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Channels in Two-Hop MIMO Amplify-and-Forward

Relay Systems
Jun Ma, Philip Orlik, Jinyun Zhang, and Geoffrey Ye Li

Abstract—In this paper, we consider a two-hop multi-input-
multi-output (MIMO) amplify-and-forward (AF) relay system
consisting of a source node (SN), a destination node (DN), and a
relay node (RN) that simply amplifies and forwards its received
signal to the DN without any further processing. In this system,
the overall channel from the SN to the DN is a cascade of the
backward relay channel over the SN-RN hop, the amplifying
matrix at the RN, and the forward relay channel over the RN-
DN hop. We investigate the estimation of the two cascaded relay
channels at the DN based on the predefined amplifying matrix
applied at the RN and the corresponding overall channel obtained
through the conventional channel estimation algorithms with the
help of pilots transmitted by the SN. In particular, we find
necessary and sufficient conditions on the pilot amplifying matrix
sequence at the RN to ensure feasible relay channel estimation
at the DN. Based on these conditions, we present rules to design
diagonal or quasi-diagonal pilot amplifying matrices so that
the cascaded relay channels can be estimated with minimum
complexity at the RN. In the presence of imperfect overall
channel state information at the DN, we further develop the
approximate linear least-square estimation of the relay channels
based on the designed pilot matrix sequence and demonstrate its
performance by simulation results.

Index Terms—Amplify-and-forward, multi-input-multi-output,
relay channel estimation, two-hop transmission

I. INTRODUCTION

Wireless relay has become a hot research topic in wireless
communications. As a repeater, a wireless relay node (RN)
forwards signals from the source node (SN) to the destination
node (DN). Wireless relay is suitable for realizing long-range
communication or boosting the signal strength in coverage
holes, such as in thick buildings or underground tunnels, or
on the cell edge, etc [1]–[3]. Such wireless RN’s also provide
flexibility in meeting temporary communication demands un-
der certain scenarios. Furthermore, the coordination between
the SN and one or more RN’s can be utilized to achieve spatial
diversity to enhance the reliability or the capacity of wireless
links [4]–[7].

Depending on how much signal processing is performed at
the RN, the existing relay techniques can be broadly catego-
rized as decode-and-forward (DF) and amplify-and-forward
(AF) [8]. In the DF scheme, the RN detects and demodulates
its received signals, decodes the encoded data, re-modulates
the data, and forwards them to the DN. In contrast, the RN
operating in AF mode only amplifies and forwards its received

This paper was presented in part at the IEEE International Conference on
Communications (ICC), Dresden, Germany, June 2009.

signals without any further processing and hence has much
simpler implementation than that in DF mode. Furthermore,
the RN in AF mode does not need any a priori information
of its received signal and thus can be applied to any scenario.

In this paper, we consider a narrowband two-hop multi-
input-multi-output (MIMO) AF relay system in which there
is no direct communication link between the SN and the DN
and data are conveyed from the SN to the DN via two cascaded
orthogonal channels by frequency-division or time-division. In
this system, the overall channel between the SN and the DN is
a cascade of the backward relay channel over the SN-RN hop,
the amplifying matrix at the RN, and the forward relay channel
over the RN-DN hop. With the help of pilots inserted at the
SN, the overall channel from the SN to the DN can be ob-
tained at the DN through the conventional channel estimation
algorithms that have been proposed for conventional MIMO
systems [9]–[12]. Recently, special overall channel estimation
algorithms have been also proposed for AF-based cooperative
communication systems in [13] and [14]. While the overall
channel state information (CSI) guarantees feasible data de-
tection at the DN, the involved relay CSI, if available, can be
utilized to improve the overall system performance. Since the
noise at the RN is amplified and forwarded to the DN together
with the signal, the forward relay CSI over the RN-DN hop
can be utilized to estimate the correlation matrix of the overall
noise vector at the DN for system performance improvement.
Conventionally, the relay channels over the SN-RN and RN-
DN hops can be estimated directly at the RN and the DN with
the help of pilots inserted at the SN and the RN, respectively.
However, such direct relay channel estimation is based on the
assumption that the RN is aware of the structure of its received
signal and capable of performing further signal processing.
In practice, it is attractive to keep minimum complexity at
the RN that is supposed to be cost-efficient and undertakes
no task except simply amplifying and forwarding its received
signals. In this paper, we extend our prior work in [15]
and investigate estimating the two cascaded relay channels
at the DN based on a predefined pilot amplifying matrix
sequence at the RN and the corresponding overall channel
sequence obtained at the DN through conventional channel
estimation algorithms. In particular, we find necessary and
sufficient conditions on the pilot amplifying matrix sequence
at the RN to ensure feasible relay channel estimation at the
DN. Based on these conditions, we derive rules to design
diagonal or quasi-diagonal pilot amplifying matrices so that
the relay channels can be estimated with minimum complexity
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Fig. 1. Two-hop MIMO AF relay system model

at the RN. In the presence of imperfect overall CSI at the
DN, we further develop the approximate linear least-square
(LS) estimation of the relay channels based on the designed
pilot matrix sequence and demonstrate its performance by
simulation results. Furthermore, initial simulation results are
also presented to demonstrate the performance improvement
of the two-hop MIMO AF relay system achieved by relay
channel estimation at the DN.

The remainder of this paper is organized as follows. In
Section II, we present the system model and the principle of
estimating the cascaded relay channels at the DN. In Section
III, we investigate necessary and sufficient conditions for
feasible relay channel estimation. In Section IV, we derive
rules to design diagonal or quasi-diagonal pilot amplifying
matrices meeting these conditions. In Section V, we develop
approximate linear LS estimation of the relay channels in the
presence of imperfect overall CSI. In Section VI, we extend
relay channel estimation to a general two-hop MIMO AF
system. In Section VII, we present simulation results on the
approximate linear LS relay channel estimation in a noisy
environment. Finally we conclude this paper in Section VIII.

II. PROBLEM FORMULATION

In this paper, we are concerned with a narrowband two-
hop MIMO AF relay system, which can be directly used in
a broadband multicarrier system like orthogonal frequency
division multiplexing (OFDM). The block diagram of such a
system is shown in Fig. 1. As indicated, this system consists
of an SN, an RN, and a DN, all of which utilize multiple
transmit/receive antennas. In this system, there is no direct
communication link between the SN and the DN and data
are conveyed from source to destination via two cascaded
orthogonal channels by frequency-division or time-division.

A. System Model

Suppose that the number of antennas at the SN, the RN,
and the DN are Ns, Nr, and Nd, respectively. Denote H1

as the Nr × Ns backward relay channel matrix between the
SN and the RN, H2 as the Nd × Nr forward relay channel
matrix between the RN and the DN, both of which are assumed
nonsingular throughout this paper, and G as the Nr × Nr

amplifying matrix at the RN, and then the received signal
vector at the DN is given by

yd = H2GH1x + H2Gnr + nd = Hx + n, (1)

where x denotes the transmitted signal vector of the SN, and
nr and nd denote the local noise vectors at the RN and the DN,
respectively. In (1), H denotes the Nd × Ns overall channel

Fig. 2. Equivalent system for estimating cascaded relay channels at the DN

matrix between the SN and the DN defined as H = H2GH1,
and n denotes the overall noise vector at the DN defined as n =
H2Gnr + nd, which consists of the colored noise forwarded
from the RN and the local white noise at the DN. In order
for the overall channel to be nonsingular, we assume Nr ≥
min {Ns, Nd} throughout this paper. Furthermore, to maintain
a constant power amplifying gain at the RN, we let G = gP
where g is the fixed amplifying gain of the RN and P is a
unitary matrix. In practice, P is usually a diagonal matrix or a
permutation of a diagonal matrix, also called a quasi-diagonal
matrix in this paper, so as to reduce the complexity in the
matrix multiplication manipulation at the RN. Without loss of
generality, we further assume g = 1 throughout this paper for
notational convenience and thus H = H2PH1. Assume that
the elements of nr and nd are identically and independently
distributed (i.i.d.) complex Gaussian random variables with
zero mean and variances σ2

r and σ2
d, respectively, and then the

correlation matrix of the overall noise vector, n, is given by

Rn = E
[
nnH

]
= σ2

rH2HH
2 + σ2

dINd
, (2)

where E[·] and (·)H denote the expectation and the Hermitian
transpose operators, respectively, and INd

denotes the Nd×Nd

identity matrix.
In a practical two-hop MIMO AF relay system, it is attrac-

tive to keep minimum complexity at the RN that is supposed
to be cost-effective. Thus it is desired that the RN does not
undertake any task except simply amplifying and forwarding
its received signals. In other words, no pilots are inserted at
the RN to assist direct estimation of the forward relay channel
at the DN. As a result, only the overall channel between
the SN and the DN, H, can be estimated directly with the
help of pilots inserted at the SN while the two cascaded
relay channels over the SN-RN and the RN-DN hops, H1

and H2, remain unknown. However, Equation (2) indicates
that the correlation matrix of the overall noise vector at the
DN, based on which the maximum likelihood (ML) and the
minimum mean-square error (MMSE) detection of a vertical
bell laboratories layered space-time (V-BLAST) [16] system
are performed, is determined by the forward relay channel
over the RN-DN hop. Therefore, indirect estimation of the
two cascaded relay channels at the DN of a two-hop MIMO
AF system will effectively improve the system performance.

B. Principle of Relay Channel Estimation at the DN

Figure 2 shows an equivalent system for estimating cas-
caded relay channels at the DN. Our objective is to estimate the
relay channels, H1 and H2, based on the predefined amplifying
matrix at the RN, P, and the corresponding overall channel,
H = H2PH1, which is assumed available at the DN through
conventional channel estimation algorithms with the help of
pilots inserted at the SN. Since the input P is known and
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Fig. 3. Principle of relay channel estimation

works like a pilot for relay channel estimation, it is called
the pilot amplifying matrix in this paper. By varying the
pilot amplifying matrix within several consecutive time slots,1

multiple equations with respect to (w.r.t.) H1 and H2 can be
established and once the number of independent equations is
large enough, relay channel estimation will be feasible.

The principle of relay channel estimation is further il-
lustrated in Fig. 3, in which P1, P2, · · · , PL denote the pi-
lot amplifying matrices for L consecutive time slots, and
Ho,1, Ho,2, · · · , Ho,L denote the corresponding overall channel
matrices, i.e.,

Ho,l = H2PlH1, 1 ≤ l ≤ L. (3)

Throughout this paper, we let P1 = INr since, from the
perspective of relay channel estimation, the pilot ampli-
fying matrix sequence, [P1, P2, · · · , PL], is equivalent to[
INr , P−1

1 P2, · · · , P−1
1 PL

]
. Obviously only αH2 and 1

α H1,
where α denotes an unknown complex scalar, can be obtained
from (3) no matter how many different pilot amplifying
matrices are utilized at the RN. However, since H2 (or H1) and
αH2 (or 1

αH1) share the same matrix structure, the knowledge
of αH2 and 1

αH1 at the DN can effectively improve the overall
system performance, as will be demonstrated in Section VII.

Given the framework of relay channel estimation in Fig. 3, it
is our interest to investigate what and how many pilot amplify-
ing matrices are needed to guarantee feasible estimation of the
two cascaded MIMO2 relay channels. In the rest of this paper,
we will first assume perfect overall CSI at the DN and focus
on the identifiability of the two relay channels for a given
pilot amplifying matrix sequence. In particular, necessary
and sufficient conditions for feasible relay channel estimation
will be found and rules for designing low-complexity pilot
amplifying matrices will be given accordingly.

III. NECESSARY AND SUFFICIENT CONDITIONS FOR
FEASIBLE RELAY CHANNEL ESTIMATION

In this section, we will investigate the identifiability of the
two cascaded relay channels from matrix equation (3) for a
given pilot amplifying matrix sequence. Since the equation
w.r.t. H1 and H2 in (3) is nonlinear and difficult to ana-
lyze directly, we will first transform it into a linear one.
For analytical convenience, we first consider a special case,
Nr = min{Ns, Nd}. The extension to the general case of
Nr ≥ min {Ns, Nd} will be discussed in Section VI.

1Throughout this paper, a time slot is defined as a period of time it takes to
estimate the overall channel, H. Furthermore, we assume slow fading channel
so that the two relay channels remain constant during the whole estimation
process.

2In the trivial case that either of the two relay channels is single-input-
single-output (SISO), the pilot matrix at the RN reduces to a scalar and thus
only one time slot is enough for feasible relay channel estimation.

A. Transformation into a Linear Matrix Equation

When Nr = min{Ns, Nd}, transformation of (3) into a
linear equation is straightforward. We first express H2 in terms
of H1 or vice versa; then a linear matrix equation w.r.t. one
of the two relay channels can be established by eliminating
the other. To be brief, the original nonlinear matrix equation
in (3) can be transformed into a linear one as3

PlHx = HxQl, 2 ≤ l ≤ L, (4)

where
Hx =

{
H1, if Nr = Ns ≤ Nd,
H−1

2 , if Nr = Nd ≤ Ns,
(5)

denotes the Nr ×Nr channel matrix to estimate, and

Ql =

{ (
HH

o,1Ho,1

)−1
HH

o,1Ho,l, if Nr = Ns ≤ Nd,

Ho,lHH
o,1

(
Ho,1HH

o,1

)−1
, if Nr = Nd ≤ Ns.

(6)

Given the linear matrix equation in (4), we need to estimate Hx

based on the pilot matrix sequence, {Pl, 2 ≤ l ≤ L}, and the
corresponding transformed overall channel matrix sequence,
{Ql, 2 ≤ l ≤ L}.

B. First Necessary and Sufficient Condition

The original matrix equation in (4) for relay channel esti-
mation can be rewritten as [17]

(
INr ⊗ Pl −QT

l ⊗ INr

)
· hx = 0, 2 ≤ l ≤ L, (7)

where hx = vec(Hx) denotes the vectorization of Hx formed
by stacking the columns of Hx into a single column vector,
and ⊗ denotes the Kronecker product [17], [18].

Define

A =




A2

A3

...
AL


 =




INr ⊗ P2 −QT
2 ⊗ INr

INr ⊗ P3 −QT
3 ⊗ INr

...
INr ⊗ PL −QT

L ⊗ INr


 , (8)

which is an (L − 1)N2
r × N2

r matrix, and then (7) can be
rewritten in a compact manner as

A · hx = 0. (9)

Since hx is not a zero vector, A is not of full column rank,
i.e., rank (A) ≤ N2

r − 1. As a result, Equation (9) has an
infinite number of solutions, including hx. In other words,
the exact value of hx cannot be determined no matter how
many different pilot amplifying matrices are utilized at the RN,
which coincides with our earlier analysis. For relay channel
estimation, our objective is to obtain αhx from (9), where α
denotes an unknown complex scalar, so as to learn about the
matrix structure of Hx. Therefore, the necessary and sufficient
condition for feasible relay channel estimation is rank (A) =
N2

r − 1, i.e., the solutions to (9) have only one degree of
freedom (DoF) embodied in the unknown α. Since A depends
on not only the pilot amplifying matrix sequence, {Pl, 2 ≤

3Note that we have assumed L ≥ 2 since in the general case that both
backward and forward relay channels are MIMO, relay channel estimation
cannot be performed within only one time slot.
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l ≤ L}, but also the relay channels to estimate, H1 and H2, it
is inconvenient to control the rank of A directly to meet this
necessary and sufficient condition. To deal with this problem,
we further define

B =




B2

B3

...
BL


 =




INr
⊗ P2 − PT

2 ⊗ INr

INr ⊗ P3 − PT
3 ⊗ INr

...
INr ⊗ PL − PT

L ⊗ INr


 . (10)

Similar to A, B is also an (L−1)N2
r×N2

r matrix. Furthermore,
we have shown in Appendix A that matrices A and B have
the same rank, i.e., rank (A) = rank (B). Thus we obtain the
following proposition.

Proposition 1. Given {Pl, 2 ≤ l ≤ L}, the necessary and
sufficient condition for feasible relay channel estimation is

rank (B) = N2
r − 1. (11)

Different from A, B depends only on the pilot amplifying
matrix sequence, independent of the relay channel to estimate.
Therefore, given {Pl, 2 ≤ l ≤ L}, it is convenient to decide
on the identifiability of the two cascaded relay channels by
checking the rank of B.

Although Proposition 1 enables us to decide on the quali-
fication of a given pilot amplifying matrix sequence, it does
not provide any clue on rules to design qualified pilot matrices
directly since it is still rather difficult to establish an explicit
relationship between the pilot amplifying matrix sequence and
the rank of B. Therefore, we will define a new problem that is
equivalent to the original problem of relay channel estimation.
Based on the equivalent problem, rules will be developed
conveniently to design qualified pilot amplifying matrices for
relay channel estimation.

C. Equivalent Problem and Second Necessary and Sufficient
Condition

Up to now, we have described the original problem of relay
channel estimation, the definition of which is given below.

Original problem: Solve

Ho,l = H2PlH1, 1 ≤ l ≤ L, (12)

to get H1 and H2.
To facilitate further analysis of the original problem, we

define its equivalent problem as follows.
Equivalent problem: Solve

Pl = T2PlT1, 1 ≤ l ≤ L, (13)

to get Nr ×Nr square matrices T1 and T2.
It must be mentioned that both the original and the equiv-

alent problems have an infinite number of solutions.4 In
Appendix B, we have proved the following proposition.

Proposition 2. The solutions to the original problem and those
to the equivalent problem have the same DoF.

4Note that T1 = αINr and T2 = 1
α

INr , where α denotes an arbitrary
complex scalar, are always solutions to the equivalent problem.

The equivalence between the two problems indicated in
Proposition 2 significantly facilitates analysis of the identi-
fiability of the two relay channels for a given pilot amplifying
matrix sequence. As mentioned, the necessary and sufficient
condition for feasible relay channel estimation is that the
solutions to the original problem have only one DoF. Thus,
from Proposition 2, we obtain the second necessary and
sufficient condition for feasible relay channel estimation as
follows.

Proposition 3. Given {Pl, 2 ≤ l ≤ L}, relay channel esti-
mation is feasible if and only if T1 = αINr and T2 = 1

α INr
,

where α denotes an arbitrary complex scalar, are the sole
solutions to the equivalent problem.

In practice, the RN in the two-hop MIMO AF relay system
needs to maintain a minimum complexity. Therefore, it is
attractive to set the pilot amplifying matrices as the permu-
tations of an identity matrix since, in this case, the matrix
multiplication manipulation at the RN can be realized with
minimum complexity by switching the connection between the
receive and the transmit antennas of the RN. Unfortunately,
with the help of Proposition 3, we have proved in Appendix
C that it is impossible to estimate the two cascaded relay
channels at the DN with such pilot amplifying matrices.

D. Third Necessary and Sufficient Condition

In light of Proposition 3, we will reinvestigate the identifi-
ability of the two relay channels for a given pilot amplifying
matrix sequence by examining the DoF of the solutions to the
equivalent problem.

Since P1 = T2P1T1 and P1 = INr , we have T1 = T−1
2 .

Thus (13) can be rewritten as

T2 = PlT2P−1
l , 2 ≤ l ≤ L. (14)

Perform eigenvalue decomposition on T2 to get T2 =
UΛU−1,5 where U and Λ denote the eigenvector and the
eigenvalue matrices of T2, respectively. Then (14) can be
rewritten as

T2 = PlU ·Λ · (PlU)−1
, 2 ≤ l ≤ L, (15)

which indicates that, for any 2 ≤ l ≤ L, PlU is also an
eigenvector matrix of T2.

According to Proposition 3, relay channel estimation is
feasible if and only if T2 in (15) has only one DoF. To find
the necessary and sufficient condition for that, we first perform
eigenvalue decomposition on each pilot matrix to get

Pl = VlΛlV−1
l , 2 ≤ l ≤ L, (16)

where Vl = [vl1, vl2, · · · , vlNr ] and vln, 1 ≤ n ≤ Nr,
denotes the nth eigenvector of Pl. Then we group the Nr

eigenvectors of Pl into K clusters with nk eigenvectors in the
kth cluster Vlk, 1 ≤ k ≤ K, such that Vlk’s with 2 ≤ l ≤ L
span the same nk-dimensional space Sk. In particular, such
eigenvector grouping is performed over {Pl, 2 ≤ l ≤ L} so
that the number of their eigenvector clusters, K, is as large

5Since Pl is unitary and Pl = T2PlT1, T2 and T1 must be nonsingular.
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as possible. In the case that Pl has an n-dimensional (n > 1)
eigenspace associated with an n-order repeated eigenvalue, n
eigenvectors are chosen appropriately from this eigenspace for
grouping so that K is maximized. Given the above eigenvector
grouping rule, we have proved the following third necessary
and sufficient condition for feasible relay channel estimation
in Appendix D.

Proposition 4. Given {Pl, 2 ≤ l ≤ L}, relay channel estima-
tion is feasible if and only if they have only one eigenvector
cluster, i.e., K = 1.

The third necessary and sufficient condition given by Propo-
sition 4 can be used not only to determine whether a given pilot
matrix sequence ensures feasible relay channel estimation,
but also to design qualified pilot matrix sequence directly.
According to Proposition 4, it is impossible to estimate the
two MIMO relay channels within two time slots since, in this
case, L = 2 and the number of eigenvector clusters of P2

alone is Nr, which is greater than one. On the other hand,
for appropriately designed P2 and P3, the number of their
eigenvector clusters can be as small as one. In other words,
the minimum number of time slots required for feasible relay
channel estimation is 3, i.e., Lmin = 3. In Section IV, rules
will be developed to design low-complexity P2 and P3 meeting
the third necessary and sufficient condition such that the two
relay channels can be estimated within three time slots.

IV. DESIGN RULES

In this section, we develop rules to design low-complexity
pilot amplifying matrices so that the relay channels can be
estimated with minimum complexity at the RN. According
to Proposition 4, we need to ensure that the number of
eigenvector clusters of the designed pilot matrices is one.

As mentioned, it is always attractive to use a diagonal matrix
or a quasi-diagonal matrix (a permutation of a diagonal matrix)
as the pilot amplifying matrix at the RN so as to reduce the
complexity in the matrix multiplication manipulation. Before
giving the specific design rules, we first present the following
definitions regarding a permutation operation.

Denote D and F as two Nr×Nr square matrices. Let F be
a permutation of D, i.e., F is obtained by switching the row
order of D, and then we define
• If the ith row of F comes from the jth row of D, i

is directly reachable from j, 1 ≤ i, j ≤ Nr, which is
denoted as f(j) = i and f−1(i) = j.6

• If i is directly reachable from j and j is directly reachable
from k, i is reachable from k.

• A permutation is indivisible if any i and j (1 ≤ i, j ≤ Nr)
reach each other.

Given the above definitions, we present the following design
rules.
• Let P1 = INr .
• Generate Nr distinct complex numbers, each with unit

magnitude, to get a diagonal P2.
• Let P3 be an indivisible permutation of P2.

6Note that, for any permutation, there exists a unique j that directly reaches
i and a unique k that is directly reachable from i.

With the above design rules, we have shown in Appendix
E that P2 and P3 have only one eigenvector cluster and thus
the two cascaded relay channels can be estimated within three
time slots. Among all of the Nr! permutations of P2, there
are (Nr − 1)! indivisible ones that qualify as P3 candidates.
In practice, P3 can be obtained by simply cyclically shifting
the rows of P2. To illustrate the above design rules, we give a
pilot amplifying matrix sequence candidate for relay channel
estimation in a two-hop MIMO AF relay system with Nr = 2
as follows.

P1 =
[
1 0
0 1

]
, P2 =

[
1 0
0 −1

]
, P3 =

[
0 1
−1 0

]
. (17)

The above design rules are especially attractive in practice
because, firstly, the two relay channels can be estimated within
the minimum three time slots, secondly, application of diago-
nal and quasi-diagonal pilot amplifying matrices maintains a
minimum complexity at the RN, and thirdly, the orthogonality
of these pilot amplifying matrices ensures a constant power
amplifying gain at the RN.

V. LINEAR LEAST-SQUARE ESTIMATION OF RELAY
CHANNELS IN A NOISY ENVIRONMENT

So far, we have assumed perfect overall CSI at the DN
and focused on the design of the pilot matrix sequence to
ensure feasible relay channel estimation. In this section, we
will consider imperfect overall CSI at the DN and develop
a specific algorithm to estimate the relay channels in such a
noisy environment.

In practice, the overall channel between the SN and the DN,
Ho,l, has to be estimated at the DN. The estimated overall
channel is always corrupted by noise and can be expressed as

HN
o,l = Ho,l + No,l, 1 ≤ l ≤ L, (18)

where Ho,l is the actual overall channel and No,l denotes the
additive estimation noise matrix. Accordingly, the corrupted
version of Ql in (6) is given by

QN
l =





((
HN

o,1

)H
HN

o,1

)−1(
HN

o,1

)H
HN

o,l, if Nr =Ns≤Nd,

HN
o,l

(
HN

o,1

)H
(

HN
o,1

(
HN

o,1

)H
)−1

, if Nr =Nd≤Ns,
(19)

which can be equivalently rewritten as QN
l = Ql+NQ,l where

NQ,l denotes an equivalent additive noise matrix. As a result,
the original linear matrix equation in (4) is revised as

PlHx −HxQN
l + HxNQ,l = 0, 2 ≤ l ≤ L, (20)

Define

AN =




AN
2

AN
3
...

AN
L


 =




INr ⊗ P2 −
(

QN
2

)T

⊗ INr

INr ⊗ P3 −
(

QN
3

)T

⊗ INr

...

INr ⊗ PL −
(

QN
L

)T

⊗ INr




, (21)
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and

nHx =




vec (HxNQ,2)
vec (HxNQ,3)

...
vec (HxNQ,L)


 , (22)

and then (20) can be rewritten as

AN · hx + nHx = 0, (23)

where hx = vec(Hx) =
[
hx,1, hx,2, · · · , hx,N2

r

]T denotes the
vectorization of Hx. As mentioned, we can only obtain αhx,
where α denotes an unknown complex scalar, through relay
channel estimation. Considering this, we try to estimate the
value of hx normalized to hx,1, namely hx,n = 1

hx,1
hx, by

adding an extra equation to (23) to get
[

AN

e

]
· hx,n +

[
nHx

0

]
= y, (24)

where e = [1, 0, 0, · · · , 0] is an N2
r -dimensional row vector

and y = [0, 0, · · · , 1]T is an (L − 1)N2
r + 1-dimensional

column vector. Thus hx,n can be estimated as an approximate
LS solution [17] to (24) as7

ĥx,n,LS =
(

CHC
)−1

CHy, (25)

where C =
[
AT

N eT
]T

. According to (24), the estimation

error of ĥx,n,LS is given by

ĥx,n,LS − hx,n =
(

CHC
)−1

CH ñHx , (26)

where ñHx =
[
nT

Hx
0
]T . Accordingly, the mean-square error

(MSE) of ĥx,n,LS can be expressed as

ξ = E

[(
ĥx,n,LS − hx,n

)H (
ĥx,n,LS − hx,n

)]
, (27)

where E[·] denotes expectation w.r.t. both the random noise
and the relay channel to estimate. Since both C and ñHx

depend on not only the random noise but also the relay
channel to estimate, it is rather difficult to obtain a closed-
form expression for ξ. Therefore, it can only be evaluated
numerically. While the focus of this paper is on investigating
the feasibility of estimating the cascaded relay channels at the
DN and designing low-complexity pilot amplifying matrices
at the RN, it will be a potential future research topic to design
the optimal pilot matrices to minimize the MSE in a noisy
environment.

VI. EXTENSION TO GENERAL CASE

In order for the overall channel to be nonsingular, we
have assumed Nr ≥ min{Ns, Nd}, which consists of Case
I: Nr = min {Ns, Nd} and Case II: Nr > min {Ns, Nd}.

7Since the noise part, nHx , depends on the unknown channel Hx, ĥx,n,LS

is not an exact LS solution to (24). In the presence of imperfect overall CSI,
Equation (24) turns out to be a nonlinear one w.r.t hx,n and is hard to solve.
When a relatively accurate overall channel is available, i.e., QN

l ≈ Ql, the
power of nHx is low. In this case, ĥx,n,LS is an approximate linear LS
solution to (24).

In the previous sections, we have investigated relay channel
estimation at the DN in Case I; in this section, we will extend
it to Case II.

In Case II, the original nonlinear matrix equation in (3)
cannot be transformed into a linear one w.r.t either one of
the two cascaded relay channels. Therefore, we propose to
estimate the relay channels via multiple steps. In each step,
the relay channel estimation procedure in Case I is applied.
Specifically, we divide the antennas at the RN into multiple
groups so that the number of antennas in each group, Ñr,
equals min{Ns, Nd}. Obviously there will be overlapping
antennas in different groups if I = Nr

Ñr
is not an integer.

Without loss of generality, we assume I is an integer to
facilitate explanations. By grouping the antennas at the RN,
the original two-hop MIMO AF relay system is decomposed
into I parallel subsystems with still Ns and Nd antennas at
the SN and the DN, respectively, but Ñr antennas at the RN.
Let H1,i and H2,i, 1 ≤ i ≤ I , denote the backward and the
forward relay channels of the ith subsystem, respectively, and
then the overall relay channels are given by

H1 =
[
HT

1,1, HT
1,2, · · · , HT

1,I

]T
, (28)

and
H2 = [H2,1, H2,2, · · · , H2,I ] . (29)

Since Ñr = min{Ns, Nd}, H1,i and H2,i can be estimated
following the procedure in Case I by switching off all of
the antennas of the RN that are outside the ith group. Then
the overall relay channels, H1 and H2, can be obtained by
combining H1,i’s and H2,i’s, respectively. Since we can only
get the values of H1,i and H2,i normalized to one of their
respective elements, a number of extra antenna groups are
needed to obtain the amplitude and phase relationship between
the relay channels of different subsystems. To illustrate the
relay channel estimation procedure in Case II, we take a 2/4/4
(Ns = 2, Nr = 4, and Nd = 4) two-hop MIMO AF relay
system as an example. The four antennas at the RN, a1, a2, a3,
and a4, are divided into two (I = 2) groups. For example,
a1 and a2 form Group 1, and a3 and a4 form Group 2.
Thus the original 2/4/4 system is decomposed into two 2/2/4
subsystems. To determine the amplitude and phase relationship
between the relay channels of the two subsystems, we further
let a1 and a3 form Group 3 to get another 2/2/4 subsystem.

VII. SIMULATION RESULTS

In this section, we present some simulation results to
demonstrate the performance of the approximate linear LS
estimation of the relay channels developed in Section V. In our
simulation, a 4/4/4 (Ns = Nr = Nd = 4) two-hop MIMO
AF relay system is considered. The elements of H1, H2, nr,
and nd are all modeled as i.i.d. complex Gaussian random
variables with zero mean and unit variance. Furthermore, the
power amplifying gain of the RN is set to one, i.e., g = 1.
Denote Ps as the transmit power of each antenna at the SN,
the value of which is also defined as the system SNR of the
overall system. Three pilot amplifying matrices are generated
randomly for relay channel estimation according to the design
rules given in Section IV. The normalized relay channels,
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H1 = 1
H1(1,1)H1 and H2 = 1

H2(1,1)H2, where Hi(1, 1)
denotes the element at the first row and the first column
of Hi, 1 ≤ i ≤ 2, are estimated through the approximate
linear LS estimation procedure developed in Section V. The
corresponding normalized MSE of estimate Hi,E is defined as

ξi = E

[‖Hi −Hi,E‖2
‖Hi‖2

]
, 1 ≤ i ≤ 2, (30)

where ‖·‖2 denotes the sum power of all elements of a matrix.

Figure 4 shows the normalized MSE curves of the estimated
relay channels, H1,E and H2,E . In Fig. 4(a), we apply the
overall channel model with additive noise given in (18). In
particular, we assume that elements of the additive noise
matrix are i.i.d. Gaussian with zero mean and variance σ2

n and
define the equivalent SNR as the ratio of the average power
of the overall channel to that of the additive noise, i.e.,

γeq =
E

[‖ Ho,l ‖2
]

NsNdσ2
n

=
Nr

σ2
n

. (31)

In contrast, the imperfect overall channel in Fig. 4(b) is
obtained by employing the linear MMSE (LMMSE) channel
estimation algorithm under a certain system SNR. Figure 4
indicates that an acceptable estimation performance, such as
a normalized MSE smaller than −5 dB, can be achieved
when the equivalent SNR of the overall channel (in Fig.
4(a)), or the system SNR (in Fig. 4(b)), is greater than 15
dB. This indicates that the accuracy of the overall channel is
significant to relay channel estimation. While H1,E and H2,E

have the same normalized MSE under the overall channel
model with additive white Gaussian noise, it is interesting to
notice that H1,E has a smaller normalized MSE than H2,E

when the overall channel is obtained through the LMMSE
channel estimation algorithm. This is actually reasonable since
the overall system model in (1) indicates that H1 and H2

are not playing interchangeable roles in the original system.
Specifically, H1 is independent of the overall noise at the DN
while H2 is not since it conveys nr, the noise vector at the
RN, to the DN. While the focus of this paper is on pilot
matrix design for estimating cascaded relay channels based
on available overall CSI, it will be a potential future research
topic to jointly estimate H1, H2, and the overall channel.

Figure 5 demonstrates the performance improvement of the
two-hop MIMO AF relay system when the estimated forward
relay channel is utilized to improve signal detection at the
DN. In our simulation, V-BLAST transmission with QPSK
modulation is applied at the SN and no error correcting coding
is utilized. Imperfect overall channel is obtained through the
LMMSE channel estimation algorithm and, based on that, the
ML and MMSE detection schemes are applied at the DN.
In order to get accurate overall channel estimation for system
performance optimization, we assume that the SNR of the pilot
for overall channel estimation is 10 dB higher than that of the
data. In particular, we assume that the average power gain
over the RN-DN hop, σ2

2 , which equals one in our simulation,
is known at the DN since it is static and thus can be easily
obtained. When relay CSI over the RN-DN hop is unavailable,
we simply assume that the overall noise is white and estimate
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Fig. 4. Normalized MSE curves of the estimated relay channels

its correlation matrix as

R̃n = σ2
rE

[
H2HH

2

]
+ σ2

dINd
=

(
Nrσ

2
rσ2

2 + σ2
d

)
INd

, (32)

based on which approximate ML and MMSE detection
schemes are applied at the DN. In contrast, with relay channel
estimation at the DN, we estimate the correlation matrix of the
overall noise vector as

R̂n = σ2
r

NdNrσ
2
2

‖H2,E‖2
H2,EHH

2,E + σ2
dINd

, (33)

based on which improved approximate ML and MMSE de-
tection schemes can be applied at the DN. From Fig. 5,
we observe that when BER is around 10−3, the ML and
the MMSE detection schemes based on the estimated relay
channels achieve about 1.0 dB performance gains over those
based on the white overall noise assumption, respectively.
While the initial simulation results have justified estimating the
cascaded relay channels at the DN, further utilization of the
estimated relay channels for system performance improvement
will be a future research topic.
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Fig. 5. BER performance improvement achieved by relay channel estimation

VIII. CONCLUSION

In this paper, we have investigated estimating the cascaded
backward and forward relay channels at the final destination of
a two-hop MIMO AF relay system based on a predefined pilot
amplifying matrix sequence at the RN and the corresponding
overall channel sequence obtained at the DN through con-
ventional channel estimation algorithms. Such a relay channel
estimation scheme is applicable to a minimum-complexity
relay that simply amplifies and forwards its received signals.
We have found the necessary and sufficient conditions on
the pilot matrix sequence to ensure feasible relay channel
estimation and presented rules to design diagonal or quasi-
diagonal pilot amplifying matrices to meet these conditions.
In the presence of imperfect overall CSI at the DN, we have
further developed the approximate linear LS estimation of
the relay channels and evaluated its performance by simula-
tion results. Furthermore, initial simulation results have also
demonstrated the system performance improvement achieved
by relay channel estimation.

APPENDIX A

According to (4), Ql = H−1
x PlHx, 2 ≤ l ≤ L, where Hx

denotes the Nr ×Nr relay channel matrix to estimate. Thus,
according to the mixed-product property of the Kronecker
product [17], we have

Al = I⊗ Pl −QT
l ⊗ I

= HT
x (HT

x )−1 ⊗ Pl −HT
x PT

l (HT
x )−1 ⊗ I

=
(
HT

x⊗ I
)[

(HT
x )−1⊗ Pl

]− (
HT

x⊗ I
)[

PT
l (HT

x )−1⊗ I
]

=
(
HT

x ⊗ I
)
(I⊗ Pl)

[(
HT

x

)−1 ⊗ I
]

− (
HT

x ⊗ I
) (

PT
l ⊗ I

) [(
HT

x

)−1 ⊗ I
]

=
(
HT

x ⊗ I
) (

I⊗ Pl − PT
l ⊗ I

) (
HT

x ⊗ I
)−1

, (A-1)

where I denotes the Nr × Nr identity matrix. Define W =
HT

x ⊗ I; then, according to (A-1) and (10), Al = WBlW−1,
and therefore

A =




A2

A3

...
AL


 =




W 0 · · · 0
0 W · · · 0
...

...
. . .

...
0 0 · · · W







B2

B3

...
BL


 W−1. (A-2)

Since W is invertible, (A-2) verifies that rank (A) = rank (B).

APPENDIX B

For the equivalent problem, the original matrix equation
w.r.t. T1 and T2 is given by

Pl = T2PlT1, 1 ≤ l ≤ L, (A-3)

Since P1 = INr and P1 = T2P1T1, T2 = T−1
1 . Therefore,

(A-3) can be rewritten as

PlT1 = T1Pl, 2 ≤ l ≤ L, (A-4)

Similar to (9), (A-4) can be rewritten in a compact manner
as follows

B · t1 = 0. (A-5)

where B is an (L − 1)N2
r × N2

r matrix defined in (10) and
t1 = vec(T1) denotes the vectorization of T1. Obviously the
solutions to (A-5) have N2

r − rank (B) DoF’s. According to
(9), the solutions to the original problem have N2

r − rank (A)
DoF’s. Since rank (A) = rank (B) (See Appendix A), we
conclude that the solutions to the original problem and those
to the equivalent problem have the same DoF.

APPENDIX C

In this Appendix, we will demonstrate that the two cascaded
relay channels cannot be estimated at the DN by setting
{Pl, 2 ≤ l ≤ L} as the permutations of P1.

Without loss of generality, we let P1 = INr and thus
{Pl, 1 ≤ l ≤ L} will be a set of permutation matrices. Denote
E to be an all-one Nr×Nr square matrix, and then obviously

PlE = EPl, 1 ≤ l ≤ L. (A-6)
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Define T = aE + bINr , where b 6= 0 and −Nra. Since |T| =
bNr−1(b + Nra) 6= 0, T is invertible. According to (A-6),

PlT = TPl, 1 ≤ l ≤ L. (A-7)

which can be rewritten as

Pl = TPlT−1, 1 ≤ l ≤ L. (A-8)

Equation (A-8) indicates that, for permutation matrices
{Pl, 1 ≤ l ≤ L}, T2 = T and T1 = T−1 are solutions to the
equivalent problem in (13). Since T has two DoF’s embodied
in the unknown a and b, respectively, relay channel estimation
is infeasible according to Proposition 3. Intuitively, suppose
that Ĥ1 and Ĥ2 are solutions to

Ho,l = H2PlH1, 1 ≤ l ≤ L, (A-9)

and then, according to (A-8), T−1Ĥ1 and Ĥ2T are also
solutions to (A-9). Since T has two DoF’s, relay channel
estimation is infeasible.

APPENDIX D

Suppose K is the number of eigenvector clusters of {Pl, 2 ≤
l ≤ L}. We will first show that K = 1 is a necessary condition
for feasible relay channel estimation by constructing a T2 with
K DoF’s that satisfies (15) in the equivalent problem.

Construct

U = [e11, e12, · · · , e1n1 ; · · · ; eK1, eK2, · · · , eKnK ] , (A-10)

as an eigenvector matrix of T2, where ekn

(1 ≤ k ≤ K, 1 ≤ n ≤ nk) denotes the nth base of the
nk-dimensional space, Sk, which is spanned by the kth
eigenvector cluster of each pilot matrix. Further let Sk be the
kth eigenspace of T2 with the associated eigenvalue λk, i.e.,
∀v ∈ Sk, T2v = λkv. Define Λk = λkInk

, then,

T2 = UΣU−1, (A-11)

where Σ = diag{Λ1,Λ2, · · · ,ΛK} denotes the Nr × Nr

diagonal eigenvalue matrix. According to the eigenvector
grouping rule, for any 2 ≤ l ≤ L, invertible transform Pl maps
space Sk to itself, i.e., ∀v ∈ Sk, Plv ∈ Sk. As a result, PlU
is still an eigenvector matrix of T2 for any 2 ≤ l ≤ L, which
indicates that T2 in (A-11), which has K DoF’s embodied in
K independent eigenvalues, satisfies (15) and therefore is a
solution to the equivalent problem. According to Proposition
3, relay channel estimation is feasible if and only if the
solutions to the equivalent problem have only one DoF. Thus
we conclude that K = 1 is a necessary condition for feasible
relay channel estimation.

To show that K = 1 is also a sufficient condition for feasible
relay channel estimation, we suppose that when K = 1, there
exists an invertible T2 6= αI2, where α denotes an arbitrary
complex scalar, that satisfies (15). Since T2 6= αI2, it has
J (J ≥ 2) different eigenvalues corresponding to J different
eigenspaces, Sj , 1 ≤ j ≤ J . According to (15), if U is an
eigenvector matrix of T2, so is PlU, 2 ≤ l ≤ L. In other
words, for any 2 ≤ l ≤ L, transform Pl maps Sj to itself,
which means Sj for any j is a space spanned by eigenvectors
of any pilot matrix, Pl. According to the eigenvector grouping

rule, the number of eigenvector clusters of Pl’s is greater than
or equal to J , which is contradictory to the supposition that
K = 1. Therefore, T2 = αI2, where α denotes an arbitrary
scalar, is the sole solution to (15) when K = 1. According to
Proposition 3, we conclude K = 1 is also a sufficient condition
for feasible relay channel estimation.

APPENDIX E

To prove that the design rules given in Section IV ensure
feasible relay channel estimation, we will first show the
following fact.

Fact 1. Any eigenvector of P3 does not have zero elements if
P3 is an indivisible permutation of P2.

Proof: According to the design rules given in Section IV,

P2 =




r1

r2

...
rNr


 =




γ1 0 · · · 0
0 γ2 · · · 0
...

...
. . .

...
0 0 · · · γNr


 , (A-12)

where ri denotes the ith row vector of P2. Sine P3 is a
permutation of P2, we have

P3 =
[
rT
f−1(1), rT

f−1(2), · · · , rT
f−1(Nr)

]T

, (A-13)

where f−1(i) = j if i is directly reachable from j.
Suppose v = [v1, v2, · · · , vNr ]

T is a non-zero eigenvector
of P3 with the associated eigenvalue, λ, and then P3v = λv,
i.e.,

rf−1(i) · v = γf−1(i)vf−1(i) = λvi, 1 ≤ i ≤ Nr. (A-14)

Suppose vi = 0 for an i. Since both P2 and P3 are unitary,
γf−1(i) 6= 0 and λ 6= 0. As a result, vf−1(i) must be zero
to satisfy (A-14). For the same reason, it can be shown that
vj = 0 for any j that reaches i. Since P3 is an indivisible
permutation of P3, any j ∈ {1, 2, · · · , Nr} reaches i. As a
result, v must be a zero vector, which is contradictory to the
above supposition. Thus we conclude that any eigenvector of
P3 does not have zero elements.

Since P2 is a diagonal matrix with Nr different non-zero
elements, the standard bases of an Nr-dimensional space, e1 =
[1, 0, · · · , 0]T , e2 = [0, 1, · · · , 0]T , · · · , eNr = [0, 0, · · · , 1]T ,
are the Nr eigenvectors of P2. According to Fact 1, any
eigenvector of P3 does not have zero elements and hence does
not fall in any subspace spanned by a subset of the standard
bases, {e1, e2, · · · , eNr}, which, according to the eigenvector
grouping rule, means that P2 and P3 have only one eigenvector
cluster. According to Proposition 4, we conclude that the
design rules given in Section IV ensure feasible relay channel
estimation.
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