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Abstract
Registering an object with respect to a robot’s coordinate system is essential to industrial
assembly tasks such as grasping and insertion. Touch-based registration algorithms use a
probe attached to a robot to measure the positions of contact, then use these measurements
to register the robot to a model of the object. In existing work on touch-based registration,
the selection of contact positions is not typically addressed. We present an algorithm for se-
lecting the next robot motion to maximize the expected information obtained by the resulting
contact with the object. Our method performs 6-DOF registration in a Rao-Blackwellized
particle filtering (RBPF) framework. Using the 3D model of the object and the current
RBPF distribution, we compute the expected information gain from a proposed robot mo-
tion by estimating the expected entropy that the RBPF distribution would have as a result
of being updated by the proposed motion. The motion that provides the maximum informa-
tion gain is selected and used for the next measurement, and the process is repeated. We
compare various methods for estimating entropy, including approximations based on kernel
density estimation. We demonstrate entropy-based motion selection in fully automatic and
human-guided registration, both in simulations and on a real robotic platform.
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Abstract— Registering an object with respect to a robot’s
coordinate system is essential to industrial assembly tasks such
as grasping and insertion. Touch-based registration algorithms
use a probe attached to a robot to measure the positions of
contact, then use these measurements to register the robot
to a model of the object. In existing work on touch-based
registration, the selection of contact positions is not typically
addressed. We present an algorithm for selecting the next robot
motion to maximize the expected information obtained by the
resulting contact with the object. Our method performs 6-DOF
registration in a Rao-Blackwellized particle filtering (RBPF)
framework. Using the 3D model of the object and the current
RBPF distribution, we compute the expected information gain
from a proposed robot motion by estimating the expected
entropy that the RBPF distribution would have as a result
of being updated by the proposed motion. The motion that
provides the maximum information gain is selected and used
for the next measurement, and the process is repeated. We
compare various methods for estimating entropy, including
approximations based on kernel density estimation. We demon-
strate entropy-based motion selection in fully automatic and
human-guided registration, both in simulations and on a real
robotic platform.

I. INTRODUCTION

Industrial robots require accurate registration to a world or

object coordinate system in order to perform assembly tasks

such as grasping and insertion. A classical but extremely

labor-intensive approach is to manually teach the robot every

pose that is required for the assembly task.
Touch-based registration methods [1]–[5] enable automatic

registration of a robot to an object with known 3D shape

by using a probe attached to the robot to measure several

positions of contact with the object. Fig. 1 shows our system

setup for touch-based registration. Successful registration

enables the robot to perform any task at any positions defined

in the object coordinate system.
Previous approaches do not address the selection of touch

positions. In this paper, we consider optimizing the touch

positions to improve registration accuracy as a function of

the number of touches. We present an algorithm for selecting

the next robot motion in order to achieve this goal. The basic

idea, inspired by active localization algorithms commonly

used in mobile robotics [6], is to consider a set of candidate

motions and choose the one that maximizes the expected

information obtained by the resulting contact with the object.

Our method for full six-degrees-of-freedom (6-DOF) regis-

tration represents the relative pose between robot and object

using a Rao-Blackwellized particle filtering [7] framework:

We represent the 3D position of the probe with respect to

the object as a set of particles, and define a 3D Gaussian

angle distribution for each particle. Using the current particle
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Fig. 1. Left: Overview of our system. We perform robot-to-object
registration by using a probe attached to a robot arm to measure
the positions of contact with an object that has a known 3D shape.
Right: Close up of the metal object we used in experiments.

distribution and a 3D model of the object, we compute the

expected information gain from a proposed robot motion by

estimating the expected entropy that the RBPF distribution

would have after being updated by the proposed motion. The

candidate motion that yields the minimum expected entropy

is used for the next motion and measurement. We consider

multiple methods for estimating the entropy of the RBPF

distribution, including approximations using weighted kernel

density estimation, and analyze the strengths and weaknesses

of each. We test our entropy-based motion selection algo-

rithm in simulations and on a real robotic platform, for both

fully automatic and human-guided registration.

A. Related Work

Online Touch-Based Registration: Chhatpar and Bran-

icky presented a registration method using probing and

particle filtering for lock-key assembly [1] and peg-in-hole

problems [2]. As a preprocessing step, they exhaustively

probe every (x, y) location on the object with the peg to

obtain a contact configuration-space map, which describes all

possible transformations in which the peg has a contact with

the object. Using the obtained map, they perform particle

filtering by sequentially probing the object and using the

contact positions as observations. Thomas et al. [3] used as

an object model a force/torque map, consisting of contact

force and torque at every possible contact pose. This map

was generated as a preprocessing step by probing the object

using a probe with a force/torque sensor, or using a physics-

based estimate computed from CAD models of the probe

and object. They also used particle filtering to match each

force/torque observation to the map. Because these previous

methods use particle filtering for all dimensions, they are

not well-suited to full 6-DOF registration, since the number

of particles required for standard particle filtering increases



roughly exponentially with the number of dimensions in the

search space. Although the formulations of these methods

were described for 6-DOF uncertainty, in practice they were

only used for localization in lower-dimensional search spaces

(2- or 3-DOF).
To reduce the number of particles for 6-DOF registration,

Petrovskaya et al. [4] presented a coarse-to-fine approach by

assigning a region (instead of a single point) to each particle.

They first determine regions of high likelihood at a coarse

resolution by artificially inflating the measurement noise,

then iteratively resample particles inside the regions while

reducing the noise level. In [5], we used Rao-Blackwellized

particle filtering (RBPF) for the 6-DOF registration problem.

The probability distribution is factorized into a 3-DOF po-

sition distribution, represented using particles, and a 3-DOF

angular distribution, approximated by a Gaussian distribution

conditioned on the position of each particle. This factoriza-

tion’s analytical representation of angular uncertainty reduces

the number of dimensions to be represented using particles,

greatly reducing the number of particles needed.
None of these previous methods address how to select

probing locations. Although [4] described a simple active

sensing procedure, it was specific to rectangular shapes. In

this paper, we develop an entropy-based motion selection

algorithm based on the RBPF framework we presented in [5]

that can be used for any shape of object that is represented

as a piecewise planar mesh (e.g., a CAD model). In addition

to using our algorithm to improve the accuracy and reduce

the number of measurements required for the fully automatic

registration framework used in [5], we also present a novel

application of our method to human-guided registration.
Offline Registration: Given a set of point measurements

and a 3D model of an object as a set of planes, several

registration algorithms have been proposed. Methods such

as [8], [9], which are based on a minimal number of cor-

respondences, are suitable for use as hypothesis generators

in hypothesize-and-test frameworks such as RANSAC. Ols-

son et al. [10] presented a method based on branch and bound

that uses point-to-plane correspondences to achieve globally

optimal registration. Such globally optimal registration is

difficult for iterative closest point (ICP) algorithms, which

require good initialization [11].
Although these offline methods provide solutions to the

point-plane registration problem, they assume that a complete

set of contact measurements has already been collected. They

provide no method for selecting a good next motion based on

an already-collected subset of contact measurements, nor do

they provide a termination condition for determining when

enough measurements have been collected.
Motion Selection: The general problem of motion se-

lection (planning where to touch next) has not previously

been addressed in touch-based registration. However, mo-

tion selection is well studied for exploration in mobile

robotics [6], such as in active simultaneous localization and

mapping (active SLAM) applications in which a mobile robot

plans where to move next in order to improve its location

estimate as well as its map of the environment [12]–[16]. In

mobile robotics, selecting where to move is often addressed

using entropy-based measures [12]–[15] such as expected

information gain (or expected reduction in entropy). In this

paper, we demonstrate that an entropy estimation method that

is typically used in mobile robotics, computing the entropy of

a particle distribution using a Gaussian approximation [12],

is not well suited to touch-based registration, and we propose

alternative entropy estimation methods that prove to be more

effective in this application.

II. TOUCH-BASED 6-DOF REGISTRATION USING

RAO-BLACKWELLIZED PARTICLE FILTERING

This paper builds upon our method for touch-based reg-

istration using RBPF [5], which we briefly summarize here.

Our problem is to find the pose of a needle-like probe with

respect to an object by measuring 3D contact positions be-

tween them. The 6-DOF uncertainty between the probe and

the object is represented as (s,θ), where s = (x, y, z)T and

θ = (α, β, γ)T are relative positions and angles, respectively,

between the probe and the object. Given the sequence of

motion commands (defined in the robot coordinate system)

from time 1 to t, u1:t, and the sequence of observations,

z0:t, our goal is to infer the posterior distribution over the

position and angle, p(s0:t,θ|z0:t,u1:t).
The key to our approach is to factorize the probability

distribution separately into positions and angles as follows:

p(s0:t,θ|z0:t,u1:t) = p(s0:t|z0:t,u1:t)p(θ|s0:t, z0:t). (1)

The probability distribution over position is represented

by particles, which enables us to represent multimodal

distributions for position. The probability distribution over

3D rotation angle is represented as a Gaussian distribution

for each particle, conditioned on the current and previous

positions of the particle. Equation (1) can be efficiently

solved, since the distribution over angle p(θ|s0:t, z0:t) can

be estimated using extended Kalman filtering (EKF) once

the position of each particle s0:t is determined by particle

filtering. More specifically, we first update the position of

each particle using the motion model, then compute the

particle’s weight using the measurement model and the

particle’s previous Gaussian distribution over angle. We then

update the particle’s Gaussian estimate of angle using EKF.

III. ENTROPY ESTIMATION FOR MOTION SELECTION

Unlike in SLAM, in which both the map and the location

are estimated over time, in our touch-based registration

application the map (the object model) is already known, and

only the location (relative pose between robot and object)

is unknown. Nonetheless, our use of the Rao-Blackwellized

particle filter (RBPF) is analogous to its use in SLAM appli-

cations. In RBPF approaches to SLAM, the robot location is

represented using particles, and the map is represented as a

continuous distribution (typically Gaussian) for each particle.

Similarly, in our RBPF registration framework (described in

more detail in [5]), the relative 3D position of the robot with

respect to the object is represented using particles, and the

relative 3D angle of the robot with respect to the object is

represented using a Gaussian distribution for each particle.

In [6], [12], the expected utility of various possible mo-

tions for SLAM is determined by estimating the expected

information gain, or decrease in entropy, of the filtering

distribution of an RBPF. The motion selected is the one

that minimizes the expected entropy of the RBPF, which can



be seen as minimizing the uncertainty over both the robot

location and the map of the environment. In our approach

to active localization, we also choose from several candidate

motions by minimizing the expected entropy of our RBPF

filtering distribution (1), which can be seen as minimizing

the uncertainty over both the relative position and the relative

angular orientation between the object and the robot.

However, we demonstrate that the entropy estimate used

successfully in the SLAM scenarios of [6], [12], based on a

Gaussian approximation of the particle distribution, is not

the best choice for the present application. We contrast

this Gaussian approximation with other entropy estimation

methods that produce better results in the present scenario:

an approximation based only on particle weights, and non-

parametric entropy estimates based on weighted kernel den-

sity estimators.

A. Entropy of a Rao-Blackwellized Particle Filter

The differential entropy of the posterior distribution (1) of

the RBPF can be represented as follows [6], [12]:

H(p(s0:t,θ|z0:t,u1:t)) =

H(p(s0:t|z0:t,u1:t)) + Es0:t [H(p(θ|s0:t, z0:t))], (2)

where Es0:t [ ] denotes expectation with respect to the pos-

terior distribution p(s0:t|z0:t,u1:t). Note that in this paper,

we use the term entropy to mean differential entropy when

referring to continuous distributions. The first term in (2)

represents the entropy of the position distribution, which is

represented using particles, and the second term represents

the entropy of the angular distribution. We describe the

computation of the second term in (2), which is relatively

straightforward, in Section III-B.

To compute the first term in (2), we need to estimate the

entropy of a continuous distribution based on a collection

of weighted samples, which is not as straightforward. We

discuss a variety of alternatives for computing this entropy

in Section III-C, then analyze the strengths and weaknesses

of each in Section III-D.

B. Entropy of Angular Distribution

Since the distribution over position s0:t is represented by

particles, we can compute the second term in (2) using the

following approximation:

Es0:t
[H(p(θ|s0:t, z0:t))] =

J
∑

j=1

w
[j]
t H(p(θ|s

[j]
0:t, z0:t)), (3)

where s
[j]
0:t is the position history up to time t of the jth

particle, w
[j]
t is the weight of the jth particle at time t

(normalized so that
∑

j w
[j]
t = 1), and J is the total

number of particles. Since p(θ|s
[j]
0:t, z0:t) = N(θ;µ,Σ) is a

multivariate Gaussian with mean µ and covariance matrix Σ,

its entropy is

H
(

N(θ;µ,Σ)
)

=
1

2
log
(

(2πe)d|Σ|
)

. (4)

C. Entropy of Position Distribution

Computing the entropy of the position distribution, which

is represented by a collection of weighted particles, amounts

to computing the entropy of an unknown continuous density

distribution based on a finite number of samples. This is

inherently an ill-posed problem because no finite sample

is sufficient to determine an arbitrary density distribution,

and thus some assumption must be made about either the

functional form of the distribution or its smoothness [17].

We compute the first term in (2) by approximating it

as H
(

p(st|z0:t,u1:t)
)

; i.e., we consider only the current

positions of the particles and not their previous position

history. We let f(st) denote the distribution whose entropy

we wish to estimate:

f(st) = p(st|z0:t,u1:t). (5)

Since the remaining equations in Section III are only con-

cerned with the distribution at time t, we will simplify

notation by omitting the subscript t from the variables s
and w. For instance, we denote the function in (5) as simply

f(s), and we use s[j] and w[j] to respectively represent the

position and weight of particle j at time t.
Our goal is to estimate the entropy of the unknown

continuous density distribution f(s) using the positions and

weights of J particles. We compare several methods for

estimating this entropy. First, we approximate the entropy

of this distribution by assuming the distribution is Gaussian;

this is analogous to the approach used for SLAM in [12].

If the distribution being estimated is far from Gaussian,

however, this parametric approach will not be accurate.

Thus, we also consider a non-parametric approach to entropy

estimation, computing the entropy using a weighted kernel

density estimate of the posterior distribution [17]–[19] with

various kernels. Finally, we consider estimating the entropy

using only the particle weights (ignoring the spatial locations

of the particles), by treating the set of weights as a set of

probability masses in a discrete distribution.

Gaussian Approximation of the Particle Distribution:

To fit a Gaussian to the particle distribution at time t, we

compute the weighted average s̄ and covariance matrix Σ:

s̄=
J
∑

j=1

w[j]s[j], Σ=

∑J
j=1 w[j](s[j] − s̄)(s[j] − s̄)T

1 −
∑J

j=1

(

w[j]
)2 , (6)

where w[j] is the weight of particle j at time t (normalized so

that
∑

j w[j] = 1), and s[j] is the position of particle j in the

object coordinate system at time t. We have thus approxi-

mated f(s) as a multivariate Gaussian, f̂(s) = N(s̄,Σ),
whose entropy H

(

f̂(s)
)

we compute using (4).

Kernel Density Estimate of the Particle Distribution:

Here we use a non-parametric method to estimate the pos-

terior [19] and compute its entropy [17], [18]. We form

a weighted kernel density estimate from the collection of

position samples s[j] and corresponding nonnegative weights

w[j] (normalized so that
∑

j w[j] = 1), to approximate the

unknown density f(s):

f̂(s) =
J
∑

j=1

w[j] k(s − s[j]). (7)



The kernel function k() (also known as a Parzen window) is a

proper density function: that is, k(x) ≥ 0 and
∫

k(x) dx = 1.

We can estimate the entropy of f(s) by the entropy of f̂(s):

H
(

f̂(s)
)

= −

∫

f̂(s) log f̂(s) ds

= −Ef̂(s)

[

log f̂(s)
]

, (8)

where Ep(x)[g(x)] represents the expected value of a func-

tion g(x) when the random variable x is distributed accord-

ing to the pdf p(x).
Unfortunately, for a wide variety of choices of kernel

function k(), including a simple Gaussian kernel, the integral

in (8) is intractable. However, we can approximate the

expectation over the probability distribution f̂(s) in (8) as

an expectation over the weighted samples s[j], which is

similar to the approximations in [17], [18]. Our entropy

estimate then simplifies to an easily computed sum:

Ĥ
(

f̂(s)
)

= −E{s
[j],w[j]}

[

log f̂(s)
]

= −
J
∑

j=1

w[j] log

(

J
∑

i=1

w[i] k
(

s[j] − s[i]
)

)

. (9)

A wide variety of kernel functions k(s) can be used. We

consider a family of zero-mean, radially symmetric kernel

functions of the form

k(s) ∝ e−
1
2‖s‖n

2 /σn

, (10)

in which the parameter σ controls the width of the kernel

function, and the exponent n controls how heavy-tailed the

kernel function is. Note that when the parameter n = 2,

the kernel function (10) is a spherically symmetric Gaussian

kernel whose marginal variance in each dimension is σ2.

Note also that we can safely ignore the kernel function’s

constant of proportionality in (10). This is because the

constant will be fixed for any particular choice of values of n
and σ, and merely adds a constant to each entropy estimate.

These constants do not affect comparisons between entropy

estimates that use the same kernel function.

Estimating Entropy using only the Particle Weights:

As a contrast to the two methods above, we consider a

discrete entropy estimate that uses only the particle weights,

completely ignoring their spatial locations. This estimate

treats the entire set of weights
{

w[j]
}

as a set of probability

masses in a discrete probability distribution and simply

computes the entropy of this discrete distribution:

H
({

w[j]
})

=
J
∑

j=1

−w[j] log w[j]. (11)

This simple entropy estimate was considered in [14] in the

context of RBPF SLAM. However, it was dismissed there

because every time the set of particles is resampled, the new

particles will have equal weights, and thus the weight-based

entropy is reset to its maximum value.

D. Comparing Estimates of Entropy of Position Distribution

We now compare the three different types of entropy

estimates described in Section III-C.
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Fig. 2. Rows a–e: Estimated entropy of a distribution (mixture of
four Gaussians) as the distribution parameters change. Left column:
Small-scale variation experiment. Distance between Gaussians is
fixed at l = 10, while the standard deviation ǫ of each Gaussian
varies (see row f). Right column: Large-scale variation experiment.
Distance between Gaussians l varies, while the standard deviation
of each Gaussian is fixed at ǫ = 1 (see row f). Note that although the
vertical axes differ in different rows, we ensure they are the same
for both graphs within each row, since only the relative slopes of
the graphs for the same entropy measure are important here.

The Test Distributions: For comparison, we use all of

the methods to estimate the entropy of the same set of 2D

test distributions: a mixture of four radially symmetric 2D

Gaussians centered at the four corners of a square of side

length l, each of which has marginal standard deviation ǫ
in each dimension. The parameters l and ǫ basically set the

two characteristic scales of the test distribution, and the entire

set of test distributions is generated by varying the values of

these parameters. Fig. 2f shows some examples from this set

of test distributions. We divide the set of test distributions

into two experiments. The first experiment (left column of

Fig. 2) explores small-scale variation: the standard deviation

of each Gaussian is varied from ǫ = 0.2 to ǫ = 2.5, while



the distance between Gaussians is fixed at l = 10 (e.g., the

three distributions pictured in the left column of Fig. 2f). The

second experiment (right column of Fig. 2) explores large-

scale variation: the distance between Gaussians is varied

from l = 0 to l = 20, while the standard deviation of

each Gaussian is fixed at ǫ = 1 (e.g., the three distributions

pictured in the right column of Fig. 2f).
Two Sampling Methods: We used two different meth-

ods for sampling from each test distribution. For sampling

method I, we randomly drew samples from a spatially

uniform 2D distribution. Each sample was then assigned a

weight proportional to the value of the test distribution at

the sample’s location. Sampling method I resulted in a set

of particles that were distributed basically uniformly in space

and used unequal weights to represent the test distribution.

In contrast, sampling method II drew samples according to

the test distribution and assigned them all equal weight. This

resulted in a set of particles with equal weights whose spatial

distribution represented the test distribution.
Our experiments showed that only one of the entropy

estimates described Section III-C is affected by which

sampling method is used: the weight-based estimate (11),

whose results are shown in rows a and e of Fig. 2. When

particles are sampled using method I, the weight-based

estimate (Fig. 2a) provides an excellent Monte Carlo estimate

of each test distribution’s Shannon entropy. On the other

hand, when particles are sampled using method II (Fig. 2e),

the weight-based entropy measure is completely useless,

giving a constant value for every test distribution. We label

Fig. 2e resampled because the equal weights of particles

sampled using method II resemble the filtering distribution

of a particle filter after the particle set is resampled. The

crippling effect that resampling has on the simple weight-

based entropy estimate explains why RBPF approaches to

active SLAM do not use this estimator [14]. For each of the

other entropy estimators (shown in Fig. 2b–d), both sampling

methods give the exact same result, which shows that when

applied to a particle filter, these other estimators will be

robust in the presence of particle resampling.
Fig. 2b shows the Gaussian approximation of entropy (6),

in which the entire particle distribution is approximated by

a single Gaussian whose entropy is computed. Fig. 2c–d

shows the kernel density estimate (9) of the entropy using

two different kernels (10): Fig. 2c used a Gaussian kernel

(n=2) with standard deviation σ=0.25, while Fig. 2d used

a heavy-tailed kernel function (n=0.5) with width σ=0.25.
Comparison of Entropy Estimation Methods: As noted

above, Fig. 2a is approximately the Shannon entropy. Notice

that it is sensitive to small-scale changes in the test distri-

butions. However, it is not sensitive to large-scale changes

when the Gaussians in the test distribution do not overlap.
In contrast, the single Gaussian approximation (Fig. 2b) is

sensitive to large-scale changes in the test distribution but not

to small-scale changes. A particle filter whose distribution

resembles the 1st (leftmost) picture in Fig. 2f will typically

be much closer to convergence than one whose distribution

looks like the 3rd picture, but the Gaussian approximation

registers almost no difference between them. On the other

hand, for some applications we may be interested in distin-

guishing between distributions like the 5th and 6th pictured

in Fig. 2f, for which the Gaussian approximation is better

than the Shannon entropy (or the weight-based estimate).

The kernel density estimate using a small Gaussian kernel

(Fig. 2c) provides an excellent estimate of the Shannon

entropy across the entire range of test distributions (compare

parts a and c of Fig. 2). But perhaps Shannon entropy is not

what a particular application demands. Some applications

may require a measure that provides small-scale sensitivity

similar to that in Fig. 2a, but also large-scale sensitivity

similar to that provided by the single Gaussian estimate

(Fig. 2b). For such applications, the kernel density estimate

with a heavy-tailed kernel, which has both a sharper central

peak and longer tails than the Gaussian kernel, provides

sensitivity to both small-scale and large-scale variation, as

demonstrated in Fig. 2d.

IV. MOTION SELECTION ALGORITHM

This section presents an algorithm for selecting an op-

timal motion using the RBPF entropy measures described

in Section III. Compared to random motion selection, this

algorithm enables us to reduce the number of measurements

needed for a given accuracy, or to achieve higher accuracy

using a given number of measurements. We first present an

overview of our entropy-based motion selection algorithm,

then describe how to apply it to two different applications:

fully automatic registration, and human-guided registration.

A. Overview of the Algorithm

Algorithm 1 contains pseudocode for our motion selection

algorithm. Given Xt, the set of particles at time t, we use

a greedy approach that selects the best next motion from

M candidates, {Γ1, . . . ,ΓM}. We compute the expected

entropy for each candidate and select as the next motion the

candidate with the minimum expected entropy. For efficiency

of entropy computations, we approximate the particle set Xt

by its subset Yt, the K particles with highest weights.

Each motion candidate Γm is randomly proposed. For each

motion candidate Γm, we simulate the measurement process

C times, each time selecting a random particle q[c] from

Yt with probability proportional to the particle’s weight. For

each q[c], we compute the answer to the following question:

If q[c] is correct about the relative pose between the object

and the robot, then when we perform the motion dictated

by Γm, what contact position measurement would result?

The answer gives us the estimated motion û
[c]
t , which is

used to update the particle set Yt. This results in an updated

particle set, Y
[c]
t+1, whose entropy we compute using one

of the estimation methods from Section III. We repeat this

simulation procedure C times and compute the expected

entropy as the average over the C simulations.

Compared to the random motion selection used in [5], our

motion selection algorithm requires the following additional

computations: KMC operations of particle update, and MC
entropy computations. Note that we assume that the cost

to move the probe to the next position is independent of

the position, since in our application the time required to

move the robot between measurement positions is much

less than the time required to precisely measure a single

contact location. For applications in which different motion

candidates have different costs (e.g., if moving to a more



Algorithm 1 Motion selection algorithm

Motion Selection(Xt)
for m = 1 to M do

Copy the K particles with largest weight from Xt to Yt

Propose a randomly chosen motion candidate Γm

for c = 1 to C do
Sample q[c] ∈ Yt with probability given by its weight

Compute the expected motion û
[c]
t based on q[c] and Γm

Update all K particles in Yt based on û
[c]
t , to obtain Y

[c]
t+1

H
[c]
m = Compute Entropy(Y

[c]
t+1)

end for
Hm = 1

C

P

C

c=1 H
[c]
m

end for
m0 = arg minm Hm

return Γm0

distant position takes more time), one could incorporate the

movement into the cost function in addition to the entropy.

B. Application to Automatic Registration

In the automatic registration approach we presented in [5],

each observation consists of moving the probe to a ran-

dom (x, y) position in the robot coordinate system, then

measuring the z position by moving the probe towards

the object, parallel to the robot’s z-axis, until contact. To

apply our entropy-based motion selection algorithm in this

framework, each motion candidate Γm describes a random

displacement in the x and y directions (in robot coordinates),

and the measurement of the z position is simulated for

each particle q[c]. Particle q[c] maintains an estimate of the

relative pose between robot and object, which consists of

a 3D position s
[c]
t and a Gaussian distribution over angle

θ with mean µ
[c]
θ . We use the particle’s position s

[c]
t and

mean angle µ
[c]
θ , together with the object model, to estimate

the location at which the probe would contact the object.

The estimated motion in the z direction, combined with the

(x, y) displacement Γm, constitute the expected motion û
[c]
t .

C. Application to Human-Guided Registration

The automatic registration process described above uses a

fixed probing direction, typically parallel to the z-axis of the

robot. For some objects, however, it is helpful or necessary

to probe the object from multiple directions. In such cases,

the automatic registration process may be impractical—for

instance, there might be other objects nearby that restrict the

possible motions of the robot. In these cases, letting a human

operator move the robot to measure the contact positions is

often safer and more practical, but the human operator may

not know the best contact locations for registering the object.

We now present a visualization system that uses our entropy-

based motion selection method (Algorithm 1) to suggest

an optimal touch position to a human operator, in order to

achieve fast and accurate registration.

Our system is initiated by a human operator: The operator

moves the peg to any position on the object surface and

specifies the position to the system. The system initializes

all of its particles near the location indicated by the operator,

with an angular distribution selected from a range that

includes every possible initial angle of contact of the probe

A B C

Fig. 3. Mesh models of objects used in simulations.
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Fig. 4. Typical distributions of particles at the initial step (left) and
after the first update (right), for automatic registration (top) and
human-guided registration (bottom). For each particle, its position
and the mean of its angle distribution are represented by the position
and the orientation of a red line. The weight of each particle is
represented using transparency.

with the surface (shown on the left in Fig. 5). In this human-

guided case, each candidate motion Γm is simply a randomly

selected point on the object surface, in object coordinates.

For each particle q[c], we compute the expected motion in

object coordinates as the difference between Γm and the

particle’s position s
[c]
t , then transform the motion to robot

coordinates by using the particle’s position s
[c]
t and mean

angle µ
[c]
θ to obtain û

[c]
t .

The algorithm selects the motion candidate Γm that mini-

mizes the expected entropy and directs the operator to probe

next at that location on the object, as shown in Fig. 5 (right).

Note that the operator does not have to move the peg

precisely to the suggested position—the RBPF framework

will work properly as long as the next contact happens

anywhere on the surface of the object. However, since the

suggested position achieves the minimum entropy of all

of the motion candidates, using the algorithm’s suggested

location will enable accurate registration to be performed

with fewer measurements.

V. EXPERIMENTS

Existing approaches to touch-based registration [1]–[3],

[5] use random motion selection to determine where to

probe for each measurement. In this section, we describe

several experiments comparing touch-based registration us-

ing random motion selection [5] (labeled Random in results

tables and graphs) to that using our entropy-based motion

selection algorithm. We test our algorithm using the three



Fig. 5. Visualization for human-guided registration. Left: Initial-
ization: The user specifies the first touch position on the object
surface, and the system initializes particles nearby. Each particle
is represented by a red line as in Fig. 4. Right: Candidate touch
positions, randomly sampled on the object surface, are shown in
green (these would not usually be shown to the user). The suggested
next touch position is displayed for the user as a yellow region.

entropy estimation methods described in Section III: Gaus-

sian approximation of the distribution (Single Gauss.), kernel

density estimate with Gaussian kernel (Kernel Gauss.), and

simple weight-based (Weight). We first present simulation

results using three different objects, then present the results

of experiments performed using a robot arm with a metal

probe and object. The accompanying video shows our touch-

based registration system in action on the robot arm.

A. Simulations

Fig. 3 shows the objects we used in simulations. Object

A was generated by placing vertices every 10 units in a

square (x, y) grid, choosing each z value randomly from

the range [0, 10], and connecting the vertices using a triangle

mesh. Object B was generated similarly, but in a hierarchical

manner, in order to have a surface that is less complex,

with some regions more informative than others. Object

C is a mesh model of a stamped part (obtained from

http://www.cs.caltech.edu/˜njlitke/meshes/), scaled to have a

size similar to that of objects A and B.

For both automatic registration and human-guided regis-

tration, we added Gaussian noise with standard deviation

0.1 to the contact point measurements. The measurement

uncertainty in the mesh model (see [5]) was Gaussian with

standard deviation 0.3 for all features (faces, edges, and

vertices). We initialized our process with 3200 particles and

decreased the number of particles as the process proceeds,

as described in [5]. We used M = 10, C = 5, and set K
equal to 1/10 of the current number of particles.

Automatic Registration: For each trial, we randomly

initialized the pose of the probe by uniformly sampling its

position from the range ±15 units from the center of the

object in the x and y directions, and its angle from the

range ±10◦ in each angular dimension. Each particle’s initial

position was sampled uniformly from this square region

on the object’s surface, with Gaussian angular distribution

initialized to mean (0◦, 0◦, 0◦)T and covariance matrix 102I ,

where I is the 3×3 identity matrix. Fig. 4 (top) shows an ex-

ample particle distribution at the initial step and after the first

update. Since we assumed a small initial angular uncertainty,

all the particles are updated with similar displacements in the

object coordinate system.

Table Ia shows the number of contact position measure-

ments required for convergence using each entropy estimator.

Fig. 6a compares mean translation and rotation errors when

TABLE I

NUMBER OF MEASUREMENTS REQUIRED FOR CONVERGENCE

(MEAN OF N TRIALS ± STANDARD ERROR)

a. Simulations of Automatic Registration (N = 100)

Object Random Weight Single Gauss. Kernel Gauss.

A 11.5 ± 0.3 8.7 ± 0.1 8.9 ± 0.2 8.9 ± 0.2
B 68.6 ± 5.7 33.3 ± 1.9 54.9 ± 4.4 38.0 ± 2.7
C 13.5 ± 0.6 8.5 ± 0.2 8.9 ± 0.2 8.5 ± 0.2

b. Simulations of Human-Guided Registration (N = 100)

Object Random Weight Single Gauss. Kernel Gauss.

A 12.3 ± 0.2 10.7 ± 0.2 11.6 ± 0.2 10.4 ± 0.2
B 26.9 ± 1.2 12.5 ± 0.3 17.2 ± 0.6 11.4 ± 0.3
C 8.9 ± 0.2 7.8 ± 0.1 8.6 ± 0.1 8.0 ± 0.1

c. Automatic Registration using a Robot Arm (N = 30)

Random Weight Single Gauss. Kernel Gauss.

15.2 ± 0.5 12.7 ± 0.5 12.3 ± 0.6 12.1 ± 0.3

all estimators use the same number of contact measurements.
Human-Guided Registration: For each trial, we assumed

the operator specified the initial contact position on the

surface of the object within ±3 units of the true posi-

tion (uniformly sampled) in the x and y directions, and

we sampled the initial angle uniformly from the range

(±20◦,±20◦,±180◦). Each particle’s initial position was

sampled uniformly from this square region on the object’s

surface, and its initial Gaussian angular distribution had mean

sampled uniformly from the range (±20◦,±20◦,±180◦) and

covariance matrix 202I . Fig. 4 (bottom) shows an example

particle distribution for this application. Since the initial

angular distribution is wide, the first update spreads the

particles out in the object coordinate system.
Table Ib shows the number of contact measurements re-

quired for convergence. Fig. 6b compares registration errors

when all estimators use the same number of measurements.

B. Experiments Using a Robot Arm

We implemented our algorithm using a Mitsubishi MELFA

RV-6SL 6-axis robot arm, using a JR3 force/torque sensor

to measure contact positions (see Fig. 1). In automatic

registration, our system continuously reads the force/torque

values while moving the robot towards the object, detecting

contact when the force values exceed a threshold. Our system

first detects a contact position roughly using a large motion

step size, then repeats the contact using a small motion

step size to get precise measurements (see the accompanying

video). In human-guided registration, our system displays the

force/torque readings to the operator, who controls the robot

motion and uses the readings to determine contact positions.
We used the object shown in Fig. 1. The arrangement of

planes at the center of the object is used for registration. The

surrounding holes, whose poses are defined in the object

coordinate system, can be used to validate the estimated

registration (see the accompanying video). We collected nu-

merical results for automatic registration. Table Ic shows the

number of measurements required for convergence. Fig. 6c

compares mean registration errors when all entropy estima-

tors use the same number of contact measurements.

C. Discussion of Experimental Results

It is clear from Table I that both in simulations and in ex-

periments using a robot arm, our entropy-based motion selec-

tions are better than random motion selection. Interestingly,
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Fig. 6. Comparing mean translation and rotation errors for different
entropy estimators using the same number of measurements. a. Sim-
ulations of automatic registration. b. Simulations of human-guided
registration. c. Automatic registration using a robot arm.

the single Gaussian approximation, which has been used

successfully for entropy computation in active SLAM [6],

[12], generally performs the worst of the three entropy

estimates. Fig. 6 also demonstrates that kernel-based and

weight-based entropy estimates perform better than random

motion selection, but the single Gaussian approximation is

even worse than random in some cases. The reason is that in

touch-based registration, the particle distribution is often far

from Gaussian—for example, it can be multimodal (similar

to the rightmost image in Fig. 2f) or can have most of its

mass far from the mean (as in Fig. 4, bottom right). In fact,

the single Gaussian approximation greatly overestimates the

entropy of distributions similar to these two examples, which

in some instances causes this approximation to choose the

least informative candidate motions.

It is perhaps surprising that the weight-based entropy

estimate performs so well, comparable to the kernel density

approximation. Weight-based entropy estimates do not give

a good measure of the entropy as the particle filter evolves

over a long period of time, because whenever the particles are

resampled, the weight-based entropy resets to its maximum

value. This is why they do not work well in the context of ac-

tive SLAM [14], because there the entropy must be averaged

over several time steps of the predicted RBPF distribution.

However, for just estimating the relative entropy one time

step in the future (as in our motion selection algorithm),

weight-based entropy can provide quite an effective estimate.

VI. CONCLUSION

We presented a method for online motion selection in

touch-based registration of a robot to an object whose 3D

model is known. Unlike previous touch-based registration

methods, which randomly choose each motion, our RBPF-

based method chooses several candidate motions, then uses

estimates of expected entropy to select the best candidate. We

applied our method not only to fully automatic registration

(the application addressed by previous work), but also to

human-guided registration. In both simulations and experi-

ments with a robot arm, our entropy-based motion selection

method significantly outperforms random motion selection.

In addition, we found that entropy estimators that have

been used successfully in previous work on RBPF-based

active SLAM do not correspond to the entropy measures

that perform best for touch-based registration.
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