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Abstract

In this paper, we discuss theoretical foundations and a practical realization of a real-time traffic
sign detection, tracking and recognition system operating on board of a vehicle. In the pro-
posed framework, a generic detector refinement procedure based on mean shift clustering is
introduced. This technique is shown to improve the detection accuracy and reduce the number
of false positives for a broad class of object detectors for which a soft responses confidence can
be sensibly estimated. The track of an already established candidate is maintained over time us-
ing an instance-specific tracking function that encodes the relationship between a unique feature
representation of the target object and the affine distortions it is subject to. We show that this
function can be learned on-the-fly via regression from random transformations applied to the
image of the object in known pose. Secondly, we demonstrate its capability of reconstructing the
full-face view of a sign from substantial view angles. In the recognition stage, a concept of class
similarity measure learned from image pairs is discussed and its realization using SimBoost, a
novel version of AdaBoost algorithm, is analyzed. Suitability of the proposed method for solv-
ing multi-class traffic sign classification problems is shown experimentally for different feature
representations of an image. Overall performance of our system is evaluated based on a proto-
type C++ implementation. Illustrative output generated by this demo application is provided as
a supplementary material attached to this paper.
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Abstract In this paper, we discuss theoretical foundations
and a practical realization of a real-time traffic sign detec-
tion, tracking and recognition system operating on board of a
vehicle. In the proposed framework, a generic detector refine-
ment procedure based on mean shift clustering is introduced.
This technique is shown to improve the detection accuracy
and reduce the number of false positives for a broad class of
object detectors for which a soft response’s confidence can
be sensibly estimated. The track of an already established
candidate is maintained over time using an instance-specific
tracking function that encodes the relationship between a
unique feature representation of the target object and the
affine distortions it is subject to. We show that this func-
tion can be learned on-the-fly via regression from random
transformations applied to the image of the object in known
pose. Secondly, we demonstrate its capability of reconstruct-
ing the full-face view of a sign from substantial view angles.
In the recognition stage, a concept of class similarity mea-
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sure learned from image pairs is discussed and its realiza-
tion using SimBoost, a novel version of AdaBoost algorithm,
is analyzed. Suitability of the proposed method for solv-
ing multi-class traffic sign classification problems is shown
experimentally for different feature representations of an
image. Overall performance of our system is evaluated based
on a prototype C++ implementation. Illustrative output gen-
erated by this demo application is provided as a supplemen-
tary material attached to this paper.
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1 Introduction

Road signs are an inherent part of the traffic environment.
They are designed to regulate flow of the vehicles, give spe-
cific information to the traffic participants, or warn against
unexpected road circumstances. Perception and fast interpre-
tation of road signs is crucial for the driver’s safety. Public
services responsible for the traffic infrastructure maintenance
mount the signs on poles by the roadside, over the high-
way lanes, and in other places in a way ensuring that they
are easy to spot without distracting the driver’s attention
from manoeuvring the vehicle. Also, the sign pictograms
are designed and standardized in accordance with the rule of
maximizing simplicity and distinctiveness. However, under
certain conditions such as high visual clutter, adverse illu-
mination, or rainfall, perception of traffic signs can be sig-
nificantly hampered. Purely physiological factors such as
excitement, irritation, or fatigue are known to further reduce
the visual concentration of a human and can hence put the
driver’s life at risk, while driving at high speed in particular.
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For the above reasons, automation of the road sign detection
and recognition process was found a natural direction to
follow as soon as video processing became attainable on a
computing machine. Today, it is considered a critical task in
the contemporary visual driver assistance systems. However,
reliability of such systems still does not meet our expecta-
tions and a large space for improvement is left.

1.1 Related work

Different approaches were adopted in the past for detecting
road signs. In the older studies, e.g. [1,2], as well as in many
recent ones, e.g. [3,4], it was common to employ a heuris-
tic encompassing prior knowledge about the traffic signs in
order to (1) define how to pre-segment the scene to find the
interest regions, and (2) define the acceptable geometrical
relationships between the sign parts with respect to shape
and color. The major deficiency of these methods was a lack
of solid theoretical foundations and high parametrization. In
other studies, e.g. [5], neural networks were used to model the
above-mentioned shape and appearance properties of traffic
signs. A more convincing, parameter-free method for detect-
ing road signs was proposed by Bahlmann et al. [6]. They
utilized the AdaBoost algorithm [7] and the rejection cascade
framework [8] to learn the most discriminative, color-param-
etrized Haar wavelet filters for road sign representation. Their
system demonstrated a good detection rate and was reported
to yield very few false alarms at an average processing speed
of 10 fps. In several studies, e.g. [1,9,5], the problem of
tracking of the observed road signs over time was addressed.
However, the proposed frameworks, with the exception of
the two-camera system in [9], never went beyond a relatively
simple scheme based on a predefined motion model and some
sort of geometrical Kalman filtering.

For sign classification, a baseline approach involves cross-
correlation template matching. It was used, e.g., in [1,9]. This
technique is known to be useful only on condition that the
object in the tested image can be well aligned with the tem-
plates. In practice, this is often difficult to achieve in the
automatic sign detection systems, especially when the target
is seen against cluttered background or is affected by geomet-
rical distortion. Other feature-based methods involve neural
networks [2,10–14] or kernel density estimation [15] and
were shown to offer relatively good classification accuracy.
Gao et al. [16] employed the biologically-inspired vision
models to represent both color and shape features of the traffic
signs. They achieved a promising recognition rate for static
images of signs affected by substantial noise and geometric
transformations. An interesting concept of a trainable, class-
specific similarity measure was introduced recently by Paclík
et al. [17]. This measure is based on the discriminative local
image regions where the target class differs possibly the most
from all other considered classes. A classifier utilizing this

measure was shown successful in solving relatively simple
road sign classification problems. A similar approach was
further presented by Ruta et al. [4] who adapted this method
to infer the discriminative sign representations using a single
template image per class.

In this paper, we present a unified framework for detec-
tion, tracking and recognition of traffic signs, which allevi-
ates the shortcomings of many previous approaches. At the
detection stage, we focus on the problem of high sensitivity
of the existing object detection techniques. A generic refine-
ment procedure based on a modified mean shift clustering
is proposed and evaluated with two different sign detectors.
The best-performing refined detector is selected for the pro-
totype system implementation. For tracking of the existing
road sign candidates, we employ a trainable regression func-
tion that correlates the target appearance with the parame-
ters of its affine deformations. As a result, geometrical sign
distortions can be compensated on-line, making our detec-
tor pose-invariant and hence more accurate. Ability of the
proposed tracker to reconstruct the full-face view of a sign
seen from various view angles is shown experimentally using
synthetic image sequences. Finally, we build a traffic sign
classifier based on the concept of a trainable class similarity.
A novel AdaBoost-like algorithm, called SimBoost, is uti-
lized to learn a robust sign similarity measure from image
pairs labeled either “same” or “different”. This measure is
further directly used within the nearest neighbor framework
to distinguish between multiple road sign classes. The dis-
criminative power of the classifiers trained using SimBoost
is demonstrated for different feature representations of the
image. Apart from testing the proposed detection, tracking
and recognition approaches as stand-alone algorithms, we
also build a demo implementation of a real-time system inte-
grating all three components. This system is evaluated using
real-life video captured from a moving vehicle in urban traf-
fic scenes.

The rest of this paper is divided into five parts. In Sect. 2,
our road sign detection method is discussed. In Sect. 3, we
develop a pose-invariant sign tracker. Section 4 explains how
the concept of a trainable similarity is used to construct a
robust traffic sign classifier. In Sect. 5, an extensive experi-
mental evaluation of our algorithms is presented. Finally, in
Sect. 6, we conclude our work.

2 Sign detection

Traffic sign detection is a difficult problem as it involves dis-
criminating a large gamut of diverse objects from a gener-
ally unknown background. Taking this diversity into account,
we focus in this work on a subset of circular signs that are
well-constrained in terms of the size, shape, and contained
ideogram. In Sect. 2.1, a fast, application-specific quad-tree

123



In-vehicle camera traffic sign detection and recognition 361

focus operator is introduced. We use it to quickly discard the
irrelevant fragments of the scene and locate the sparse regions
that might contain traffic signs. In Sect. 2.2, we briefly discuss
two practically useful sign detection methods and their com-
mon limitations. In Sect. 2.3, a detection refinement scheme
is proposed in order to improve the selectivity and the accu-
racy of these detectors, which are on their own over-sensitive.

2.1 Quad-tree focus of attention

In order to detect the new road sign candidates emerging
in the scene, it is first necessary to reduce the search area.
Dense scanning of the entire image wastes processor time and
is hence unlikely to work in real time, even using a detector
based on the well-known Haar wavelets [8], probably com-
putationally the cheapest available image descriptors. One
generic method for quick elimination of the irrelevant regions
of an image is a rejection classifier cascade introduced by
Viola and Jones [8]. Not denying the potential of this tech-
nique, we should yet note that it still involves a sequential,
pixel-by-pixel processing of the input image and requires
complex, time-consuming training. Below, we briefly out-
line a much simpler generic search reduction technique that
is tuned to our specific application, and which can be used
solely or in chain with Viola and Jones, as well as other
methods.

The proposed quad-tree attention operator associates a
scalar feature value v(x, y) with each pixel of the image
I : V(I ) = {v(x, y) : x = 1, . . . , W, y = 1, . . . , H}, where
W × H is the image size. A region R(x1, y1, x2, y2) is con-
sidered relevant if the sum of the contained pixels’ feature
values is greater that a predefined threshold tmin. If an integral
feature image is available:

�(I ) = {υ(x, y) : υ(x, y) =
∑

i≤x, j≤y

v(i, j),

x = 1, . . . , W, y = 1, . . . , H}, (1)

then this sum can be computed using only 4 array referencing
operations and 3 additions/subtractions:

v(R(x1, y1, x2, y2)) = υ(x2, y2) − υ(x1, y2)

−υ(x2, y1) + υ(x1, y1). (2)

If the threshold tmin is set to an appropriately low value that
can be used to reliably discriminate between the relevant and
irrelevant fragments of the scene at the smallest considered
scale, then RoIs can be rapidly identified using the following
recursive algorithm:

Algorithm 1 is illustrated in Fig. 1. We tailor it to our
needs by associating the relevance of a given image region
with the amount of contained contrast measured with respect
to the appropriate color channels. The traffic signs we focus
on always have a distinctive color rim. Therefore, the input

Algorithm 1 Quad-tree RoI extraction.
input: image IW×H , minimum “amount” of feature contained in a RoI,

tmin, minimum region size, smin
output: set of RoIs, S
1: build a feature map V(I )
2: build an integral feature map �(I )
3: initialize an empty set of relevant smallest-scale regions C = ∅
4: call Process Region(R(1, 1, W, H), tmin, smin, C)

5: cluster regions in C
6: populate S with bounding rectangles of found clusters

Algorithm 2 Procedure ProcessRegion.
input: region Rw×h , minimum “amount” of feature contained in a RoI,

tmin, minimum region size, smin, a set of relevant smallest-scale
regions, C

1: compute the amount of feature in R
2: if min{w, h} ≥ smin then
3: if v(R) > tmin then
4: set w = w/2, h = h/2
5: for each quarter Q j of R do
6: call Process Region(Q j , tmin, smin, C)

7: end for
8: end if
9: else
10: add R to C
11: end if

Fig. 1 Quad-tree interest region finding algorithm. The consecutive
numbers correspond to the older of quarters being processed

image is first filtered using the appropriate set of filters int-
ended to amplify certain colors and suppress any other. Suit-
able filters used in this work are:

fR(x) = max

(
0, min

(
xR − xG

s
,

xR − xB

s

))

fB(x) = max

(
0, min

(
xB − xR

s
,

xB − xG

s

))
,

(3)

where xR , xG , xB denote the red, green and blue components,
respectively, of an input RGB pixel and s = xR + xG + xB .
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Fig. 2 The effect of applying the color filters (3) to the example
RGB images (top row): red color filter (bottom-left), blue color filter
(bottom-right)

The above filters effectively extract the red and blue frag-
ments of the image, which is shown in Fig. 2.

The RoI selection algorithm starts with applying filters
(3) to the input image. Then, two feature images VR(I ) and
VB(I ) are constructed as gradient magnitude maps for each
color. Similarly, two integral images �R(I ) and �B(I ) are
build from VR(I ) and VB(I ), respectively. A region cor-
responding to the entire image is now checked against the
total color gradient contained using a maximum of the val-
ues picked from both integral images. As it is typically far
above the predefined threshold, the image is subdivided into
four quarters and each quarter is recursively processed in
the same way. The process is stopped either when the cur-
rent input region contains less gradient than the threshold or
upon reaching the minimum region size. The above-threshold
lowest-level regions are clustered and the ultimate RoIs are
constructed as bounding rectangles of the found clusters. This
way we can very quickly discard the irrelevant fragments of
the scene, e.g. sky or asphalt, which either do not contain
the interest colors and/or are too low-contrasting. Note that
the total amount of color-specific gradient constitutes a much
stronger filter than simply the total amount of characteristic
color, which fails in presence of uniform reddish or blueish
regions, e.g. sky or large color billboards.

Further processing, i.e. the true object detection, is done
only in the found interest regions. Below, two useful tech-
niques for localized traffic sign detection are presented.

2.2 Sign detectors

In-vehicle road sign detector must be both sufficiently dis-
criminative and computationally inexpensive so that it can
work in real time even in the worst-case scenario, when a
large part of the scene has to be scanned. We evaluate here

two detection techniques which seem particularly useful for
road sign detection: Haar rejection cascade and the Hough
transform.

The Haar cascade of boosted classifiers for object detec-
tion has been thoroughly discussed in [8]. This technique
revolves around an idea of building a multi-stage classifier
in which at each new layer the layer-specific binary clas-
sifier is trained in a supervised way using all available true
positive images and only these negative (background) images
that were misclassified in the previous layer. This way the
cascade is arranged such that in runtime the most top-level
classifier can quickly reject a majority of irrelevant parts of
the scene, leaving the more ambiguous regions to process
by the classifier in the next layer. This recursive process is
further continued for the increasingly “hard” regions and only
the regions successfully passing the last layer are retained.
The AdaBoost algorithm [7] is used to train the classifier in
each layer and the expected performance specifications of
the cascade are given as the training parameters. For exam-
ple, the boosted classifier in each layer might be set to grow
until it can correctly classify 99% of the true positives from
the previous layer and not less than 50% of the previous
layer’s false positives. The third parameter, maximum over-
all false positive rate of the cascade is provided to determine
when to stop the training process. Robustness of the cascade
setup in combination with using simple Haar wavelet filters
underlying each weak classifier makes the cascade relatively
inexpensive in terms of the computation involved.

Although there is a common agreement on the useful-
ness of the rejection cascade for general object detection, this
approach has also many disadvantages. As all discriminative
methods, to achieve a good generalization performance, the
classifier must see in the training stage a sufficiently large
number of object examples describing the distribution of the
target class appearance. Therefore, it may be insufficiently
discriminative if the intra-class variability is too high and the
number of training images available is small. On the other
hand, if this number is large, the training process may become
extremely lengthy. In addition, many cascade implementa-
tion details are technically challenging. For example, it is
unclear how to efficiently generate negative images to pop-
ulate the training pool of the classifiers located deep in the
cascade, say, at the nth level. An overall false positive rate
of the cascade up to the level n − 1 might already be very
low. This implies that random selection of each background
region from the image not containing the target object might
require many repetitions (until this region is classified as
false positive by the so-far built cascade) and hence can be
extremely time-consuming.

The second detection technique we evaluate is based on the
Hough transform (HT) [18]. The purpose of this method is to
find the imperfect instances of objects within a certain class of
shapes by a voting procedure carried out in a parameter space.
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The simpler the parametric description of a shape, the more
suitable this approach is in real-time vision. In our case, most
of the popular road signs are either circles or equiangular
polygons: equilateral triangles, squares, or octagons (STOP
sign), depending on the country. To detect circular structures
in an image, a well-known circular Hough transform can be
used, which involves voting in a three-parameter space. For
regular polygons a generalized method has been proposed by
Barnes et al. [3]. A desirable property of these HT variants is
their accuracy and tolerance to noise and partial occlusions.
Among major disadvantages is their sensitivity to the quality
of the input edge map, which in turn depends on the external
factors, such as scene illumination.

Both techniques are known to suffer from the problem
of producing multiple, mostly redundant, positive hypothe-
ses around the true target instances. As processing of each
such hypothesis separately is impractical, the output of an
over-sensitive detector is typically subject to some sort of
postprocessing intended to produce a single, accurately fit
shape per instance. Below, we propose such a postprocess-
ing technique based on the mean shift clustering.

2.3 Confidence-weighted mean shift refinement

Accuracy of an over-sensitive detector that produces redun-
dant positive hypotheses around the true object candidates
must necessarily be improved to make it useful for real-time
operation. One possible way of doing that is to consider
the detector’s response space a probability distribution with
modes to be found. The Mean Shift algorithm [19] is a well-
established kernel density estimation technique that can be
used to find the modes of the underlying distribution. How-
ever, the original mean shift formulation does not account for
the possibly varying relevance of the input points. Below, we
propose a simple modification, called Confidence-Weighted
Mean Shift, which alleviates this shortcoming by incorporat-
ing the confidence of the detector’s responses into the mode
finding procedure. It is shown that such a refinement proce-
dure can be applied to the output of any detector that yields
a soft decision or can be modified to do so.

We first characterize each positive hypothesis of the detec-
tor with a vector, x j = [x j , y j , s j ], encoding the object’s
centroid position and its scale. In addition, x j is assigned a
confidence value, q j , which is related to the soft response
of the detector. In the case of a single boosted classifier in
each layer of the Haar cascade, such a confidence measure
can naturally be related to the distance of the response from
the linear decision boundary:

q j = q(x j ) =
T∑

t=1

αt ht (x j ), (4)

where ht (x j ) denote the weak classifier responses,
αt = log( 1−et

et
), and et are the error rates of the weak

classifiers. In the case of an entire cascade, the confidence
formula can no longer be treated as a distance from the deci-
sion boundary, which is now non-linear. However, it can be
approximated by a sum of q(k)

j terms over all K cascade
layers, taking the modified thresholds tk in each layer into
account:

q j =
K∑

k=1

q(k)
j =

K∑

k=1

Tk∑

t=1

(αt ht (x j ) − tk). (5)

In the case of a Hough detector, the confidence of each
above-threshold circle picked from the accumulator array
can simply be measured with the normalized number of votes
cast for this circle. In general, confidence q j can be expressed
with any quantity that evaluates to a numerical, comparable
value, and is indicative of the likelihood of the target object’s
presence in a given position and scale.

Assuming that f (x) is the underlying distribution of x, the
mean shift algorithm iteratively finds the stationary points of
the estimated density via alternate computation of the mean-
shift vector, and translation of the current kernel window by
this vector, until convergence (for details refer to [19]). Our
modified mean-shift vector is made sensitive to the confi-
dence of the input points in the following way:

mh,G =
∑n

j=1 x j q j g
∥∥∥ x−x j

h

∥∥∥
2

∑n
j=1 q j g

∥∥∥ x−x j
h

∥∥∥
2 − x, (6)

where g(·) is the underlying gradient density estimator and
h is the bandwidth parameter determining the scale of the
estimated density. Incorporating the confidence terms q j in
(6) is equivalent to amplifying the density gradients point-
ing towards the more reliably detected circle locations. The
found modes of f (x) correspond to the new road sign can-
didates which we need to track in the consecutive frames of
the input video.

3 Tracking

To recognize traffic signs from a moving vehicle, it is crucial
to have a view-independent object detector. Training such a
detector directly exhibits serious difficulties as it requires
feature descriptors to be both: highly discriminative and
pose-invariant. Our method of solving such a detection prob-
lem follows a different strategy and has been shown suc-
cessful in several studies, e.g. [20,21]. Instead of devising
a pose-independent feature representation of the target, we
learn an application-specific motion model from the ran-
dom affine transformations applied to the full-face view of
a detected sign. This model is learned via regression using
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Fig. 3 Affine transformation matrix and its inverse

the Lie algebra of the motion group, and encodes the cor-
relations between a unique feature representation of a sign
and the affine transformations it is subject to while being
approached by a camera. In Sect. 3.1, we provide the the-
oretical foundations of our regression tracking algorithm.
Section 3.2 describes a concrete realization of this method.

3.1 Tracking as a regression problem

Let M be an affine matrix that transforms a unit square at the
origin in the object coordinates to the affine region enclosing
the target object in the image coordinates:

M =
(

A t
0 1

)
, (7)

where A is a 2×2 nonsingular matrix and t ∈ R
2. Let M−1 be

an inverse transform that maps the object region from image
coordinates back to the object coordinates, as shown in Fig. 3.
Our goal is to estimate the transformation matrix Mt at time
t , given the observed images up to that point, I0,...,t , and the
initial transformation M0. Mt is modeled recursively:

Mt = Mt−1�Mt , (8)

which means that it is sufficient to estimate only the incre-
ment �Mt corresponding to the motion of the target from
time t − 1 to t in object coordinates. It is determined by the
regression function f :

�Mt = f
(

ot (M
−1
t−1)

)
, (9)

where ot (M
−1
t−1) denotes an image descriptor applied to the

previously observed image, after mapping it to the unit rect-
angle.

The regression function f : R
m �−→ A(2) is an affine

matrix-valued function, where A(2) denotes a two-dimen-
sional affine transformation. When multiplied on the left by
the previous-frame motion matrix, function f gives an accu-
rate pose estimate of the target in the current frame. To learn
its parameters, it is necessary to know the initial pose of an
object, M0, and the image I0 at time t0. Training examples are
generated as pairs (oi

0,�Mi ), where �Mi are random defor-
mation matrices around identity and oi

0 = o0(�M−1
i M−1

0 ).

The optimal parameters of f are derived on the grounds
of the Lie group theory [22] by minimizing the sum of the
squared distances between the pairs of motion matrices: esti-
mated f (oi

0) and known �Mi . The affine motion matrices
can be considered points on the Lie group with a structure of
a six-dimensional differentiable manifold given by (7). An
adequate measure of distance between two motion matrices
treated as points on the manifold is the minimum length of
a curve connecting these points, called geodesic. It is given
by:

ρ(M1, M2) = ‖ log(M−1
1 M2)‖. (10)

With (10), the measure of the error to minimize becomes:

J =
n∑

i=1

ρ( f (oi
0),�Mi )

2. (11)

Tuzel et al. [21] show that if two vectors m1 and m2 can
be expanded into motion matrices M1 and M2, respectively,
then the first-order approximation to the geodesic distance
between them is:

ρ(M1, M2) = ‖m2 − m1‖. (12)

Therefore, selecting d = 6 orthonormal bases on the Lie
algebra, the error function in (11) can be computed as a
sum of the squared Euclidean distances between the vectors
log( f (oi

0)) and log(�Mi ), i.e.:

J =
n∑

i=1

‖ log( f (oi
0)) − log(�Mi )‖2. (13)

Details of how the above error function is minimized can be
found in [21].

3.2 Tracker architecture

The regression tracker introduced in Sect. 3.1 is utilized in
our traffic sign recognition system as shown in Fig. 4. Once
a candidate sign has been detected for the first time, a new

Fig. 4 Operation of a road sign tracker over time. The period between
the initial candidate detection and the first tracker update is depicted

123



In-vehicle camera traffic sign detection and recognition 365

tracker is initialized with the region corresponding to the
bounding rectangle of the found circle instance, assuming no
distortion.1 At this point a small number of random defor-
mations are generated from the observed image and used
for instant training. A map of 6 × 6 regularly spaced 6-bin
gradient orientation histograms is used as an object descrip-
tor. The trained tracker is employed to detect the sign in the
subsequent frames, each being used to generate and enqueue
m new random deformations.

In a realistic traffic scenario the scene is often difficult and
changes fast. Therefore, the accuracy of the tracker is likely to
deteriorate very quickly. It is a result of the cumulated recon-
struction errors caused by: (1) contaminating the object coor-
dinate images with the unwanted background fragments, and
(2) changing appearance of the target. To deal with this prob-
lem, we update the tracking function after every fU frames by
re-training it on the collected portion of fU ×m random train-
ing transformations. This update process is carried out in a
similar way as the initial training, i.e. by minimizing the sum
of the squared geodesic distances between the estimated and
the known motion matrices, but another constraint is intro-
duced on the difference between the current and the previous
regression coefficients (refer to [21] for more details). The
updated tracker is used to re-estimate the pose of the observed
sign and the space is allocated for a new portion of random
transformations.

Finally, the track is assumed to be lost when the sign either
gets out of the field of view or when the normalized cross-
correlation between its current image in object coordinates
and the same image recorded at the last update drops below a
predefined threshold. The latter condition prevents the track
from running out of control due to the errors cumulated in
the regression function.

4 Recognition

Recognition of traffic signs is a hard multi-class problem
with an additional difficulty caused by the fact of certain
signs being very similar to one another, e.g. speed limits. The
approach we have adopted in this work is centered around
the concept of trainable similarity that can be inferred from
the pairs of examples. When the similarity between any two
images can be estimated, any multi-class classification prob-
lem can be solved by comparing the similarities between
the unknown example and each class’s prototype. A tested
example belongs to the class of the prototype to which it is
the most similar. For robust similarity assessment we use a
novel variant of AdaBoost algorithm, called SimBoost. It is

1 This assumption is valid as road signs are detected for the first time
at a considerable distance from the camera, where this distance is much
greater than the distance of the sign from the camera’s optical axis.

derived in Sect. 4.1. In Sect. 4.2, we outline how the classifier
trained via SimBoost is used to recognize objects in image
sequences.

4.1 SimBoost algorithm

Formally, our classifier, F(x), is designed to recognize only
two classes: “same” and “different”, and is trained using pairs
of images, i.e. x = (I1, I2). The pairs representing the same
type of sign are labeled y = 1 (positive), and the pairs rep-
resenting two different types are labeled y = −1 (negative).
A real-valued discriminant function F is learned using a mod-
ified AdaBoost algorithm [7] which we call SimBoost. We
define F as a sum of image features f j :

F(I1, I2) =
N∑

j=1

f j (I1, I2). (14)

Each feature evaluates to:

f j (I1, I2) =
{

α if d(φ j (I1), φ j (I2)) < t j

β otherwise
, (15)

where φ j is a filter defined over a chosen class of image
descriptors, d is a generic distance metric that makes sense
for such descriptors, and t j is a feature threshold. In other
words, each feature quantifies a local similarity between the
input images and responds to this similarity according to
whether or not it is sufficient to consider the images as rep-
resenting the same class.

Let h(x) = h j (I1, I2) = d(φ j (I1), φ j (I2)). Let us also
denote by W ++ the total weight of these positive examples that
are labeled positive by a given weak classifier (true positives),
and by W −+ the total weight of those that are labeled negative
(false negatives). By analogy, let W −− and W +− be the total
weights of true negatives and false positives, respectively. In
other words:

W ++ = ∑

k : yk = 1
∧ h j (xk) < t j

wk W −+ = ∑

k : yk = 1
∧ h j (xk) ≥ t j

wk

W +− = ∑

k : yk = −1
∧ h j (xk) < t j

wk W −− = ∑

k : yk = −1
∧ h j (xk) ≥ t j

wk

.

(16)

In each boosting round, the filter φ j and the threshold
t j are selected so as to minimize the weighted error of the
training examples:

e j =
∑

k : yk = 1
∧ h j (xk) ≥ t j

wk +
∑

k : yk =−1
∧ h j (xk) < t j

wk =W −+ + W +− .

(17)
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Secondly, the optimal values of α and β are found based on
the Schapire and Singer’s criterion [23] of minimizing:

Z =
M∑

k=1

wke−yk f (xk), (18)

where M is the total number of training examples. First, the
sum is split as follows:

Z =
∑

k: yk=1

wke− f (xk ) +
∑

k: yk=−1

wke f (xk )

=
∑

k : yk = 1
∧ h j (xk) < t j

wke−α +
∑

k : yk = 1
∧ h j (xk) ≥ t j

wke−β

+
∑

k : yk = −1
∧ h j (xk) < t j

wkeα +
∑

k : yk = −1
∧ h j (xk) ≥ t j

wkeβ

= W ++ e−α + W −+ e−β + W +− eα + W −− eβ. (19)

Taking partial derivatives of Z with respect to α and β and
setting each to zero determine the optimal values of each
parameter to be set in a given boosting round:

α = 1

2
log

(
W ++
W +−

)
β = 1

2
log

(
W −+
W −−

)
. (20)

The other steps of the SimBoost procedure are similar to
those known from the classical AdaBoost algorithm. Spe-
cifically, weights of the input image pairs are updated after
each boosting round using the well-known exponential loss
function:

w
(t+1)
k = w

(t)
k e− f j (xk )yk , (21)

where f j denotes the feature selected in the current round.
Weights of all training examples are then normalized. One
difficulty is related to the size of the input pairs space. Note
that the total number of possible input pairs for K classes,
each containing N images, is 1

2 (N K − 1)N K , while the
total number of “same” pairs is only 1

2 K (N − 1)N . Using
all possible image pairs for training would make this pro-
cess intractable, which calls for sampling. Second, the large
quantitative imbalance between the number of positive and
negative pairs implies that random sampling is inappropri-
ate because it would carry a risk of very few positive pairs
being selected. Enforcing more “same” than “different” pairs
could, on the other hand, bias the classifier.

We propose the following solution to the above problem.
First, the cumulative example weight is defined:

c j =
j∑

k=1

wk . (22)

Given the total of M examples and the target sample size S,
cumulative weights c1, . . . , cM are computed. Then, S times
a random number, r , is generated on the interval [0, cM ]. The
example x j with index satisfying c j < r < c j+1 is assigned
weight equal to r and put in the target sample. This is equiv-
alent to choosing it multiple times, each with weight 1.

A classifier trained using the SimBoost algorithm yields
a decision which is a linear combination of the weak classi-
fiers’ responses:

l(I1, I2) = sign F(I1, I2) = sign

⎛

⎝
N∑

j=1

f j (I1, I2)

⎞

⎠ . (23)

4.2 Temporal classification

In order to be able to use the binary classifier discussed in
Sect. 4.1 for solving a multi-class problem, the classifier’s
response must be made soft. This can be done in a straightfor-
ward way by omitting the sign in the right-hand side expres-
sion of Eq. (23), i.e. considering the bare value of function
F . This value can be treated as a degree of similarity of the
two input images. Let p1, . . . , pK be the prototype images
of K targeted classes. If one of the images passed on input of
our road sign classifier, say I1, is a prototype of known class
k (I1 = pk), the classifier assigns such a label to the other,
unknown image, that satisfies:

l(I ) = arg max
k

F(pk, I ). (24)

In other words, l(I ) is determined from the prototype to
which the tested image is the most similar.

To classify a sequence of images, I1,...,T , the maximum
rule in (24) is applied to the sum of F(pk, It ) terms over all
images It , t = 1, . . . , T . Each It denotes a reconstructed full-
face image of a sign obtained by applying the inverse of the
transformation matrix Mt to the frame at time t . In addition,
the contribution of the most recent observations is empha-
sized to reflect the fact that the image of a sign becomes
generally clearer as the vehicle approaches the target. The
ultimate classifier’s decision at time T is determined from:

l(I1,...,T ) = arg max
k

T∑

t=1

q(t)F(pk, It ), (25)

where q(t) = bT −t , b ∈ (0, 1], is a relevance of the obser-
vation It .

5 Experimental results

In this section, we present the experimental evaluation of the
proposed road sign detection, tracking and recognition algo-
rithms. Each of the three core modules of the system are first
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Fig. 5 Determination of threshold tmin: a the optimal value, t	min ≈ 6.9
corresponds to the maximum percentage of true signs covered by the
found RoIs as a function of tmin, b relationship between the percentage

of image area covered and the same values of tmin as in the left plot.
t	min is marked with dotted lines in both plots

tested as stand-alone components. The quad-tree ROI find-
ing, the two considered detection methods and the detection
refinement algorithm are evaluated on the static road sign
images in Sect. 5.1. The better-performing refined detector
is chosen to be incorporated into the prototype system and
the justification of this choice is provided. In Sect. 5.2, we
concentrate on the regression tracker and estimate its capabil-
ity of modeling the affine distortions that the traffic signs are
subject to while being approached by a car-mounted camera.
A set of synthetic image sequences are generated to facili-
tate this experiment. Performance of a classifier trained via
SimBoost is measured in Sect. 5.3, again using the static
images of traffic signs. The feature representation guaran-
teeing the most correct assessment of the similarity between
the two images is determined based on the obtained experi-
mental results. Finally, in Sect. 5.4, we assemble the entire
sign detection, tracking, and recognition system and test it
on a number of real-life video sequences captured from a
moving vehicle.

5.1 Evaluation of road sign detectors

The proposed focus operator is not expected to yield only true
road sign regions as this is not possible based on such sim-
ple evidence as cumulative color gradient. In cluttered urban
scenes this algorithm is likely to produce multiple false RoIs
or single overly large RoIs. However, at this stage of the
processing it is the most essential to capture as many true
positives as possible for given input data, even at the cost of
detecting and further analyzing the uninformative fragments
of the image too. In practice, if the threshold tmin is set cor-
rectly, which is done based on a number of training images
with ground truth positions and scales of signs available, the
algorithm captures a vast majority of signs in the incoming

video, but the reduction of the computation involved is still
huge.

In order to quantify the capability of our focus operator
of localizing road signs, we have performed an experiment
involving realistic traffic images captured with a wide-angle
in-vehicle camera in crowded street scenes. The total of 70
high-resolution images depicting 100 road signs were used,
each of dimensions 1,920 × 1,088 pixels. In order to find
the optimal threshold tmin, our algorithm was run for the
increasing value of this threshold on these 70 images and
the percentage of true signs covered by the produced RoIs
was maximized. In Fig. 5 we have illustrated this quantity,
as well as the percentage of the total image area covered by
the found RoIs, as functions of tmin.

The obtained results demonstrate the usefulness of our
search region reduction algorithm. While it captures a vast
majority of traffic signs in the scene, the average area of the
image to be analyzed is only a small fraction of the entire
image’s area, which dramatically reduces computation. The
signs not covered by the found interest regions in this exper-
iment were of very low figure-background contrast and as
such could not be captured by the actual detector anyway.
It means that there is practically no performance decrease
related to using the attention operator.

In order to measure the capability of capturing traffic signs
by the detectors outlined in Sect. 2.2, we first tested the Haar
cascade and the Hough circle detector without considering
the video context. The test image sequences we possess were
acquired in the urban areas in Japan, where most of the traf-
fic signs captured were circular. We have, therefore, concen-
trated on this particular type of sign. We ran each detector
in the small regions of the input images around the known
ground truth sign locations. Specifically, the size of each
analysis region was set to 3 × diameter of a sign located in
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Fig. 6 Example images used in the experimental evaluation of the traffic sign detectors
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Fig. 7 Relationship between the mean number of candidates per image detected and the miss rate (left), and between the mean distance of the
detected candidates from the ground truth circles and the miss rate (right). Plots are extrapolated outside of the common miss rate range

the region’s center. A few example regions used are shown in
Fig. 6. The experiment was performed using a total of 8,175
challenging images representing 14 different sign classes and
repeated for (1) varying threshold of the classifier in the last
cascade layer, and (2) varying threshold in the Hough vote
space. To increase the discriminative power of both detec-
tors, we transformed each input image using the color filters
(3). In the case of Hough detector, the color-specific edge
maps were computed and the HT was run on each of them,
pixel-by-pixel. When evaluating the Haar cascade, filters (3),
along with a gray-scale transformation, were used to parame-
terize the Haar wavelets, as proposed by Bahlmann et al. [6].
In order to train the classifier, a set of another 4,218 images
was first clustered to reduce the intra-class variability. Then, a
separate cascade was trained for each cluster. The test images
were scanned by the cascaded classifiers with a 2-pixel step
to reduce computation.

For each image a ground truth center position and the
radius of a sign was given by a triple: (xc, yc, r). Quantities
measured were: (1) mean number of candidates per image
detected, (2) mean distance between a detected circle and
the ground truth circle expressed with a Euclidean metric
over the above-mentioned triples, and (3) miss rate, i.e. the
percentage of images where no sign was detected. Relation-
ship between the miss rate and the two other quantities is
illustrated in Fig. 7. The experiment showed that the Haar
cascade is a more accurate road sign detector than the circu-
lar Hough transform in the entire range of practically useful
operating points. However, this advantage was achieved at
the cost of more computation. While the average processing

time of a single image was approximately 10 ms for a Hough
detector, this time increased to over 20 ms for a Haar cas-
cade.2 The difference in the accuracy of both detectors can
partly be attributed to the nature of voting in Hough space.
As it is generally unknown whether the road sign is darker or
lighter than the background, the votes coming from the con-
tour pixels are cast on both sides of the circle. Sometimes the
number of votes cumulated outside the true sign may be suf-
ficiently high to produce false candidates that are adjacent to
it. Besides, the circular Hough transform is relatively insen-
sitive to scale when the input image contains thick edges.
In that case it often yields above-threshold responses for a
whole range of radii. Regardless of the results of this com-
parison, both techniques appeared to be impractical when
used alone, i.e. without an appropriate postprocessing of the
detector’s responses.

We have repeated the above experiment, but applying the
proposed Confidence-Weighted Mean Shift refinement algo-
rithm to the output generated by each detector. Obtained
results are shown in Fig. 8. It can be noticed that for both
detectors and for significant miss rates, the mean number
of detected candidates per image roughly corresponds to the
percentage of the images where any candidate was detected.
This implies that the proposed detection refinement scheme
most likely collapses the multiple positive responses of the
detector into a single candidate, which is an intended out-
come. The mean error of both detectors is lower with the

2 For a pixel-by-pixel scanning, the cascaded classifier was approxi-
mately 7 times slower than the Hough detector.
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Fig. 8 Relationship between the mean number of candidates per image
detected and the miss rate (left), and between the mean distance of the
detected candidates from the ground truth circles and the miss rate

(right). The above results were obtained using the same detectors as in
Fig. 7, but after the Confidence-Weighted Mean Shift clustering

Fig. 9 Output of the Hough circle detector before (upper row) and after (lower row) applying the refinement procedure. The transparency of the
detected circles in the upper row images correspond to their confidence expressed with the scaled number of votes picked from the Hough voting space

refinement procedure enabled, with the Haar cascade still
being more accurate. The postprocessing step increased the
average processing time of a single image by less than 5 ms
for both detectors. Figure 9 illustrates example output of
the HT detector before and after applying the Confidence-
Weighted Mean Shift refinement algorithm. Overall, although
slightly higher detection accuracy of the Haar cascade was
observed in the above experiment, due to its higher computa-
tional complexity and very long training process, we decided
to adopt the HT-based method for further experiments pre-
sented in this paper.

5.2 Evaluation of the regressor tracker

We have conducted a separate experiment aimed at eval-
uating the ability of our road sign tracker to retrieve the
full-face view of a sign under affine transformations. This
experiment was done in the following way. Six synthetic
image sequences were prepared using the OpenGL frame-
work [24]. In each sequence a template image of one sign
is shown in an empty 3D scene. The consecutive images
depict the sign getting closer to the virtual camera and hence
increasingly distorted. This simulates a realistic scenario of
a car approaching a road sign mounted on the side of the road
or above the road lane. The rendered scenes were deliberately

constructed without any background and with constant illu-
mination so as to minimize the effects of possible contamina-
tion of the image regions enclosing the target and to ensure its
consistent appearance. For each image sequence the refined
circular Hough detector was set to capture the circle instances
of radius in between 12 and 24 pixels. The tracker was trig-
gered at the time of initial detection of a sign by the HT
and updated every 15 frames. Upon the initial detection, the
nearly undistorted image of a sign in gray scale was recorded
to serve as a reference image.

Robustness of the on-line learned tracking function to the
affine distortions was measured by recording a normalized
cross-correlation (NCC) between the reconstructed full-face
view of a sign in each frame and the reference image. The
changes of this correlation over time for all six sequences are
shown in Fig. 10.3 In each plot the behavior of NCC for a
6D regression function encoding all six 2D affine transform
parameters is compared to the behavior of NCC observed
using three other trackers. These are: (1) a 4D regression
function encoding only two rotation-shift parameters and
both translation parameters, (2) a 3D regression function
encoding only one isotropic scaling-rotation parameter and

3 The sequences used in this experiment are provided in the supple-
mentary material accompanying this paper.
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Fig. 10 Normalized cross-correlation (NCC) between the reference
image recorded at the time of initial sign detection and the reconstructed
full-face view of a sign in each subsequent frame of the input sequences.

Each sequence was generated in a synthetic empty 3D scene and sim-
ulates what is typically observed from a vehicle approaching a traffic
sign

both translation parameters, and (3) a simple tracker which
makes independent circle detections in each frame, but uses
a Kalman filter (KF) [25] to predict the position and scale
of a sign. During the on-line training of the regression track-
ers, all non-translation parameters were randomly generated
within the range [−0.2, 0.2] and the translation parameters
were randomly generated within the range [−0.4, 0.4].

Based on the results of the above experiment, we con-
clude that learning the motion model based on the Lie algebra
enables construction of a robust object tracker which is invari-
ant to the affine transformations. In Fig. 10, the 6D affine
tracker outperforms the two other regression trackers and
the KF-based tracker, which do not model the full structure
of the motion. The correlation between the original frontal
view of a sign and a view inferred from the current transfor-
mation parameter estimates remains high for the entire dura-
tion of the sequences. In the case of the 4D and 3D affine
trackers, as well as the KF-based tracker, this correlation
drops more quickly, particularly in the second part of each
sequence. In addition, the behavior of the KF-based tracker is
less stable, as no temporal dependency between the consec-
utive frame observations is modeled. In other words, as long
as the sign remains relatively unaffected by the affine dis-
tortion, all methods provide a satisfactorily accurate track of
the target. However, when the sign gets closer to the camera
and thus becomes more substantially distorted in the image
plane, only the fully-affine regression tracker remains able to

restore the full-face view of the target with low error. From
the point of view of the entire system this is a particularly use-
ful property because the most informative frames of the input
video, when the appearance of a sign is the least ambiguous,
can be efficiently used for recognition.

On the implementation side, the main complexity of the
tracker is in its periodic batch re-training which involves
HOG feature extraction from a candidate sign’s region and
several matrix operations (multiplications, inverses, addi-
tions and transposes) per image, where the largest matrices
are of size 216×n and n ≤ 60 is the total number of random
deformation matrices in a training portion. With the core
code implemented based on the OpenCV library [26] and
using a modern PC, the regressor training/update run at frame
rate. Pose estimation in each frame based on the Eqs. (8)
and (9) requires, apart from feature extraction, only several
matrix multiplications.4 It is therefore much faster than the
training/update step of the algorithm and no more expensive
than other tracking methods, such as Kalman Filter [25].

5.3 Evaluation of SimBoost

Performance of the road sign classifier trained with the Sim-
Boost algorithm introduced in Sect. 4.1 has been estimated

4 Multiplication in (9) is repeated several times for better accuracy. For
details refer to [21].
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Table 1 Image descriptors and the associated distance metrics used in the experimental evaluation of the traffic sign classifier trained using the
SimBoost algorithm

Image feature Description Associated distance metric

Color-parametrized Haar wavelet [6] Rectangular filters shown in Fig. 11, parametrized with
color, as described in Sect. 5.1. Only the filters of scale
w, h = {4, 8}px, shifted by 1

4 w, 1
4 h along each

dimension were used, where by scale we refer to the
width and height of a single rectangular block of a filter

d(φ j (i1), φ j (i2)) = |v1 − v2)|,
where v1 = φ j (i1), v2 = φ j (i2)

Histogram of oriented
gradients (HOG) [27]

6-bin gradient orientation histograms computed
at all possible image regions satisfying:
w, h = {10, 15, 20}px, dx = 1

2 w, dy = 1
2 h,

where w, h are the width and height of the
analysis region, and dx , dy are the shifts along
each axis

d(φ j (i1), φ j (i2)) =√∑n
k=1(v1,k − v2,k)2, where

v1 = φ j (i1), v2 = φ j (i2),
v1, v2 ∈ R

n , and n is the number
of histogram bins

Region covariance [28] 4 × 4 covariance matrices encoding x and y coordinates
and the first-order image derivatives. Only the regions
of scale w, h = {10, 15, 20}px, shifted by 1

2 w, 1
2 h

along each dimension were considered

d(φ j (i1), φ j (i2)) =√∑n
k=1 ln2 λk(C1, C2), where

{λk(C1, C2)}k=1,...,n are the
generalized eigenvalues of C1
and C2, computed from
λkC1xk = C2xk

Fig. 11 Haar wavelet features used in the experimental evaluation of
the traffic sign classifier trained using the SimBoost algorithm

using the similar dataset as the one used in Sect. 5.1. 7,757 sta-
tic images of 14 circular Japanese road signs were extracted
from the test video sequences such that each sign filled
the entire image, and used to train a 100-feature classifier.
Another 8,434 images were used for testing. The quality and
the illumination in all images varied significantly. When con-
structing the test input pairs, the prototype images of each
class were chosen randomly out of all images available for
this class. Exploiting flexibility of the local distance for-
mulation in (15), three different image descriptors and the
associated distance metrics were used within the SimBoost
framework to populate the pool of input features. They are
listed in Table 1.

Results of the experiment are shown in the confusion
matrices in Fig. 12. As seen, the histograms of oriented gra-
dients and the color-parametrized Haar wavelet filters are the
most useful image descriptors for classification of the traffic
signs. Interestingly, both types of features carry only partly
overlapping pieces of discriminative information. In the Sim-
Boost framework these different nature cues can easily be
intermixed. The classifier trained with both types of descrip-
tors available in the input feature pool achieved a superior
correct classification rate of nearly 76%. In Fig. 13 we have
visualized the first 10 features selected by SimBoost for this
best-performing classifier. It should be noted that a signif-
icant speedup of the classifier can be achieved if all used
feature descriptors are color-aware. In such a case the set of

possible classes can be limited to only those that share the
characteristic rim color that was used as a primary cue at the
detection stage.

5.4 Performance of the entire system

To evaluate the proposed traffic sign detection, tracking and
recognition algorithms altogether, we built a prototype sys-
tem incorporating all three components with their found opti-
mal settings. A demo application was implemented in C++
and part of the computationally demanding image process-
ing operations were handled by the OpenCV library [26].
The system allows manual modification of several param-
eters, among others the frequency of detection,5 the scale
of the signs to be detected, and the frequency of the tracker
update. A list of major parameters is given in Table 2.

We have obtained a number of realistic video sequences to
test an overall performance of the system. Each sequence was
captured with a front-looking wide-angle camera mounted on
board of a vehicle, in various, usually crowded street scenes
in Japan. The illumination of the scene was roughly con-
stant in all test videos. In system runtime, a 720 × 540 pix-
els portion of the scene was cropped from the upper-central
region of each frame of the input video, and further down-
scaled by 50%. The range of radii of the circles captured by
the detector was set to 12–24 pixels and the tracker updated
itself every fU = 15 frames, generating m = 4 new ran-
dom affine transformations in each frame. During the on-line
training of the regression tracker, the affine matrix parameters

5 Exploration of the entire scene in search of the new road sign
candidates in each frame of the input video is unnecessary and can
be performed every k frames without the increase in the miss rate.
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0.00 0.08 0.00 0.01 0.01 0.00 0.01 0.61 0.11 0.00 0.08 0.00 0.08 0.00

0.04 0.02 0.00 0.00 0.04 0.01 0.71 0.07 0.02 0.00 0.01 0.03 0.01 0.04

0.00 0.00 0.16 0.00 0.00 0.83 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.09 0.00 0.00 0.72 0.00 0.01 0.00 0.06 0.00 0.08 0.00 0.03 0.00
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0.01 0.01 0.00 0.00 0.97 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00

0.06 0.00 0.05 0.79 0.00 0.04 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.03

0.01 0.00 0.65 0.01 0.01 0.25 0.00 0.01 0.02 0.00 0.00 0.00 0.00 0.04

0.00 0.58 0.00 0.00 0.15 0.00 0.00 0.00 0.00 0.00 0.19 0.00 0.07 0.00

0.86 0.00 0.00 0.01 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.10

Fig. 12 Classification accuracy of a 100-feature classifier trained using
the SimBoost algorithm and different image descriptors: a color-param-
etrized Haar wavelets [6], b histograms of oriented gradients (HOG),

c 4 × 4 covariance matrices encoding x and y coordinates and the
first-order image derivatives [28], d Haar and HOG features jointly

Fig. 13 10 best features selected by the SimBoost algorithm while training the 14-class road sign classifier using jointly the color-parametrized
Haar wavelet filters and the histograms of oriented gradients. Both kinds of image descriptors are present

were generated randomly within the same ranges as defined
in the experiment from Sect. 5.2, i.e. [−0.2, 0.2] for all
non-translation parameters, and [−0.4, 0.4] for both trans-
lation parameters. Table 3 illustrates the numbers of traf-
fic signs of each class that occurred in the videos and were
detected, together with the numbers of these signs that were
correctly classified.

As seen, an overall error rate of the classifier did not
exceed 15%. Misclassifications were mainly caused by the

motion blur erasing the relevant image gradients, and by
the cumulated reconstruction errors of the tracker. These
errors can partly be attributed to the background fragments
which contaminate the corners of the regions enclosing the
target circular signs. Regarding the other system compo-
nents, the refined Hough circle detector appeared to be rel-
atively accurate and resistant to clutter. Overall, it missed
14 true signs, mostly due to the insufficient figure-back-
ground contrast, and yielded fewer than ten false sign candi-
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Table 2 Parameters of our traffic recognition system

Parameter Description Default value

Detection frequency fD The number of frames between the time points when the sign detector
is run

fD = 5

Sign’s radius range
[rmin, rmax]

Range of radii (in pixels) of circles to be captured by the
detector

rmin = 12, rmax = 24

Minimum amount of
feature in ROI tROI

The minimum cumulative value of feature (color-specific gradient
magnitude in our case) contained in a region to be considered ROI. It
determines the sensitivity of the attention operator and the depth of
the quad-tree recursion

tROI = 6.9

Gradient magnitude
threshold tG

Minimum color-specific gradient magnitude of a pixel to consider it
edge. Hough-style voting is run within each found ROI only from the
edge pixels

tG = 0.1

Hough voting threshold tV Minimum cumulative vote accumulated for a given point in the
parameter space of the regular polygon detector to consider it a
centroid of a potential sign

tV = 0.5

Candidate sign descriptor’s
dimensionality
N × N × M

Dimensionality of the image descriptor calculated around the
candidate sign’s region, where N is the number of spatial bins per
axis and M is the number of histogram bins. It is an argument to the
tracker’s regression function

N = 6, M = 6

Tracker’s update
frequency fU

The number of frames between the time points when the tracker is
re-trained

fU = 15

Per-frame tracker’s training
portion size m

The number of random affine deformation matrices generated per
frame. The total number of such matrices used to re-train the tracker
is equal to fU × m

m = 4

Similarity function’s
complexity cS

The number of weak classifiers incorporated in the global sign
similarity function. It also determines the number of boosting rounds
and hence affects the classifier training time

cS = 100

Temporal weight base b Base of the exponent used in Eq. (25). It determines how much relative
importance is attached by the classifier to the most recent
observations

b = 0.8

Table 3 Classification rates obtained in the dynamic experiment

The numbers of correctly classified signs of each class are given against
the total numbers of such signs detected in the input sequences

Fig. 14 Examples of road signs the refined Hough detector could not
capture

dates. Figure 14 shows several examples of signs our detector
was not able to capture. Finally, the tracker demonstrated
its ability to rapidly correct small affine sign distortions,
which enabled real-time system operation. Example vid-
eos demonstrating this ability are available at: http://aruta.pl/

MVA2009/.

6 Conclusions

In this study we have presented a comprehensive approach
to detection, tracking and recognition of traffic signs from a
moving vehicle. Our system is comprised of three compo-
nents. The detector utilizes a state-of-the-art object detec-
tion technique, but features a Confidence-Weighted Mean
Shift mode-finding algorithm to improve its accuracy and
cope with multiple redundant hypotheses in the detector’s
response space. The main contribution of our work are the
novel tracking and recognition algorithms. The proposed
tracker models the motion of the target through an instance-
specific tracking function. It encodes correlations between
the unique feature representation of a candidate sign and the
affine distortions it is subject to while being approached by
the camera. Based on the Lie group theory such a track-
ing function can be learned and updated instantly from ran-
dom transformations applied to the image of the target in
known pose. A detected and tracked sign candidate is clas-
sified by maximizing its similarity to the class’s prototype
image. This similarity is estimated by a linear combination
of local image descriptor differences and is learned from
image pairs using a novel variant of AdaBoost algorithm,
called SimBoost.
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The proposed algorithms have been evaluated in a num-
ber of experiments involving static road sign images, syn-
thetic image sequences, and real-life video captured with
a car-mounted camera. The first experiment was aimed at
evaluation of the detection refinement algorithm with two
different object detection techniques and identifying the
best-performing refined detector. The second experiment was
intended to demonstrate the ability of the tracker to model the
affine motion of the signs and reconstruct their frontal views
under significant viewpoint changes. In the third experiment,
we estimated the error rate of a classifier trained with different
low-level image descriptors using the SimBoost algorithm.
Based on the comparison of the obtained classification rates,
we determined the most discriminative feature representation
of the traffic signs. The overall performance of the system
was measured based on the prototype C++ implementation
and using realistic traffic video. The obtained results prove
the efficiency of the presented algorithms and show that our
approach could have good prospects for application on board
of intelligent vehicles.
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