability distribution over
discrete states of the MDP, and compute an optimal control
law for that continuous state based on the optimal policy for
the embedded MDP.

REFERENCES

[1] R. F. Stengel, Optimal Control and Estimation. Mineola, NY: Dover,
1986.

[2] D. P. Bertsekas, Dynamic Programming and Optimal Control. Belmont,
Massachusetts: Athena Scientific, 2000.

[3] R. S. Sutton and A. G. Barto, Reinforcement Learning. Cambridge,
Massachusetts: The MIT Press, 1998.

[4] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement
learning: A survey,” Journal of Artificial Intelligence Research,
vol. 4, pp. 237–285, Apr. 30 1996. [Online]. Available:
http://arxiv.org/abs/cs/9605103

[5] J. Kushner and P. Dupuis, Numerical Methods for Stochastic Control
Problems in Continuous Time. Heidelberg: Springer Verlag, 2001.

[6] M. L. Puterman, Markov Decision Processes—Discrete Stochastic Dy-
namic Programming. New York, NY: John Wiley & Sons, Inc., 1994.

[7] F. P. Preparata and M. I. Shamos, Computational Geometry. Heidelberg:
Springer Verlag, 1990.

[8] S. Skiena, The Algorithm Design Manual (Second Edition). Springer,
2008.

[9] A. R. Cassandra, L. P. Kaelbling, and J. A. Kurien, “Acting under
uncertainty: Discrete bayesian models for mobile robot navigation,” in
Proceedings of IEEE/RSJ International Conference on Intelligent Robots
and Systems, 1996.

[10] I. Chadès, M.-J. Cros, F. Garcia, and R. Sabbadin, “Markov Decision
Processes (MDP) Toolbox,” http://www.inra.fr/mia/T/MDPtoolbox/.

[11] J. Åkesson, K.-E. Årzén, M. Gäfvert, T. Bergdahl, and
H. Tummescheit, “Modeling and optimization with optimica
and JModelica.org - languages and tools for solving large-
scale dynamic optimization problems,” Computers & Chemical
Engineering, vol. 34, no. 11, pp. 1737–1749, 2010. [Online]. Available:
http://dx.doi.org/10.1016/j.compchemeng.2009.11.011

[12] G. J. Gordon, “Stable function approximation in dynamic programming,”
in Proceedings of the International Conference on Machine Learning,
1995, pp. 261–268.

	Title Page
	Title Page
	page 2

	Construction of Embedded Markov Decision Processes for Optimal Control of Non-Linear Systems with Continuous State Spaces
	page 2
	page 3
	page 4
	page 5
	page 6

