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Abstract— In this paper, we study the benefits of the availability
of a specific form of additional information - the vertical di rection
(gravity) and the height of the camera both of which can be
conveniently measured using inertial sensors, and a monocular
video sequence for 3D urban modeling. We show that in the presence
of this information, the SfM equations can be rewritten in a bilinear
form. This allows us to derive a fast, robust, and scalable SfM
algorithm for large scale applications. The SfM algorithm developed
in this paper is experimentally demonstrated to have favorable
properties compared to the sparse bundle adjustment algorithm.
We provide experimental evidence indicating that the proposed
algorithm converges in many cases to solutions with lower error
than state-of-art implementations of bundle adjustment. We also
demonstrate that for the case of large reconstruction problems,
the proposed algorithm takes lesser time to reach its solution
compared to bundle adjustment. We also present SfM results using
our algorithm on the Google StreetView research dataset.

Index Terms— Structure from Motion, Multiple View Geometry,
Computer Vision.

I.. INTRODUCTION

Structure from Motion (SfM) refers to the task of recoveringthe
3D structure of a scene and the motion of a camera from a video
sequence. SfM has been an active area of research since Longuet-
Higgins [1] eight-point algorithm. There have been severaldifferent
approaches to the SfM problem that are surveyed in [2]. The
problem has gained interest because of exciting new applications
like 3D urban modeling, terrain estimation from UAVs etc. Robust
and scalable SfM algorithms would enable automatic building of
3D models of urban scenes from such image sequences [3].

Many image data collections have metadata containing mea-
surements from additional sensors such as inertial sensors, global
positioning systems etc. These additional measurements may be
used to develop new SfM algorithms to process the data collections.
We consider the problem of SfM estimation in the presence of a
specific form of measurements that are frequently available, and
propose a fast, scalable and robust SfM algorithm.

We assume that we have measurements of the gravity vector and
the height in the camera coordinate system along with every image.
These quantities can be accurately measured using inertialsensors.
Under negligible camera acceleration, an accelerometer measures
the gravity that can be used in a complementary filter [4] along with
gyro measurements to get good estimates of the gravity vector. In
the absence of these sensors, we can use the homographies induced
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by a world plane to derive the additional measurements [5]. Using
these measurements, we show that the SfM equations reduce toa
bilinear form in its unknowns. This leads to an iterative minimization
algorithm that is experimentally demonstrated to convergefaster
from a wide class of initial solutions with low error in the vertical
direction and height components.

A.. Literature survey on SfM

SfM algorithms can be broadly classified into the following
categories: batch techniques, minimal solutions and recursive frame-
works. A comprehensive survey may be found in [2]. The proposed
algorithm falls in the class of batch techniques which jointly solve
for the views of all the cameras and the structure of all the points.
Bundle adjustment (BA) [6] is the representative algorithmin this
class and it minimizes the cumulative reprojection error ofall points
in all the images. This is a non-linear least squares minimization
problem that is commonly solved using the Levenberg-Marquardt
(LM) [7] algorithm. The linear system corresponding to the normal
equations for LM is intractable for large reconstruction problems.
To handle large problems, the sparse structure of the Hessian matrix
is used for efficiently solving the normal equations resulting in
the Sparse Bundle Adjustment (SBA) [8] algorithm. The conjugate
gradient (CG) method [7] is another choice for optimizing the
reprojection error that does not require the solution of a large
system; however suitable pre-conditioners are necessary for it to
work well [9]. In addition, its benefits have not yet been clearly
demonstrated for large scale problems.

In spite of these advances, the current computational resources are
still hard-pressed to handle very large reconstruction problems, and
the performance is not satisfactory enough for real-world deploy-
ment. Therefore, recent research has focused on developingSfM
algorithms in the presence of additional constraints. For instance,
position information about the cameras from Global Positioning
Systems (GPS) can help us solve for the parameters [10]. If
inertial measurements from IMUs are available, we can reduce the
ambiguities in the SfM problem [11].

B.. Related Work

This paper is related to a class of alternation algorithms that solve
for the structure and motion in an iterative fashion [12], [13]. These
approaches solve for the projective depths along with the motion
and structure matrices and result in a projective reconstruction. The
projective depths are typically initialized to unity and later refined
iteratively. This has been reported to work well only in special
settings where the depth of each feature point remains approximately
the same throughout the sequence [2]. This does not cover many
important scenarios such as roadside urban sequences or aerial
videos where the altitude of the camera varies a lot. Our algorithm
makes use of the bilinear form in the Euclidean frame withoutslack
variables. Hence it does not have any restrictions on its useexcept
that the gravity and height measurements must be available.
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Oliensis and Hartley [14] point out theoretically the potential
for convergence to trivial solutions for this class of algorithms.
They show that [12] and [13] are unstable because they converge
to nonsensical results and question their usage (even for a few
iterations) as initialization techniques for the bundle adjustment
algorithm. In contrast, a solution from our algorithm with low
error corresponds to a non-trivial reconstruction that is good in
practice. Buchanan [15] evaluated several alternation, first-order and
second-order approaches for matrix factorization with applications
to SfM, and compared the algorithms based on their convergence-
rate and error function value at the final solution. Their keyresult
was that for general reconstruction problems, Newton-based descent
algorithms performed better than alternation approaches.We provide
strong experimental evidence that with the assumed additional
information, our alternation approach converge faster than other
descent algorithms.

C.. Contributions

The contributions of the paper are as follows.

1) We propose a robust and scalable SfM algorithm using addi-
tional measurements that is bilinear in the Euclidean frame.

2) We describe simulation results demonstrating that the pro-
posed algorithm leads to solutions with lower error than SBA
and takes lower time for convergence.

3) We describe competitive reconstruction results on the Google
StreetView research dataset.

We arenot proposing our algorithm as a substitute for the already
successful BA algorithm. We emphasize that BA using LM currently
remains the best known algorithm for SfM when the initial solution
is favorable. We seek to provide an alternative to BA and similar
approaches when the initial solution is likely to be bad (such as
when it is obtained from GPS and IMU measurements with outliers).
Based on the results of [15], the proposed algorithm can be used
along with BA to result in a hybrid algorithm that performs better
than both of them separately, starting from poor initial solutions.

II.. PROBLEM FORMULATION

We choose a World Coordinate System (WCS) with theZ axis
along the vertical direction, and theX andY axes are perpendicular
to this axis. If a ground plane is present in the scene, theZ axis
becomes the normal vector to the plane, and theX andY axes are on
the plane. The Camera Coordinate System (CCS) is chosen withthe
Z axis along the optical camera axis and theX andY axes along the
usual image axes. The transformation between these two coordinate
systems at any instant can be written asPw = Rc2wPc +Tc2w. P is
a point whose coordinates are represented in the WCS byPw, and
in the CCS byPc.

A known reference vector in an unknown CCS fixes two degrees
of freedom of the rotation matrixRc2w. The unknown component
is the rotation of the CCS about an axis parallel to the vector. The
full rotation matrix can be shown to be split uniquely asRc2w =
RpRg , whereRp is the rotation along the reference vector, andRg

is along an axis perpendicular to this vector. We are now concerned
with the estimation of the rotation along the reference vector (Rp),
and the translations along a plane perpendicular to this vector (x
and y components ofTc2w) in addition to the 3D locations of the
world points. In the following, we refer to in-plane motion as the
component of translation parallel to theX − Y world plane and
rotation about theZ-axis (Rp). The out-of-plane motion is theZ-
axis translation (z component ofTc2w), and the rotationRg that
changes the reference vector orientation in the CCS.

We write the transformation between the WCS and the CCS as

P i
w =

"

Xi

Yi

Zi

#

= R(t)
p R(t)

g λti

"

xti

yti

1

#

+ T
(t)
c2w (1)

where the camera-to-world rotation matrix has been factorized
into its two components asR(t)

c2w = R
(t)
p R

(t)
g . Here T

(t)
c2w =

[T
(t)
x , T

(t)
y , T

(t)
z ], whereT

(t)
z is the height of the camera.[xi, yi, 1]

T

is the image feature in homogeneous coordinates, which has been
normalized for the calibration matrix.P i

w denotes the coordinates
of the ith point in the WCS. From the additional measurements,
we have estimates ofR(t)

g andT
(t)
z . Using this information, we can

rewrite (1) as

P i
w =

 

cos θt sin θt 0
− sin θt cos θt 0

0 0 1

!

λti

"

uti

vti

wti

#

+ T
(t)
c2w (2)

where[uti, vti, wti]
T = R

(t)
g [xi, yi, 1]

T , andR
(t)
g is computed from

the reference vector.R(t)
g is the rotation matrix that transforms the

reference vector from the CCS to the WCS. We rearrange (2) to
obtain (3) which relates the coordinates of the feature point in frame
t and featurei to the world coordinates and the camera positions.

λti

"

uti

vti

wti

#

=

 

cos θt − sin θt 0
sin θt cos θt 0

0 0 1

!

2

4

Xi − T
(t)
x

Yi − T
(t)
y

Zi − T
(t)
z

3

5 (3)

We eliminate the projective depthλti by taking ratios of the
quantities as shown in (4)

»

uti/wti

vti/wti

–

=

„

cos θt − sin θt

sin θt cos θt

«

2

6
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(t)
x

Zi−T
(t)
z
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(t)
y

Zi−T
(t)
z

3

7

5

(4)

We rearrange (4) by multiplying both sides by(Zi−Tz) to obtain (5)
»

uti/wti

vti/wti

–

· (Zi − T (t)
z ) =

„

cos θt − sin θt

sin θt cos θt

«»

Xi − T
(t)
x

Yi − T
(t)
y

–

(5)

Assume that we haven feature points that are observed inm frames.
We accumulate (5) for all the feature points in all views and write
them as shown in (6). We denote the measurement matrix asA, the
diagonal matrix of camera heights asT̄z, and the product̄TzA = B.
The diagonal matrix of heights of feature points from the ground
plane isZ. The motion matrix on the right hand side isM and the
shape matrix isS. We can rewrite (6) concisely asAZ −B = MS.
Each column of this matrix equation specifies the relation between
the projections of a single point in all the views. Each pair of rows
specifies the relation between the projections of all the points in
a single view. In (4), the quantitiesT (t)

x and T
(t)
y refer to thex

and y components of translation in the WCS. In (6), the variables
t
(t)
x = −cosθtT

(t)
x + sinθtT

(t)
y and t

(t)
y = −sinθtT

(t)
x − cosθtT

(t)
y

refer to the same quantities in CCS. This change of variablesis
done to enable a factorization into the motion and shape matrices as
shown. Our unknowns are the matrices{M, S, Z} and (6) is bilinear.
We solve for the unknown parameters(M, S, Z) by minimizing the
Frobenius norm of the difference between the matrices on each side
of (6). The cost function is written as

E = ‖A · Z − T̄zA − M · S‖2 (7)

where‖ · ‖2 denotes the Frobenius norm. Since feature points may
not be observed in all frames, some entries of the measurement
matrix are unknown. Unlike factorization-based approaches, our
algorithm can cope with missing measurements.
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cos θm − sin θm t
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x
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III.. FAST BILINEAR ESTIMATION OF SFM

We solve for the unknowns by minimizing the cost functionE =
‖A · Z − B − M · S‖2. We can choose from several first-order and
second-order algorithms for this minimization [15]. We present an
alternation-style technique to solve for the unknowns, by switching
between iterations where (1) the motion parameters are keptfixed
and structure parameters are estimated, with iterations where (2) the
structure is fixed and motion parameters are estimated.

A.. Structure Iterations

We rewrite the cost function (7) as a sum of terms corresponding
to each feature pointj ∈ (1, · · · , n) as follows: E =

Pn
j=1 Ed

j ,
where Ed

j corresponds to the cost function for thejth point, and
the superscriptd is used to note that the total error is split into terms
for each point. We pick thejth column of (6) to obtain

Ed
j =

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

2

6

6

6

6

6

4

u1j(Zj − T 1
z )/w1j

v1j(Zj − T 1
z )/w1j

u2j(Zj − T 2
z )/w2j

...
vmj(Zj − T m

z )/wmj

3

7

7

7

7

7

5

− M ·

"

Xj

Yj

1

#

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

2

(8)

We rewrite (8) to obtain

Ed
j =

‚

‚

‚

‚

‚

[M(:, 1) M(:, 2) −A(:, i)]

"

Xj

Yj

Zj

#

+ (B(:, j) + M(:, 3))

‚

‚

‚

‚

‚

2

(9)
where M(:, 1) and M(:, 2) are the first and second columns of
the motion matrix, containing the cosine and sine terms.M(:, 3)
contains the in-plane components of translation.A(:, j) andB(:, j)
are the jth columns of the matricesA and B respectively. We
minimize (9) w.r.t(Xj , Yj , Zj) at each structure iteration. The cost
function is a linear system in(Xj , Yj , Zj) and the minimum is
obtained by linear least squares.

[M(:, 1) M(:, 2) −A(:, j)]

"

Xj

Yj

Zj

#

= −B(:, j) − M(:, 3) (10)

B.. Motion Iterations

We rewrite (7) as a sum of terms corresponding to each frame
as E =

Pm
i=1 Em

i , whereEm
i corresponds to cost function of the

ith frame, and the superscriptm is used to note that the total error
is split into terms corresponding to the motion parameters of each
frame. We extract the(2i− 1)th and(2i)th rows from (6) to obtain

Em
i =

‚

‚C(2i − 1, :) −
ˆ

cos θi − sin θi tix
˜

· S
‚

‚

2

+
‚

‚C(2i, :) −
ˆ

sin θi cos θi tiy
˜

· S
‚

‚

2
(11)

where, theC = AZ − B denotes the left hand side of (6). We
minimizing (11) to solve for{θi, t

i
x, tiy}. We set the derivative of

Em
i w.r.t (tix, tiy) to zero to obtain

tix =
1

n

n
X

k=1

C(2i − 1, k) −
1

n

n
X

k=1

Xkcosθi +
1

n

n
X

k=1

Yksinθi (12)

tiy =
1

n

n
X

k=1

C(2i, k) −
1

n

n
X

k=1

Xksinθi −
1

n

n
X

k=1

Ykcosθi (13)

Denotingµ2i−1 and µ2i as the means ofC(2i − 1, :) and C(2i, :)
respectively, andµX and µY as the means of theX and Y
coordinates of points, we write the solution oftix and tiy as

tix = µ2i−1 − µX cos θi + µY sin θi (14)

tiy = µ2i − µY cos θi − µX sin θi (15)

We substitute the solution (15) in (11) and obtain

Em
i =

‚

‚

‚

~Xo cos θi − ~Y o sin θi − Co(2i − 1, :)T
‚

‚

‚

2

+
‚

‚

‚

~Xo sin θi + ~Y o cos θi − Co(2i, :)T
‚

‚

‚

2
(16)

where ~X and ~Y denote column vectors containing theX and Y
coordinates of all the points, and~Xo = ~X − µX , ~Y o = ~Y − µY ,
Co(2i − 1, :) = C(2i − 1, :) − µ2i−1 andCo(2i, :) = C(2i, :) − µ2i.
We set the derivative w.r.tθi to zero and simplify to obtain

n
X

k=1

Co(2i − 1, k) ·
`

Xo
k sin θi + Y o

k cos θi

´

+

n
X

k=1

Co(2i, k) ·
`

−Xo
k cos θi + Y o

k sin θi

´

= 0 (17)

We can simplify (17) to obtain

tan θi =
Co(2i, :) · ~Xo − Co(2i − 1, :) · ~Y o

Co(2i − 1, :) · ~Xo + Co(2i, :) · ~Y o
(18)

We obtain two possible solutions forθi from (18). One of them is a
point of local maxima and the other is a point of local minima.We
choose the solution that corresponds to the local minima. The motion
and structure iterations are repeated successively until atermination
criterion is satisfied. The iterations are terminated if thedecrease in
the error function expressed as a percentage drops below a threshold
or if the iteration count reaches a maximum, whichever is earlier.

C.. Out-of-plane motion refinement iterations

We minimize (7) by refining the out-of-plane components of
motion for each camera. We rewrite (5) as
»

uti/wti

vti/wti

–

· (Zi − T (t)
z ) =

„

cos θt − sin θt

sin θt cos θt

«»

Xi − T
(t)
x

Yi − T
(t)
y

–

(19)

where[uti, vti, wti]
T = R

(t)
g [xi, yi, 1]

T . We fix P i
w and{θt, T

t
x, T t

y}
to the current estimates, and minimize the following error function
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obtained from (19)

Eside =
m
X

t=1

‚

‚

‚

‚

»

uti/wti

vti/wti

–

· (Zi − T
(t)
z )−

„

cos θt − sin θt

sin θt cos θt

«

"

Xi − T
(t)
x

Yi − T
(t)
y

#

‚

‚

‚

‚

‚

2

(20)

to solve for the heightT t
z and the ground plane normal vector at each

frame. We use the LM algorithm [7] for solving this non-linear least
squares problem. This minimization involves only three parameters
at any stage, two for the out-of-plane motion and one for the camera
height. In later sections we refer to the proposed method as FBSfM
which is an acronym for Fast Bilinear Structure from Motion.

IV.. A NALYSIS

A.. Computational Complexity and Memory Requirements

Suppose there arem views of n points with all points visible
in all views. LetSV D(a, b) = 4ab2 + 8b3 be the cost of carrying
out a singular value decomposition of a matrix witha rows andb
columns [16]. The main computational requirements of the proposed
algorithm are the following.

• Depth Iterations: For each point, this involves solving a linear
system of size2m × 4 which is equivalent to a total cost of
n × SV D(2m, 4), wheren is the number of points.

• Motion Iterations: For each view, this involves performing the
computations in (18, 15) which is equivalent to4n multiplica-
tions and6n additions and is thereforeO(n) in computational
cost. This accumulates to a total cost ofm × O(n), wherem
is the number of views.

• Direction vector and height refinement:We need to update
only 4 parameters and hence this requires the solution of a
4× 4 linear system. For all the frames, this comes at a cost of
m × SV D(4, 4) = 768m per iteration.

Totally, each iteration of FBSfM has a computational cost ofO(mn).
In comparison, an SBA iteration has complexityO(nm + nm2 +
m3). Linear multiview reconstruction [17] involves solving a linear
system of size(3n + 3m) × (3nm) whose computational cost is
SV D(3n + 3m, 3nm) = 108(m3n2 + m2n3) + 216m3n3.

B.. Discussion

The FBSfM algorithm has the flavor of iterative methods for
projective structure from motion [12], [13]. Suppose we have n
fixed pointsP1, P2, · · · , Pn observed bym cameras, we can write
the projection of thejth point on theith camera aspij = 1

zij
MiPj ,

whereMi denotes the3 × 4 projective matrix associated with the
ith camera, andzij denotes the projective depth associated with
the jth point in the ith camera. In a typical BA algorithm, we
minimize the reprojection error which isE =

P

i,j |pij−
1

zij
MiPj |

2

and solve forMi and Pj . The objective function is highly non-
linear and the results are dependent on the availability of good
initialization points [6]. Hence, many authors consider the simplified
(but related) objective functionElin =

P

i,j |zijpij − MiPj |
2.

The proposed algorithm is similarly derived by scaling (4) by the
(Zi − T

(t)
z ). The difference is that unlike earlier techniques, we

use the additional information to leverage the bilinear form in the
Euclidean frame, without using slack variables. Simulation results
suggest clear advantages in speed and accuracy of the proposed
algorithm when the additional information has low error.

Issue of trivial minima: Oliensis [14] pointed that existing
projective bilinear alternation techniques [12], [13] converged to
“trivial” solutions with nonsensical structure and motionestimates.

In all our experiments, we have observed that the iterationsalways
converge to meaningful results.

Convergence in error value: If the initial error is E(0) and the
error after structure iterations isE(1), then E(1) ≤ E(0). If the
error after motion iterations isE(2), then E(2) ≤ E(1). If E(3)

is the error after out-of-plane iterations, thenE(3) ≤ E(2). Each
iteration finds solutions for the variables that decreases the error,
hence the error is non-increasing. Since the error is lower-bounded
by 0, the successive error values converge to a valueE∗.

Convergence rate and speed of convergence: Iterations of low
computational complexity do not imply faster convergence rate or
lower time-to-convergence. The proposed algorithm falls within the
class of alternation techniques which are susceptible to flatlining
and are slower than second-order newton methods in the average
case [15]. We claim based on strong experimental evidence that the
proposed approach surprisingly violates this conventional wisdom,
for the specificcase of large-sized problems starting from aspecific
class of initial solutions with low out-of-plane motion error and high
levels of in-plane motion error.

V.. SIMULATIONS
A.. Implementation

For BA, we use the SBA solver code [8] implemented in C.
This uses LM minimization for non-linear least squares. Thenormal
equations are solved by using the Schur complement to factorout
the structure parameters and the resulting system is solvedusing
LU decomposition for the update to the camera parameters. The
proposed algorithm was also implemented in C with a MATLAB in-
terface. The motion-structure alternation iterations andout-of-plane
motion refinement iterations were written in C and the interface to
switch between the two sets of iterations was written in MATLAB
with system calls to the corresponding C executables. Routines from
OpenCV were used to solve the linear systems corresponding to the
motion iterations. The LM implementation in C [18] was used for
the non-linear least squares minimization corresponding to the out-
of-plane motion refinement iterations. The Conjugate gradient (CG)
implementation in C [19] was used in the experiments to compare
with alternation for minimizing the bilinear system (7). Computation
time was measured using our implementation of a nanosecond timer.
The reported times include the total time taken to execute all the
operations within each C implementation except disk I/O operations.

Reconstruction problem generation: A reconstruction problem
was synthesized by generatingN points uniformly distributed within
the cube specified by−20 ≤ X ≤ 20, −20 ≤ Y ≤ 20 and 10 ≤
Z ≤ 40. The coordinates of the camera locations were uniformly
distributed in the cube specified by−25 ≤ X ≤ 25, −25 ≤ Y ≤ 25,
55 ≤ Z ≤ 105. The choice of dimensions is for illustration, and
in practice the dimensions were scaled according to convenience.
The orientations of the cameras were chosen by first generating
the directions of the principal camera axes and then choosing the
rotation angle of the camera around this axis. The principalcamera
axis was chosen by generating a random point in theX − Y plane
that specifies the point of intersection of the principal axis with this
plane. The rotation angle of the camera axis around the principal axis
was randomly chosen between0 to 2π. This scheme for generating
points and cameras ensured a wide variation in the camera matrices
and point locations, to mitigate any potential bias in the reported
results to the choice of reconstruction problem. Image feature points
were obtained by reprojecting the 3D points on the cameras based
on perspective projection. The parameters of the camera were: focal
length= 320, principal point= (320, 240) and image size= 640×
480. Moderate Gaussian noise was added to the reprojected image
feature locations to simulate feature detection errors.
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Height Ground plane vector error
error 0◦ 3◦ 6◦ 9◦ 12◦

0% 0 0 0 1.2 4
3% 0.2 0.4 0.6 0.6 6

5.2% 8.6 8.8 8.4 9 12.8
13% 17.6 18.8 18.8 17.8 20
26% 19.8 21.4 22.2 20.6 19.4
39% 20.6 26.6 23.4 26.6 21.4

52.1% 27.4 29.8 27.8 30.4 23.2

TABLE I
PERCENTAGE OF RUNS ON WHICH THE SOLUTION OFALTERNATION WAS

HIGHER THAN THE MINIMUM OF THE SOLUTIONS OFCG AND LM.

SfM Initialization: Initial motion estimates are obtained by
perturbing the ground truth motion. The in-plane and out-of-plane
motion components are perturbed separately, with high errors in
in-plane components and low errors in out-of-plane motion compo-
nents. Thex andy locations are displaced by a vector that is oriented
in a random direction in theXY plane, and whose length is a
specified fraction of the maximum dimension of the reconstruction.
For example, a70% error in the in-plane translation means that
the camera center was displaced by a vector of length0.7 × 50 in
the XY plane. A60◦ error in the in-plane rotation angleθ means
that θ was perturbed in either the clockwise or counterclockwise
direction by60◦. A 10% error in the out-of-plane translation means
that each camera center was moved either in the positive or negative
Z direction by0.1 × 50. The ground plane normal is perturbed by
adding a random vector to it such that the new vector makes a
pre-specified angle with the original vector. The initial values for
the 3D coordinates of feature points are obtained by triangulating
each point using the image feature locations and the initialcamera
motion parameters, after solving the linear system of a structure
iteration in (10)). All algorithms are initialized with thesame initial
solution and executed on the identical machines under identical
loading conditions when reporting comparative results.

B.. Comparative evaluation of bilinear alternation
We compare the performance of Bilinear alternation, CG and

LM for minimizing the objective function in (7). The alternation
approach chosen is the motion-structure iterations as described in
the paper, where (7) is minimized with respect to the in-plane motion
parameters only. We analyze the results of the minimizationusing
the three approaches for various levels of out-of-plane motion error.
Conventional wisdom suggests that second-order newton methods
perform best for the matrix factorization problem [15]; however the
results of this experiment for the case of low out-of-plane motion
error are surprising because they suggest that bilinear alternation
performs fastest under the assumed operating conditions.

A reconstruction problem is obtained by generating50 random
world points and10 cameras as described above, with96.4% of
the image feature measurements known. The ground plane normal
vector at each camera location is perturbed such that the new
vector makes angles of(0◦, 3◦, 6◦, 9◦, 12◦) with the ground-truth
vector. The camera centers are perturbed along theZ-axis of the
WCS by errors of(0%, 3%, 5.2%, 13%, 26%, 39%, 52.1%). For each
choice of errors in out-of-plane motion components, we compare
the performance of the three algorithms on500 runs. The in-plane
motion components are perturbed by a100% error in theX − Y
locations and a90◦ error in the in-plane rotation angle to obtain the
starting point for the three approaches. The total number ofruns of
the minimization for all cases was17500.

The percentage of runs for which bilinear alternation performs
suboptimally compared to LM or CG (i.e. with higher error than

the best of CG or LM) is listed in Table I for each choice of out-of-
plane motion errors. This suggests that for moderate levelsof errors
in the out-of-plane motion, alternation turns out to be a suboptimal
choice of algorithm in roughly17% of cases. At low to moderate
errors where we propose the use of our algorithm, alternation turns
out to be suboptimal in roughly9% of cases. In practice, since
we switch between in-plane and out-of-plane iterations, the effect
of suboptimality in9% of the cases does not adversely affect the
structure and motion reconstruction.

We compared the number of iterations and times taken for each
algorithm to reach convergence, where the error function decreases
by less than0.00001%. We find that alternation, CG and LM take an
average time of0.0257, 0.0550 and2.8875 seconds respectively. In
other words, CG takes2.1424 times longer, and LM takes112.5413
times longer than alternation to converge. The corresponding av-
eraged number of iterations is48.4882, 316.8153, and 96.5334
(although number of iterations do not directly compare). The large
time taken by LM may be attributed to the large Hessian that must
be inverted at each iteration. Using a sparse implementation of LM
(similar to SBA), we may be able to reduce the computation time.
However, we did not implement sparse LM since in a later experi-
ment we demonstrate that the overall FBSfM algorithm took lesser
time-to-convergence compared to the SBA implementation. Figure 1
shows convergence plots of the three algorithms for(13%, 6◦) error
in out-of-plane motion. The red curves corresponding to bilinear
alternation are largely below the blue CG and black LM curves. In
this plot, a lower curve implies a faster convergence rate. The plots
show the same trend for other choices of error levels. The strong
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Fig. 1. This figure illustrates convergence curves plottingthe Log of error versus
computation time for the minimization of (7), using bilinear alternation, CG and
LM. The plots for bilinear alternation are superior to the other two in terms of
convergence rate because the bundle of red curves are largely below the blue
and black curves. The reconstruction problem used for theseplots involved10
cameras and50 features. We used a perturbation of(3%, 6◦) for the out-of-plane
translation and ground plane normal angle error respectively.

advantage in computation time along with the fact that alternation
converges to the same solution as CG and LM under low out-of-
plane noise levels justifies its use under the operating conditions of
the paper (low error in out-of-plane motion).

C.. Comparison of FBSfM with SBA
We generated a reconstruction problem with10 cameras and

50 feature points and96% of the image measurements known.
Two sets of initial camera motion solutions were generated for
different choices of error levels in motion components. Set1 had
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perturbations of(12%, 25◦, 2.7%, 2◦) in the in-plane translation,
in-plane angle, vertical position and ground plane normal vector
respectively. Set 2 had perturbations of(20%, 35◦, 0.5%, 5◦). Each
set had900 different initial solutions. The structure initializations
were obtained by triangulating each 3D point using the image
feature locations and initial camera parameters, after solving the
linear system (10) of a structure iteration.

In set 1, minimum error reconstruction produced by SBA was
0.3199 and that produced by our algorithm was0.3570. In 86%
of the runs, the SBA reconstruction error was lower than the
minimum error produced by our algorithm. The slightly higher error
of our algorithm on successful runs compared to SBA is because
we minimize the algebraic as opposed to the reprojection error.
On the remaining14% of the runs, SBA produced an error of
above 5. In comparison, our algorithm produced an error lower
than 0.4 on 99% of the runs. This illustrates the reliability of our
algorithm in producing good reconstructions when initialized from
a number of random initial solutions. In set 2,38% of the runs had a
lower reprojection error for SBA than for FBSfM. The distribution
of reprojection errors of both algorithms on each of the setsis
illustrated in figure 2. The red curves are for set 1 and the blue
curves for set 2. The figure plots the cumulative distributions of the
reprojection error, hence a higher curve implies a better performing
algorithm. In both sets, the curve for FBSfM is largely abovethat
for SBA indicating better performance.

We repeated the experiments on a reconstruction problem with
45 cameras and250 feature points, with96.4% measurements
known. We obtained900 initial starting points by perturbing with
motion error of(30%, 25◦, 3.75%, 4◦). The initial reprojection errors
ranged from199.4611 to 3476.6 and the SBA code reported failures
in minimization on70.6% of the runs. On the remaining29.4%
of the runs on which SBA succeeded, our algorithm produced
reconstructions whose final reprojection error ranged from0.6277
to 0.7603. SBA produced an error of0.3723 on 87.5% of the
succeeded runs, and errors ranging from9.0526 to 278.6074 on
the remaining12.5% of the succeeded runs. On the70.6% of
the original runs on which SBA reported failures, our algorithm
produced reconstructions ranging from0.6209 to 0.7848, whereas
the errors of SBA ranged from208.28 to 1.0993e+05 (which were
very close to the initial errors). These experimental results clearly
demonstrate the advantage of our algorithm over SBA, because it
generally avoids getting stuck in poor local minima and is more
consistent in its results.

D.. Comparison of convergence rates of FBSfM and SBA
We compare the convergence rates of our algorithm with SBA

on a reconstruction problem with300 cameras and350 feature
points, with62% of the image measurements known. We generated
350 initial solutions by perturbing the ground truth motion with a
3.33% error in the in-plane translation, a1% error in out-of-plane
translation, a15◦ error in the in-plane rotation angle and a4◦ error
in the ground plane vector. SBA converged successfully in157 of the
350 runs, among which138 converged to the global minimum, with
a reprojection error of1.1316. On these138 runs, FBSfM converged
to solutions with errors ranging from1.1427 to 1.1432. Convergence
of FBSfM was declared if the number of iterations exceeded100
or if the error decreased by less than5e− 5 or 0.0001% whichever
was higher. We attribute the slightly higher reprojection error of
FBSfM to the fact that it minimizes the algebraic error as opposed
to the actual reprojection error. Since the final errors of FBSfM are
very close to those of SBA, we believe this is very close to the
global optimum. For the138 runs described earlier, the number of
iterations taken by FBSfM ranged from93 to 102 with an average of
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Fig. 2. This figure shows the cumulative frequency graphs of the reprojection
error for SBA and FBSfM along with the error distribution of the initial solutions.
The problem involved10 cameras and50 feature points. The red curves show
the results for set 1 with perturbations of(12%, 25◦, 2.7%, 2◦) in the in-plane
translation, in-plane rotaion angle, out-of-plane translation and ground plane
normal angle error respectively. The blue curves show the results for set 2 with
initial motion error of(20%, 35◦, 0.5%, 5◦). In both sets, the graph for FBSfM
is above that of SBA indicating better performance.

96.6 iterations and the total computation time ranged from203.3 to
254.2 seconds with an average of223.6 seconds. It is possible that
because of the termination conditions, FBSfM had not converged
to its global optimum in a strict sense but had exhibited flatlining
beyond100 iterations. However, for practical purposes, this is not
consequential since a minimum reprojection error solutioncan be
realized by directly minimizing the reprojection error using SBA.
Accumulated over all the runs, the amount of time taken for the out-
of-plane motion refinement iterations was49.5% of the total time
spent. This fraction ranged from46% to 55.4% for all the runs.

Sparse BA required iterations ranging from45 to 4639 for conver-
gence, with an average number of iterations of484.3. Convergence
was declared if the norm of the update to the parameter vector
was less than1E − 12. The total computation time taken ranged
from 157 seconds to17864 seconds with132 of the 138 runs
requiring computation time larger than the maximum time taken by
FBSfM on all the runs. Figure 3 shows the convergence plots for
FBSfM (plotted in blue) and SBA (plotted in red). SBA exhibits fast
convergence when the solution is very close to the global minimum.
On the other hand, FBSfM exhibits slow convergence close to the
minimum. Although FBSfM is faster than SBA overall, these two
algorithms are good candidates to be used together in a hybrid
approach. It must be noted that this advantage in computation time
is larger as the problem size increases (corresponding to the size of
the matrix that needs to be inverted). We have observed that for 300
cameras, FBSfM is much faster than SBA, and for10 cameras,SBA
is faster. The critical problem size above which the reducedHessian
matrix inversion or the slowness of gradient descent startsto become
a disadvantage for SBA depends on the machine and the processing
resources available. However, for mobile devices, we expect the
memory limitation to be the bottleneck where FBSfM would find
the most advantageous use (with a low critical problem size).

E.. A note on alternation methods
A popular alternative to SBA that falls within the class of

alternation algorithms is resection-intersection [6]. This involves
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Fig. 3. This figure illustrates the convergence curves plotting the Log of the
reprojection error versus computation time for FBSfM and SBA on 138 runs.
The blue curves are for FBSfM and the red ones are for SBA. Notethat the blue
curves are clearly below the red ones indicating that FBSfM converges faster
compared to SBA in this experiment.

iterations where (1) the cameras are fixed and structure variables
are updated, and (2) the structure is fixed and camera matrices
are updated. Each iteration is of low complexity similar to our
bilinear alternation, but it involves non-linear minimization in all the
iterations. The key difference of our work is the use of the additional
measurements for the decomposition of the motion parameters that
leads to a better performing algorithm for low out-of-planenoise
conditions. Our experimental results do not show a clear advantage
over either SBA or resection-intersection from a general class of
initial solutions. However, the advantage shows up very clearly
when the out-of-plane motion is known (with low error) through
sensor measurements. To the best of our knowledge, we do not
know of a previously proposed variant of resection-intersection for
the specific setting of the paper. Earlier works [6] have evaluated
the most general variant of resection-intersection and have found
it to be suboptimal compared to SBA in terms of accuracy. Based
on this study, we conclude that the cumulative frequency graphs of
resection-intersection are expected to be below that of SBA.

VI.. EXPERIMENTS
A.. SfM on StreetView data

The Google StreetView Research dataset consists of roadside
image sequences and metadata with the locations and orientations
of the camera corresponding to each image, solved using GPS and
IMU measurements deployed onboard. The metadata containedthe
additional measurements in the form as required by the proposed
algorithm. We chose a segment of the dataset containing150 images
when the car is moving on a single road. We obtained feature tracks
by SIFT feature detection and matching, and used RANSAC and the
epipolar constraint to prune out outliers. After these post-processing
steps, we obtained3145 distinct feature tracks in the sequence.

We obtained an initial solution for the camera motion by assuming
a straight line motion and placing the camera centers equally
distributed on the line. We initialized the out-of-plane camera
rotation matrices using the direction vectors obtained from the
metadata, and the in-plane rotations were all fixed to zero. The
heights of the cameras were later fixed to the measurements obtained
from the metadata. This provided an initial solution for thecamera
motion. We used this initial motion and the feature trajectories to

triangulate the 3D points using structure iteration equations (10).
The triangulated3D locations were used as the initial structure
solution. Both FBSfM and SBA were initialized with the same
starting point. The initial reprojection error was237.49. FBSfM
converged to a solution with an error of1.99 and SBA converged
to a solution of111.88. Figure 4 illustrates the top view of the
reconstructed 3D points and the camera path corresponding to the
FBSfM solution. When we initialized SBA with the final solution
of FBSfM, the reprojection error reduced to1.342.
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Fig. 4. This figure shows the top view of the reconstructed 3D points and the
camera path obtained by solving for structure and motion from 150 images of
the streetview sequence using the proposed algorithm. The red points show the
camera centers and the green lines show the optical axis at each camera location.
A few images in the sequence are shown in the left of the figure.We can clearly
distinguish the three intersecting roads in the reconstruction, with the road in the
middle approximately twice as wide as the other two roads.

Since we do not currently use sparse representations for mea-
surement matrices, our implementation was not suited to execute
multiple trials on the earlier sequence for measuring computation
times. Hence we select a subsequence with lesser number of feature
points. From the SfM solution with error1.342, we selected the first
70 frames, and755 points with reprojection error less than3 for all
frames. We used SBA for the755 point subsequence and obtained
an SfM reconstruction with error of0.4013. We repeated the camera
configuration of the70 cameras twice by translating in theY and
Z directions by chosen distances. This produced a total of210
cameras. We generated the feature points on the virtual cameras by
reprojecting the original 3D points on each of the images andadding
random noise to the pixel locations, to simulate feature detection
errors. We use this SfM problem with210 cameras,755 points with
10% of the measurement matrix known, as the test problem for
measuring computation times. The ground truth reprojection error
(global optimum) for this problem was0.3892. We generated initial
solutions by perturbing the in-plane translation by11%, out-of-plane
translation by1%, in-plane rotation angle by7◦ and direction vector
by 1◦. Among the15 runs of SBA that terminated successfully, the
final reprojection errors of two best runs were1.104 and 1.311,
and the rest of the errors were all above20. In contrast, the final
errors of FBSfM ranged from0.3906 to 0.3948 with the motion
and structure reconstructions very close to the ground truth. The
average time taken by the proposed algorithm to reach a solution
was45.957 seconds. Convergence of our algorithm was declared if
the iteration count reached100 or if the reprojection error decreased
by less than5e − 5. All trials used100 iterations. The algorithm
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probably exhibit flatlining behavior beyond100 iterations since the
error was decreasing very slowly. However, beyond this point, SBA
is a better choice for minimizing the reprojection error andcan be
used in a hybrid approach along with FBSfM. We do not estimatethe
average time taken by SBA since none of the runs converged close
to the global optimum. However, the time taken for the two best
runs were136.7 and138.5 seconds. Figure 5 plots the convergence
curves for both algorithms. The bundle of blue curves for FBSfM
are clearly below the red ones of SBA indicating a faster overall
convergence rate. The curves suggest that towards the startof the
minimization, FBSfM converges faster but when the solutionis
close to the minima, SBA converges faster. These results illustrate
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Fig. 5. This figure illustrates the convergence curves plotting the Log of the
reprojection error versus computation time for FBSfM and SBA. The blue curves
are for FBSfM and the red ones are for SBA. The blue curves are clearly below
the red ones indicating that FBSfM converges faster compared to SBA in this
experiment.

the computational advantages of FBSfM over SBA and make it a
good candidate for urban modeling which involves solving large
reconstruction problems.

VII.. CONCLUSIONS

We discussed the importance of exploiting the available inertial
measurements in the SfM estimation framework. We describeda
fast, robust and scalable SfM algorithm that leverages additional
measurements for computing the scene structure and camera motion
from a sequence of images. We described how this algorithm tackles
the needs of scalability and speed required in current and future
SfM applications where we work with very large datasets. We show
that with the availability of measurements of the gravity vector and
camera height, the SfM problem can be simplified into a bilinear
form and solved using a fast scalable iterative procedure. The
following are the lessons learned from the experiments.

1) FBSFM produces better solutions than SBA from initial solu-
tions with low out-of-plane motion error. We have compared
the performance of both for as much as5◦ in ground plane
vector error and5% in the camera vertical position error.

2) The total time taken by FBSFM to attain convergence (with
termination conditions set by a maximum number of iterations
or minimum decrease in error) is less than that of SBA for
large-sized problems when initialized from starting points with
low error in out-of-plane motion.

3) When initialized from a large number of random starting
points, FBSFM seems to converge to solutions that are lower
than those produced by SBA (as is demonstrated by the
cumulative frequency graphs).

Based on the above findings, our algorithm seems to be a better
choice of reconstruction algorithms in many practical scenarios
where it is possible to obtain the additional measurements as re-
quired by accurate sensing devices. The scalability of the algorithm
also lends itself useful for large scale practical problems.
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