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ABSTRACT

Many image processing and computer vision problems can be
solved as quadratic programs in the nonnegative cone. This
paper develops a provably convergent multiplicative update
that has a simple form and is amenable to fine-grained data
parallelism. Classic algorithms for deblurring, matrix factor-
ization, and tomography are recovered as special cases. This
paper also demonstrates applications to super-resolution, la-
beling and segmentation.

Index Terms— parallel quadratic programming, image
super-resolution, image segmentation, Markov random field

1. INTRODUCTION

The non-negative quadratic program (NNQP)

min
x

1
2

xT Qx− xT h s.t. x ≥ 0, (1)

—with vectors x,h ∈ Rn and symmetric positive semidefi-
nite matrix Q ∈ Rn×n—is ubiquitous in image processing,
where it is natural to reason about non-negative quantities
such as light intensities under a squared error norm. For ex-
ample, Eq. (1) subsumes the non-negative least squares prob-
lem (NNLS) encountered in deblurring and super-resolution,

min
x

||Ax−b||22 s.t. x ≥ 0, (2)

with Q = AT A and h = AT b. Eq. (1) is also the dual of the
broader class of convex quadratic programs

min
y

1
2

yT Hy− yT f s.t. Ay ≥ b. (3)

that arise in labeling/segmentation tasks and image operations
that involve solving the Poisson equation (e.g., matting). So-
lutions of Eq. (1) yield solutions of Eq. (3).

A very large literature is devoted to Eqs. (1)–(3). State-of-
the-art interior-point, active-set, and primal-dual algorithms
offer linear-to-quadratic rates of convergence, but each itera-
tion requires solution of a linear equation at least as large as
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Qy = z, which can take O(n3) time. This is not practical for
image processing, where n may be as large as 107.

For that setting, we propose a multiplicative update algo-
rithm derived from the Karush-Kuhn-Tucker (KKT, [1]) first-
order optimality conditions of the Lagrangian of Eq. (1),

L(x,λ ) = 1
2

x�Qx− x�h− x�λ

with λ ∈ Rn ≥ 0. These conditions are

x◦∇xL = x◦ (Qx−h−λ ) = 0 (4)
λ ◦∇λ L = λ ◦ x = 0

with ◦ denoting Hadamard (elementwise) product. The up-
date arises from a variational treatment of these equations;
in the limited space here, we will derive it directly from
Eq. (4). Define the matrix split Q = Q+ −Q− with Q+ =
max(Q,0) + diag(r) and Q− = max(−Q,0) + diag(r) for
some r ∈ Rn ≥ 0 (defined below). Similarly, h = h+ − h−
with h+ = max(h,0) + s, h− = max(−h,0) + s. Using the
split, Eq. (4) can be written

x◦∇xL = x◦ ((Q+x+h−)− (Q−x+h++λ )) = 0.

Assume for the moment that all xi > 0, possibly infinitesi-
mally. Then λi = 0 and, elementwise,

xi(Q+x+h−)i = xi(Q+x+h−)i.

Rearranging terms gives the fixpoint

xi = xi

�
h+i +(Q−x)i

h−i +(Q+x)i

�
. (5)

which, by construction, is stationary at the optimum x∗.
We are interested in the behavior of this fixpoint as a mul-

tiplicative update for positive vectors x �= x∗. Some properties
are apparent from inspection:

• R.h.s. Eq. (5) can be calculated in parallel for all xi by a
simple matrix-vector multiply and a vectorized divide.

• The bracketed ratio is always non-negative (and positive
if si > 0 or rixi > 0). Thus, Eq. (1) preserves the feasibil-
ity of x, implicitly satisfying the second KKT condition.



• Like gradient descent, the fixpoint moves xi in the direc-
tion opposite the partial derivative ∂xiL(x,λ ).

In fact, iteration of Eq. (5) from any x> 0 will solve of Eq. (1)
and, by extension, Eq. (2)–(3):

Theorem 1.1 For any Q � 0 (positive semi-definite), there is
an easily calculated vector r for which the fixpoint Eq. (5)
converges monotonically and asymptotically from any posi-
tive x > 0 to the optimum of Eq. (1).

A variational proof is given in a companion paper [2]
where the update is used for high-speed optimal control of
machinery. The role of r is to guarantee that the update
gives a contraction even in the nullspace of semidefinite Q.
There are many simple satisfactory choices of r, for exam-
ple, ri = max(Qii,∑ j Q−

i j). For many strictly positive image
processing problems it suffices to have r = 0. Note that con-
vergence is asymptotic; if x∗i = 0 we will only see xi → 0 (on
an ideal infinite-precision computer). On real computers—
which use floating point numbers—we see xi rapidly converge
to x∗ regardless of its value.

Furthermore, we prove below (Appendix A) that the
asymptotic convergence rate is linear:

Theorem 1.2 Asymptotically, the update of Eq. (5) improves
the estimate x̂ by a constant number of bits of precision.

For the sparse Q matrices typically encountered in image
processing, each update takes linear serial time or constant
parallel time, and a linear number of updates are needed to
achieve any fixed precision result. Thus, the multiplicative
update combines the simplicity and calculational speed of
gradient descent with the feasibility and convergence guaran-
tees of modern quadratic programming algorithms. As such,
it is particularly well suited for implementation on low-cost
parallel processing arrays, such as the SIMD and GPU chips
now going into mobile phones, especially since Q typically
has low bandwidth in image processing tasks, so that the up-
date requires very limited communication between proces-
sors. An exploratory GPU implementation solves NNQPs of
105 variables in less than a tenth of a second — three orders
of magnitude faster than NNLS software on a multicore CPU.

2. RELATED WORK

Some well-known algorithms in the literature are recogniz-
able as special cases of the update with simplifications for
Q � 0 (positive definite), Q ≥ 0 and/or h ≥ 0. Dropping
Q− , h−, and r yields the Richardson-Lucy deblurring algo-
rithm and the image-space reconstruction algorithm [3]. If
we formulate Non-negative Matrix Factorization as a pair of
alternating least-squares optimizations, and use multiplicative
update—absent Q− and r—for each, we obtain the Lee-Seung
algorithm [4]. Similar multiplicative fixpoint algorithms have
been used successfully in tomography, astronomy (e.g., [5]),

(a) 4 of 30 low-res images (b) reconstructed high-res image

Fig. 1. Super-resolution example: a) 4 of 30 low-res images;
b) the reconstruction high-res image obtained by solving SR
model (6) with the multiplicative update.

and estimation (e.g., [6]), however they rely on some combi-
nation of strictly nonnegative coefficients, positive definite-
ness, or favorable initialization for convergence, if conver-
gence is provable at all. Our method is also related to ma-
trix splitting algorithms for linear complementarity problems
[7] and Uzawa methods for saddle-point problems [8]; unlike
these methods, the update is given in closed form and can be
calculated independently for each variable.

3. IMAGE PROCESSING APPLICATIONS

3.1. Image Super-Resolution

Image super-resolution (SR) refers the process of combining
a set of low resolution images into a single high resolution im-
age. Each low-res image gk is assumed to be generated from
an ideal high-res image f via a displacement Sk, a decimation
Dk, and a noise process nk:

gk = DkSk f +nk, k = 1,2, · · · ,K (6)

We use the registration algorithm of Chung, Haber and
Nagy [9] to estimate the displacement matrices Sk. Then we
reconstruct the high-resolution image by iteratively solving
the NNLS

min
f≥0

1
2

K

∑
k=1

||DkSk f −gk||2.

Our test dataset is taken by Multi-Dimensional Signal
Processing Research Group (MDSP) (http://www.soe.
ucsc.edu/~milanfar/software/sr-datasets.
html). There are 30 uncompressed grayscale low-resolution
images of size 57× 49, from which we reconstructed high-
resolution image with size 285×245 (see Figure 3.1). Com-
mercial solvers produced an identical result, albeit two orders
of magnitude slower.



(a) city image (b) omnicam skyline image

(c) Naive classifier (d) QP/MRF result (e) Naive classifier (f) QP/MRF result

Fig. 2. Sample image labeling results. (a,b): Input images. A small number of training pixels are labeled by the user. (c,e):
Result from the trained color classifier. (d,f): Result from the MRF quadratic program using the color classifier as input.

3.2. Image Labeling

In Markov random fields (MRF)-based interactive image seg-
mentation techniques, the user labels a small subset of pixels,
and the MRF propagates these labels across the image, typi-
cally finding high-gradient contours as segmentation bound-
aries where the labeling changes. The problem is combina-
torial if there are more than two kinds of label, and usually
approximately optimized by network flow algorithms.

The problem can also be relaxed to a quadratic pro-
gram: Let r be a pixel in the image or the region of in-
terest Ω = {ri : i = 0,1, · · · ,N}, the class set is denoted by
K = {1,2, · · · ,K}. Then the probabilistic segmentation ap-
proaches compute a probability measure field x = {xk(r) :
r ∈ Ω,k ∈ K } such that ∑K

k=1 xk(r) = 1, xk(r) ≥ 0, for all
k ∈ K and r ∈ Ω. The set of neighbours pixel r is denoted as
Nr = {s ∈ Ω : |r− s|= 1}. The QP has the form

min
x

=
K

∑
k=1

∑
r

�
η
2 ∑

s∈N (r)
ωrs(xk(r)− xk(s))2 +drkxk(r)

�
,

s.t.
K

∑
k=1

xk(r) = 1, xk(r)≥ 0, ∀k ∈ K ,∀r ∈ Ω (7)

where drk—the cost of assigning label k to pixel r—is ob-
tained from a simple color classifier that is trained from a
small set of pixels labeled by the user. For this we used an
SVM, itself trainable using multiplicative update rule in eq.
(5). The quadratic term controls the granularity of the re-
gions, i.e. promotes smooth regions. The spatial smoothness

is globally controlled by the positive parameter η and locally
controlled by weight ωrs, which is chosen such that ωrs ≈ 1
if the neighbouring pixels r and s are likely to belong to the
same class and ωrs ≈ 0 otherwise. In our experiments, we set
ωrs = �Ir, Is�/(|Ir||Is|), the cosine of the angle between two
pixels’ vectors in LAB color space.

This QP is a convex relaxation of a combinatorial {0,1}-
labeling problem. A somewhat more complicated QP is pre-
sented in [10]; it has extra bias terms to make the QP strictly
convex, as needed by their solution algorithm.

One can optimize either QP using Eq. (1) to solve its dual,
or one can derive multiplicative update rules directly from
the Lagrangian using the technique demonstrated in section
1. Here the first-order KKT optimality conditions

η ∑
s∈N (r)

ωrs(xk(r)− xk(s))+drk −λr = 0

ηxk(r) ∑
s∈N (r)

ωrs −η ∑
s∈N (r)

ωrsxk(s)+drk −λr = 0

yield a two-step update for primal and dual parameters

xrk ← xk(r)
η ∑s∈N (r) ωrsxk(s)+d−

rk +λr

ηxk(r)
�
∑s∈N (r) ωrs

�
+d+

rk

λr ← λr
1

∑k xk(r)

Depending on the size of the image and the number of
classes, the MRF QP has 1-2 million variables and converges
in 5-6 seconds on a CPU. Some example results are shown



in Figure 3.2. Due to sparse user labeling, the simple classi-
fier typically assigns many pixels to the wrong class; most of
these errors are corrected by the quadratic program.

4. SUMMARY

By expressing the KKT first-order optimality conditions as
a ratio, we obtained a multiplicative fixpoint that quickly
solves very large quadratic programs on low-cost parallel
compute devices. The update converges from all positive ini-
tial guesses; we also proved asymptotic linear convergence
rate. Although QP problems are ubiquitous in image process-
ing, QP algorithms are infrequently used because the prob-
lems are prohibitively large. The multiplicative update given
here makes the QP approach viable, with one algorithm solv-
ing many problems. Moreover, the algorithm is well suited for
SIMD/MIMD parallel processors now being deployed in con-
sumer electronics. We demonstrated applications to super-
resolution and image segmentation, and show that other algo-
rithms for deblurring, tomography, and matrix factorization
are in fact special cases of the general update rule.

A. PROOF OF LINEAR CONVERGENCE

Proof Let Pi be the ith row of Q+ and Ni the ith row of Q−.
Consider perturbing the ith element of the optimum x∗ with
some nonzero value ε > −x∗i to yield x = x∗+ εei, then ap-
plying one update iteration to obtain x̂. The ratio of errors
between successive iterations is

����
x̂i − x∗i
xi − x∗i

����=

�������

h+i +Ni(x∗+εei)

h−i +Pi(x∗+εei)
xi − x∗i

xi − x∗i

�������
=

����
h+i +Nix∗

h−i +Pix∗+Qiiε
xi

ε
− x∗i

ε

����

=

����
h+i +Nix∗

h−i +Pix∗+Qiiε
x∗i + ε

ε
− x∗i

ε

����

=

����
h+i +Nix∗

h−i +Pix∗+Qiiε
+

�
h+i +Nix∗

h−i +Pix∗+Qiiε
−1

�
x∗i
ε

����

=

����
h+i +Nix∗

h−i +Pix∗+Qiiε
+

�
h+i +Nix∗ −Pix∗ −h−i −Qiiε

h−i +Pix∗+Qiiε

�
x∗i
ε

����

=

����
h+i +Nix∗

h−i +Pix∗+Qiiε
+

hi −Qix∗ −Qiiε
h−i +Pix∗+Qiiε

x∗i
ε

����

=

����
h+i +Nix∗ −Qiix∗i
h−i +Pix∗+Qiiε

����=
����
h+i +Pix∗ −Qix∗ −Qiix∗i

h−i +Pix∗+Qiiε

����

To prove a linear rate of convergence, we show that this
quantity is less than one. From the first-order Karush-Kuhn-
Tucker (KKT) optimality conditions, we have Qx∗ − h ≥ 0.
Using that, in the case hi ≥ 0 we can continue with

≤ Pix∗ −Qiix∗i
Pix∗+Qiiε

=
(∑i�= j Pi jx∗j)+ rix∗i

(∑i �= j Pi jx∗j)+ rix∗i +Qii(ε + x∗i )
.

The numerator and denominator are both non-negative be-
cause all terms are non-negative. Note that Q � 0 ⇒ Qii > 0,
and ε >−x∗i , so Qii(ε+x∗i )> 0 and the denominator is strictly
larger than the numerator.

For hi < 0, we use Q = P−N to continue with

=

����
Nix∗ −Qiix∗i

h−i +Qix∗+Nix∗+Qiiε

����≤
����
Nix∗ −Qiix∗i
Nix∗+Qiiε

����

=

�����
(∑i �= j Ni jx∗j)+ rix∗i −Qiix∗i
(∑i�= j Ni jx∗j)+ rix∗i +Qiiε

����� (8)

If x∗i = 0, Eq. (8) is trivially < 1. Otherwise, since ε > −x∗i
we have rix∗i +Qiiε > rix∗i −Qiix∗i . Simple algebra then shows
that Eq. (8) is < 1 for any choice of ri ≥Qii−(∑i �= j Ni jx∗j)/x∗i ,
including ri = Qii.
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