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Abstract
Synthetic Aperture Radar (SAR) is a fundamental technology with significant impact in
remote sensing applications. SAR relies on the motion of the radar platform to synthesize a
large aperture, and achieve high resolution imaging of a large area. However, current strip-
map SAR designs, relying on uniform pulsing, suffer from a fundamental trade-off between
the azimuth resolution and the range coverage length. In this paper we overcome this trade-
off using a randomized pulsing scheme combined with non-linear compressive sensing (CS)
reconstruction. Our experimental results demonstrate significant improvement in the azimuth
resolution using the proposed approach, without compromise on the range length of the
imaged area.
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ABSTRACT

Synthetic Aperture Radar (SAR) is a fundamental technology with
significant impact in remote sensing applications. SAR relies on
the motion of the radar platform to synthesize a large aperture, and
achieve high resolution imaging of a large area. However, current
strip-map SAR designs, relying on uniform pulsing, suffer from a
fundamental trade-off between the azimuth resolution and the range
coverage length. In this paper we overcome this trade-off using
a randomized pulsing scheme combined with non-linear compres-
sive sensing (CS) reconstruction. Our experimental results demon-
strate significant improvement in the azimuth resolution using the
proposed approach, without compromise on the range length of the
imaged area.

Index Terms— Synthetic Aperture Radar(SAR), high-resolution
imaging, randomized pulse timing, Compressive Sensing(CS)

1. INTRODUCTION

Synthetic Aperture Radar (SAR) is a high resolution radar imaging
technology with significant impact in remote sensing. SAR exploits
the motion of the radar platform (such as a vehicle, a satellite or
a plane) to synthesize a large virtual aperture that can image large
areas with high resolution. Classical SAR transmits pulse signals
(chirps) at a uniform rate. The corresponding echoes, reflected from
the region of interest, are processed to reconstruct a two-dimensional
image. The image resolution on the axis perpendicular to the motion
of the platform (range) is determined by the bandwidth of the trans-
mitted pulse, while the resolution along the axis of motion (azimuth)
depends on the synthetic aperture size due to the Doppler effect [1].

However, classical strip-map SAR exhibits a fundamental trade-
off between the azimuth resolution and the range coverage length,
stemming from the need to separate the pulse transmission from the
echo reception. Most SAR systems use the same antenna for the
transmission of the pulse and the reception of the echo. While a
pulse is transmitted the radar cannot receive the reflection of another
pulse from the ground. Thus, the time interval between two transmit-
ted pulses should be large enough or the pulse repetition frequency
(PRF) be low enough such that the whole reflection from ground due
to one pulse can be acquired. Otherwise the transmitted pulses will
interfere with the reception of the received echoes and lose range
coverage because of missing data. On the other hand, the Doppler
bandwidth requires a minimum PRF to avoid ambiguity according
to the Nyquist sampling theorem. If the PRF is too low, it will cause
azimuth ambiguities because of aliasing. Thus, to increase the SAR
azimuth resolution it is necessary to increase the acquisition PRF.

In recent years, the development of compressive sensing (CS) [2]
has had great impact in sensing applications, including radar and
radar imaging imaging [3–7]. CS fundamentally revisits signal
acquisition and allows robust reconstruction of signals using a

significantly smaller number of measurements compared to their
Nyquist rate. This sampling rate reduction is achieved by using
randomized measurements, improved signal models and non-linear
reconstruction algorithms. Recent progress on compressive sensing
radar has been made by [4–6], but most results consider point targets
or simplified experiment setups—generally not applicable in radar
imaging systems. A number of challenges still exist and need to be
resolved to apply CS to radar imaging, such as developing appro-
priate sparsity models of radar images and managing computational
complexity [3, 7]. With this work we attempt a small step towards
addressing those challenges.

In this paper, we propose a randomized pulsing scheme for SAR,
combined with compressive sensing reconstruction, to significantly
improve the trade-off between range length and azimuth resolution
and overcome the fundamental limitations of classical pulsing. Our
work combines two distinct modifications:

1. Randomized pulse timing with high average PRF to achieve
high azimuth resolution and robustness to the missing data
due to the pulse transmission.

2. Iterative CS reconstruction algorithms to handle missing data
and overlapping echoes, and to incorporate image models.

To validate our approach, we provide experimental results using
simulated acquisition with both classical uniform and randomized
pulsing, and demonstrate that we significantly improve the azimuth
resolution. While we focus the experiments in one particular mode
of SAR operation—namely, stripmap SAR—the method is funda-
mentally applicable to other modes, such as spotlight mode.

In the next section we provide a brief overview on SAR acqui-
sition, with some emphasis on the pulse timing. Section 3 describes
how randomized pulse timing can be used to increase SAR azimuth
resolution. In Section 4 we briefly examine CS-inspired image for-
mation algorithms to reconstruct from the acquired echoes. Sec-
tion 5 provides experimental results that confirm and validate our
approach. We conclude with some discussion in Section 6.

2. BACKGROUND

To image a swath of land, SAR systems transmit pulses, usually
linear chirps, at a uniform rate. The pulses are reflected from the
ground, and the reflections (echoes) are recorded and used to recon-
struct the ground reflectivity.

Classical SAR pulse timing is depicted on the top of Fig. 1(a).
The duration of each reflection depends on the length of the area of
interest in the range direction. The reflection (echo) of the pulse is
effectively a convolution of the transmitted pulse with the part of the
ground illuminated by the pulse. The time difference for the pulse
to travel to the farthest ground points compared to the nearest ones
determines the length of the reflection. Illuminating larger range ar-
eas produces longer echoes. Therefore, increasing the range length
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Fig. 1. SAR Pulse timing. (a) Classical SAR pulsing. To avoid
overlaps the PRF is limited by the length of the response. (b) Ran-
domized pulse timing. If the pulsing timings are not randomized, the
same part of the reflection will always be missing. Randomizing the
pulse timing allows us to image all part of the region.

of the image requires decreasing the PRF. Otherwise, multiple re-
ceived echoes would interfere with each other and with the transmit-
ting pulses, causing overlapping and missing data in reflections, as
shown on the bottom of Fig. 1(a). Lower PRF, in turn, decreases the
Doppler bandwidth that can be sampled, and, therefore, the achiev-
able azimuth resolution.

The SAR data acquisition process can be described overall as a
linear operation:

y = Φ(x) + n, (1)

where y denotes the received radar echoes, x denotes the reflectivity
of the imaged area, Φ models the SAR acquisition function depend-
ing on the radar parameters, and n is measurement noise.

The goal of the image formation process is determine the signal
of interest x from the radar echoes y given the acquisition function
Φ. In other words, it solves an inverse problem. If the acquisition
function Φ is invertible, an obvious choice is to use the inverse or
the pseudoinverse of Φ to determine x:

x̂ = Φ†(y). (2)

In practical SAR systems, Φ is difficult to model accurately and
the inversion can be computationally expensive. Typically, SAR im-
age formation is achieved using one of the well-established algo-
rithms such as the Range-Doppler Algorithm (RDA) or the Chirp
Scaling Algorithm (CSA) to approximate the inversion problem [1].

3. RANDOMIZED PULSE TIMING

Our main goal in this paper is to increase the average PRF in SAR
systems without compromising the acquired range length. As we
discuss in Sec. 2, we need to address two main issues when increas-
ing the PRF. The first issue is the interference between overlapping
reflected echoes from two different pulses. The second issue is the
data missing when a pulse is transmitted concurrently with an echo
reception.
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Fig. 2. Ground coverage with high PRF. (a) With uniform pulse tim-
ing the same range length is always missing, and cannot be recov-
ered. (b) With randomized pulse timing the missing data is spread
uniformly in the range length, and the ground is well covered.

In order to avoid interference of two overlapping echoes, one
option is to use incoherent1 or orthogonal pulses, such as an up-
chirp followed by a downchirp. Thus, the interference is minimized
and an iterative reconstruction algorithm can separate overlapping
responses effectively and efficiently using pulse compression. Fig-
ure 1(b) shows an example, in which two different pulses are denoted
using different colors. Note that for more frequent pulsing, in which
case three or more reflections might overlap, more than two different
pulse shapes are necessary to be able to separate the reflections.

Even if the pulse reflections can be efficiently separated, the in-
terference from the transmitted pulse causes missing data in the re-
sponse. If the pulsing timing is uniform, the missing data are always
located in the same position of the reflection, as shown on the top
of Fig. 1(b). Iterative algorithms are in general able to handle miss-
ing data but even the best approach (including CS methods) will fail
if the same locations are always missing. The resulting image will
have an unrecoverable region at that range interval.

To be able to reconstruct in the presence of missing data, we
randomize the pulse timing, ensuring that the missing data from ev-
ery response corresponds to a different range interval. The timing
of this approach is demonstrated at the bottom of Fig. 1(b). Since
the ground coverage of adjacent reflections overlap significantly in
azimuth, we can make use of the information redundancy to recon-
struct an image with both high azimuth resolution and large range
length by suitable iterative reconstruction algorithms.

Figure 2 demonstrates how randomizing the pulse timing dis-
tributes the missing data with respect to the ground coverage in
stripmap SAR. The figure demonstrates how missing data from a re-
flected pulse corresponds to missing range intervals on the ground.
Uniform pulse timing, depicted in Fig. 2(a), results to the same
ground range always being missed. On the other hand, randomized
pulse timing, shown in Fig. 2(b), uniformly distributes the missing
data, facilitating reconstruction.

This approach is inspired by the CS paradigm. The random-
ization ensures that the linear measurements are incoherent and
fully capture the signal information. Thus the measurements can
be inverted by the non-linear reconstruction process using the sig-
nal model or the appropriate regularisation to recover the acquired
signal. For example, assuming that the image to be reconstructed is

1The notion of coherence has different meaning in the radar and the CS
community. In the radar community, the term is usually associated with the
phase properties of the signals, such as the pulse, the echo, or the formed
image. In CS, coherence refers to the inner product between two different
signals, dictionary elements, or measurement vectors. We use the CS notion
of coherence exclusively in this paper.



sparse in some basis, such as the wavelet basis, we can reconstruct
the image from the random missing measurements using sparsity-
enforcing regularization.

To manage the reconstruction computational complexity, we dis-
cretize the random timing for the pulse transmission. Specifically,
the pulse timings are selected randomly from a dense uniform grid of
possible transmission times, using a Bernoulli process with probabil-
ity β < 1. If the uniform grid intervals are at frequency αfa, α > 1,
where fa denotes the PRF of classical pulse timing, the resulting
average PRF is αβfa—an αβ times increase.

4. IMAGE RECONSTRUCTION

To reconstruct from the acquired pulses, we assume that we have
access to the accurate model Φ and we assume the noise is negli-
gible. While we believe our model is robust to model uncertainties
and high noise conditions, we defer a more careful examination of
robustness to a later publication. Even under these assumptions, the
reconstruction problem is not straightforward, because of the over-
lapping echoes and the missing data. Furthermore, we desire to en-
force a signal model, such as sparsity in some basis. Thus, using it-
erative reconstruction algorithms is necessary to recover the ground
reflectivity.

In this paper we use gradient descent followed by thresholding,
the basic workhorse for a large number of such algorithms. Specif-
ically, we formulate the problem as a minimization of a cost func-
tion which measures the data fidelity, subject to a sparsity constraint
which enforces a signal model. The iterative minimization algorithm
tries to determine the ground reflectivity bx such that the correspond-
ing acquired data Φ(bx) are as close to the actual acquired data y and
a basis transform g(bx) of the reflectivity is sparse. In other words,
the ground reflectivity solves the following optimization:

bx = arg min
x

||Φ(x)− y||22 s.t. ‖g(x)‖0 < N, (3)

where N controls the sparsity of the formed image. For the remain-
der of this paper, we use the wavelet transform for g(·).

At iteration k, the iterative algorithm maintains an estimate of
the ground reflectivity, x. This is used to compute the gradient to
the cost function, ΦH(Φ(xk) − y), where ΦH(·) is the adjoint of
the acquisition model Φ(x). The algorithm updates the estimate by
following the gradient, with stepsize τ , towards minimizing the cost
function, and soft-thresholding the result. The procedure is iterated
for K steps. The algorithm, which is very similar to the Fixed Point
Continuation (FPC) [9], is summarized as follows:

1. Initialize x0 = 0,

2. FOR k = 1 : K
gradient search:

x̃k = xk−1 − τΦH(Φxk−1 − y)

soft-thresholding wavelet coefficients:

c = W(x̃k)

b = TN (c) = max(|c| − εN (c), 0) ◦ e−j 6 c

xk = W−1(b)

END

3. Output x = xK .

In the algorithm, W(·) and W−1(·) denote the wavelet trans-
form, 6 · the element-wise phase operator, ◦ the element-wise mul-
tiplication, j =

√
−1, and εN (c) is the magnitude of the N + 1

largest in magnitude coefficient of c.
Efficient execution of the algorithm relies on efficient implemen-

tation of the forward and the adjoint operators, Φ(·) and ΦH(·) re-
spectively. In classical pulse timing, the CSA can be used to provide
such an efficient implementation [8]. Similarly, the CSA can also be
the basis of an efficient implementation in the case of randomized
pulse timing, provided we properly account for the missing data and
the overlapping echoes.

The missing data can be easily accommodated by not taking
them into account when evaluating the cost function and its gradient
in the algorithm. This is equivalent to subsampling the acquisition
system output using a sampling operator Σ, which selects only the
data we have at our disposal. The resulting system is ΣΦ and its
adjoint is equal to ΦHΣH , both very efficient to implement.

The overlapping echoes can be accommodated using the linear-
ity of the acquisition model and the distributivity of the adjoint op-
erator, i.e., using (Φ1 + Φ2)

H = ΦH
1 + ΦH

2 . Thus, the forward
and the adjoint can be implemented as if the echoes were separated,
followed by summation of the output of the operators. The imple-
mentation of the individual operators using the CSA is very similar
to [8]; more detailed description is deferred to a future publication.

5. EXPERIMENTS

To test our approach, we conducted synthesized simulations on
stripmap SAR, using parameters similar to the instrument on the
RADARSAT-1 satellite [1]. We simulated the acquisition of a high-
resolution scene, reconstructed from real SAR data, using classical
SAR acquisition and the proposed randomized method. For the
random pulsing, we use α = 6 and β = 0.5, i.e., pulse timings are
uniformly at random selected from 6 times the original PRF, with
selection ratio of 50%, yielding an average PRF which is 3 times the
original one.

To perform image formation, we use the algorithm described in
Sec. 4 with K=100 iterations. We set εN (c) a small number such
that for each iteration the top 70% largest wavelet coefficients are
retained. For comparison, we show the results of a large area in
Fig. 3, including (a) the true high-resolution ground reflectivity, (b)
the reconstructed ground reflectivity using CSA and classical pulse
timing with low PRF and low Doppler bandwidth to avoid azimuth
aliasing, and (c) the reconstructed ground reflectivity using iterative
reconstruction and randomized pulse timing, at average PRF 3× the
PRF possible with classical uniform pulse timing, and a correspond-
ing increase in the Doppler bandwidth. For comparison, Fig. 3(d)
demonstrates the significant azimuth aliasing introduced using clas-
sical pulse timing at low PRF but a high Doppler bandwidth, which
makes the reconstructed image unusable. To demonstrate the im-
proved resolution in Fig. 3(c) over (b), we zoom in the images and
present some example regions in Fig. 4. We observe that the azimuth
resolution is enhanced by the random chirp timing scheme and the
enlarged Doppler bandwidth. Our results are consistent in a variety
of experiments and experimental conditions.

6. DISCUSSION

In this paper we describe a randomized pulse timing scheme de-
signed to overcome a fundamental trade-off between the azimuth
resolution and the range coverage of classical SAR systems, which
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Fig. 3. Experimental results. Imaging a large area using classical vs. randomized pulse timing.

rely on uniform pulse timing. Our method, inspired by compres-
sive sensing approaches, uses an iterative non-linear reconstruction
algorithm for image formation. Experimental results on synthesized
stripmap SAR data demonstrate that using our proposed method we
can achieve high azimuth resolution without losing range coverage.
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(c) Randomized pulse timing

Fig. 4. Experimental results of example regions. Randomized pulse
timing produces significantly improved azimuth resolution.
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