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Abstract—We develop a recursive least–squares (RLS) algo-
rithm which employs L1–Lq regularized sparse regressions to
estimate a sparse channel matrix in frequency–and–time selective
fading for multi–input multi–output (MIMO) wireless communi-
cations. We propose an improved sparse RLS by using an order
extension technique for rapid fading channels. Simulation results
demonstrate that the proposed sparse RLS algorithm offers a
significant improvement over the conventional RLS algorithm.

I. I NTRODUCTION

There has emerged a lot of focuses on sparse signal regres-
sions among the researchers in the fields of signal processing
and information theory (e.g., [1–6]). Although those works
contain theoretical fundamentals, most of the algorithms are
not tailored to time–varying environments with real–time
requirements. Recently, Bajwaet al. [2] used the Dantzig
selector [3] and least–squares (LS) for sparse channel sens-
ing. Choi et al. [7] investigated an expectation–maximization
(EM) method for doubly–selective multi–input multi–output
(MIMO) sparse channels. Although those methods offer good
estimates with improved mean–square error (MSE), the under-
lying sparsity is not fully exploited to reduce the complexity.

In [8, 9], anL1–regularized recursive least–squares (RLS)
algorithm was introduced for adaptive filtering. The sparse
RLS algorithm is based on an EM algorithm proposed in
[10]. It was shown that the sparse RLS algorithm significantly
outperforms the conventional RLS algorithm both in terms of
MSE and computational complexity for time–varying sparse
channels. In this paper, we extend it to MIMO systems.
In addition, we improve the algorithm by introducing order
extension techniques (or, basis expansion model) [11–13] to
enhance the ability of channel tacking. For order extensions,
we use anL1–Lq regularized sparse regressions [14, 15]. The
order extension technique enjoys a significant gain in high
SNR regimes and for fast fading, whereas it can degrade in
low SNRs and for slow fading in general. The key idea behind
the use of theL1–Lq regularized sparse regressions for high–
order estimation lies in the fact that the higher–order channel
matrix becomes highly sparse. Therefore, we can expect
that the sparse regression can automatically deal with the
drawback of the high–order estimation schemes in low SNR
regimes. Through computer simulations, we demonstrate that
the proposed sparse high–order RLS algorithm significantly
outperforms conventional schemes in the sense of MSE and

achievable data rate.
Notations: Throughout the paper, we describe matrices and

vectors by bold–face italic letters in capital cases and small
cases, respectively. LetX ∈ Cm×n be a complex–valued
(m × n)–dimensional matrix, whereC denotes the complex
field. The notationsX∗, XT, X†, X−1, tr[X], det[X], and
∥X∥F represent the complex conjugate, the transpose, the
Hermite transpose, the inverse, the trace, the determinant, and
the Frobenius norm ofX, respectively. The operatorvec[X]
denotes the vector–operation which stacks all columns ofX
into a single column vector in a left–to–right fashion, and
the operator⊗ stands for the Kronecker product. The set of
real numbers and integers are denoted byR andN. The non–
negative sets in real numbers and integers areR+ and N+.
A positive ring from1 to m is represented byNm. A matrix
Im denotes anm–dimensional identity matrix. TheLq vector

norm is defined as∥x∥q =
(∑

i |xi|q
)1/q

, theL0–quasi vector
norm∥x∥0 is the number of non–zero entries, andL∞ vector
norm is given as∥x∥∞ = maxi |xi|. A multivariate complex–
valued Gaussian distribution with meanµ and covarianceΣ
is denoted byCN (µ,Σ). A positive operator is written by
(r)+ , max(0, r) for a real valuer ∈ R. The expectation is
represented byE[·].

II. MIMO C HANNEL ESTIMATION SCHEME

A. Channel Model

We considerM ×N MIMO systems in whichM antennas
are used at the transmitter andN antennas are used at the
receiver. Letxm(k) ∈ C be a transmitting signal from them–
th antenna (m ∈ NM ) at thek–th symbol instance. We assume
that no signal is transmitted before the symbol indexk = 1,
i.e., xm(k) = 0 for any k < 1, and that the average power of
the transmission signal is normalized asE[|xm(k)|2] = 1. The
frequency–selective channel is modeled by a sample–space
tapped delay line. Thep–th tap is denoted byhn,m,p(k) ∈ C
for the channel between them–th transmitting antenna and the
n–th receiving antenna at thek–th time instance. We suppose
that the maximum delay in symbol is at mostP .

The receiving signal at thek–th symbol is modeled as

yn(k) =
P∑

p=0

M∑
m=1

hn,m,p(k)xm(k − p) + zn(k), (1)



with yn(k) ∈ C andzn(k) ∈ C being the receiving signal and
the additive noise at then–th receiving antenna (n ∈ NN ).
When we define

y(k) ,
[
y1(k) · · · yN (k)

]T ∈ CN×1, (2)

Hp(k) ,

h1,1,p(k) · · · h1,M,p(k)
...

...
hN,1,p(k) · · · hN,M,p(k)

 ∈ CN×M , (3)

x(k) ,
[
x1(k) · · · xM (k)

]T ∈ CM×1, (4)

z(k) ,
[
z1(k) · · · zN (k)

]T ∈ CN×1, (5)

H(k) ,
[
H0(k) · · · HP (k)

]
∈ CN×M ′

, (6)

χ(k) ,
[
xT(k) · · · xT(k − P )

]T ∈ CM ′×1, (7)

with M ′ = M(P + 1), we can rewrite the receiving signals:

y(k) =

P∑
p=0

Hp(k)x(k − p) + z(k)

= H(k)χ(k) + z(k). (8)

The vectorχ(k) stands for the transmitted signal which stacks
the pastP symbols as well as thek–th signalx(k). Upon the
time instancek, we wish to estimate the time–varying channel
matrix H(k) by using the known transmitted signalx(l) and
the received signaly(l) obtained in the past for anyl ∈ Nk.

B. Conventional RLS Algorithm

Here, we first review one of the most widely used channel
estimation algorithms; a recursive least–squares (RLS) [16].
In the RLS algorithm, an exponentially–weighted MSEE(k)
is minimized as follows

min
Ĥ(k)

{
E(k) ,

k∑
l=1

λk−l
∥∥∥y(l)− Ĥ(k)χ(l)

∥∥∥2
2

= tr
[(
Y k − Ĥ(k)Xk

)
Λk

(
Y k − Ĥ(k)Xk

)†]}
, (9)

where we defined

Y k ,
[
y(1) · · · y(k)

]
∈ CN×k, (10)

Λk , diag
[
λk−1 · · · λ0

]
∈ Rk×k, (11)

Xk ,
[
χ(1) · · · χ(k)

]
∈ CM ′×k. (12)

The parameterλ ∈ R+ is termed forgetting factor which con-
trols the tradeoff between the tracking ability and the noise tol-
erance in time–varying channels. The forgetting factor should
be adjusted according to the channel condition; typically, we
useλ ≃ 0.98. In [17], a near–optimal forgetting factor has
been reported for frequency–flat Rayleigh fading channels in
single antenna systems;λopt ≃ 1 −

(
2(2πfDTs)

2/σ2
)1/3

,
wherefD, Ts andσ2 denote the maximum Doppler frequency,
the symbol duration, and the noise variance, respectively.

The LS solution at thek–th sample is given as

Ĥ(k) = Y kΛX†
k

(
XkΛX†

k

)−1

︸ ︷︷ ︸
Φk ∈CM′×M′

. (13)

The exponential weighting enables a low–complexity imple-
mentation with rank–one update instead of computing a direct
matrix inverse as follows:

ζk =
1

λ
Φk−1χ(k), ek = y(k)− Ĥ(k − 1)χ(k), (14)

Φk =
1

λ
Φk−1 −

ζkζ
†
k

1 + ζ†
kχ(k)

, (15)

Ĥ(k) = Ĥ(k − 1) +
ekζ

†
k

1 + ζ†
kχ(k)

. (16)

It reduces the arithmetic complexity fromO[M ′3] to O[M ′2].

C. Extended–Order RLS Algorithm

In [12], the optimally–weighted LS channel estimation and
the high–order RLS are studied. In general, the conventional
RLS algorithm can suffer from a severe performance degra-
dation in rapid fading channels even if we use an optimized
forgetting factor. To deal with channel variation, high–order
RLS algorithm which extends a polynomial order for re-
gressions was introduced. It offers a significant performance
improvement in rapid fading and high SNR regimes. The high–
order estimation scheme is extended for non–coherent MIMO
communications with Grassmann space–time coding in [13].

Here, we describe the high–order RLS channel estimation
algorithm, in which we model the channel variation in the
past samples (forl ∈ Nk at thek–th estimation symbol) by
higher–order polynomial as follows:

H(l) =

D∑
d=0

ldĤ
[d]
(k) = Ĥ(k)D(l), (17)

where the order–extended channel matrixĤ(k) and the order
extension matrixD(l) are defined as

Ĥ(k) ,
[
Ĥ

[0]
(k) · · · Ĥ

[D]
(k)

]
∈ CN×M ′(D+1), (18)

D(l) ,
[
l0IM ′ · · · lDIM ′

]T ∈ CM ′(D+1)×M ′
. (19)

The channel matrixĤ
[d]
(k) ∈ CN×M ′

corresponds to thed–
th order term of the time–varying channel polynomial model.
We assume that the order extension is up toD ∈ N+ which
should be optimized according to the channel condition.

With the aforementioned channel model, the optimization
problem for the high–order channel estimation is reformulated:

min
Ĥ(k)

{
E ′(k) ,

k∑
l=1

λk−l
∥∥∥y(l)− Ĥ(k)D(l)χ(l)

∥∥∥2
2

= tr
[(
Y k − Ĥ(k)X k

)
Λk

(
Y k − Ĥ(k)X k

)†]}
, (20)

where

X k ,
[
D(1)χ(1) · · · D(k)χ(k)

]
∈ CM ′(D+1)×k. (21)

Hence, substitutingD(k)χ(k) for χ(k) andĤ(k) for Ĥ(k)
in (15) and (16), we can implement the high–order estimation
in a recursive manner. With an RLS estimation of high–order



channelĤ(k), the desired estimate of the MIMO channel is
obtained asĤ(k) = Ĥ(k)D(k).

The higher–order RLS channel estimation offers more accu-
rate estimates for fast fading channels in high SNR regimes,
while it can degrade the performance in low SNRs and for
slow fading channels due to over–fitting loss. In this paper,
we introduceL1–Lq regularized regression scheme to deal
with the over–fitting loss. The key idea lies in the fact that the
channel gains of higher–order terms tend to be small in slow
fading and the order–extended channelĤ(k) becomes sparse.

III. L1–Lq REGULARIZED SPARSEHIGH–ORDER RLS

In this section, we first introduceL1–regularized sparse RLS
algorithm, proposed in [8, 9], which is based on the lasso
sparse matrix regression [19, 20]. We then generalize it to the
group lasso sparse regression [14, 15], i.e.,L1–Lq regularized
RLS algorithm, for order–extended channel estimations.

A. Sparse Channel Matrix Regression

The frequency–selective wireless channel usually has a
few significant multi–path components, that leads to a sparse
matrix forH(k) ∈ CN×M ′

. More importantly, the tap position
for those principal paths is not known prior to the estimation in
general. A joint estimation of tap positions and tap weights can
be performed by novel approaches of sparse matrix regression
techniques in compressive sensing, such asL0 matching
pursuit,L1 lasso [19, 20],L1–L2 group lasso [21], andL1–
L∞ logistic regression methods [14].

Suppose that there are few non–zero taps in the channel, i.e.,∥∥vec[H(k)]
∥∥
0
= NMQ ≪ NM(P +1). A sparse regression

is obtained by solving the following optimization problem:

min
Ĥ(k)

∥∥vec[Ĥ(k)
]∥∥

0
, s.t. E(k) ≤ ϵ, (22)

where ϵ is a positive constant controlling the allowable
estimation error level. The above optimization problem is
computationally intractable due to its non–convexity. A con-
vex relaxation provides a viable alternative, whereby theL0

quasi–norm,
∥∥vec[Ĥ(k)

]
∥0, is replaced by theL1 norm,∥∥vec[Ĥ(k)

]
∥1. The Lagrangian formulation shows that the

solution can be equivalently derived from the problem:

min
Ĥ(k)

1

σ2
E(k) + γ

∥∥vec[Ĥ(k)
]∥∥

1
, (23)

where a Lagrangian multiplierγ ∈ R+ represents a tradeoff
between error and sparsity. TheL1–regularized regression can
be solved in a computationally efficient way as in [22]. Note
that the transmitting signalx(l) should be properly chosen so
that there exists a unique solution [2, 18].

B. L1–Regularized Sparse RLS Algorithm

In [8, 9], L1–regularized sparse RLS regression (termed
SPARLS) was introduced for the application of the zero–th
order RLS channel estimation in single–antenna systems. After
reviewing SPARLS with MIMO extensions in this section, we
will further extend it to high–order RLS algorithm by means
of L1–Lq regularized estimation method.

In appendix, we present an algorithm derivation of SPARLS
with a slight modification from [8–10] for MIMO channels.
The algorithm is summarized below

1: Initialize A(0) = 0, B(0) = 0, Ĥ(0) = 0
2: for all input χ(k) and observationy(k) do
3: A(k) = λA(k − 1) + α2

σ2χ(k)χ
†(k)

4: B(k) = λB(k − 1) + α2

σ2 y(k)χ
†(k)

5: repeat
6: Ĝ(k) = Ĥ(k)

(
IM ′ −A(k)

)
+B(k)

7: Ĥ(k) = Fth

(
Ĝ(k), α2γ

)
8: until Ĥ(k) converges
9: end for

The functionFth(x, β) for x ∈ C andβ ∈ R+ is referred to
as asoft–thresholdfunction [10], which is defined as

Fth(x, β) , x
(
1− β

2|x|

)
+
. (24)

For a complex–valued matrix argument̂G(k) ∈ CN×M ′
, the

function Fth(Ĝ(k), β) generates element–wise thresholding
for each complex–valued entry. The algorithm described above
can be further simplified by considering zero–valued entries
within thresholding (for more detail description, see [8, 9]). It
has been reported that a couple of iterations are sufficient for
convergence. The computational complexity becomesO[QM ′]
which is significantly lower than that of the conventional RLS,
O[M ′2], for a sparse matrixQ ≪ M ′.

C. L1–Lq Regularized Sparse High–Order RLS Algorithm

Since the sparsity of the high–order channel matrixH(k)
is thought to be more significant when we extend polynomial
order D, the sparse regression becomes more important in
high–order RLS estimation even if the original channel matrix
H(k) is not sparse. To the best of authors’ knowledge, there is
no literature investigating the high–order sparse regression. We
now propose a high–order RLS algorithm which employsL1–
Lq regularized sparse matrix regression for order extensions.

We focus onL1–Lq regularized regression method for the
application of high–order RLS channel estimation as follows:

min
Ĥ(k)

1

σ2
E ′(k) + γ

∥∥vec[Ĥ(k)
]∥∥

1
+

D∑
d=0

µd

∥∥vec[Ĥ [d]
(k)

]∥∥
q
.

(25)

The first term is the weighted MSE for high–order RLS defined
in (20), the next term is anL1–norm penalty for the matrix
sparsity, and the last term denotes a summation ofLq–norm
penalties for high–order channel matrices. For thed–th order
polynomial, we introduced individual penalty parametersµd ∈
R+. If we setµd = 0, it reduces to the lasso regression for
order–extended sparse RLS.

In appendix, the extension for high–order RLS withL1–Lq

regularized sparse regressions is described. We summarize the
high–order sparse RLS as follows:

1: Initialize A(0) = 0, B(0) = 0, Ĥ(0) = 0
2: for all input χ(k) and observationy(k) do
3: A(k) = λA(k − 1) + α2

σ2D(k)χ(k)χ†(k)D†(k)



4: B(k) = λB(k − 1) + α2

σ2 y(k)χ
†(k)D†(k)

5: repeat
6: Ĝ(k) = Ĥ(k)

(
IM ′(D+1) −A(k)

)
+B(k)

7: Ĥ
[d]
(k) = Fth

(
Ĝ

[d]
(k), α2(γ + µdωd)

)
8: until Ĥ(k) converges
9: Ĥ(k) = Ĥ(k)D(k)

10: end for
The parameterωd ∈ R+ is dependent onq, as addressed in
the appendix.

It should be noted that there are many choices to make a
partition for Ĥ(k) when we use the group lasso regression.
We introduce two strategies; i)order–domain groupingwhich

makesD+1 groups of{Ĥ
[d]

0 (k), . . . , Ĥ
[d]

P (k)} for each order
d as in (25) and ii)tap–domain groupingwhich makesP +1

groups of{Ĥ
[0]

p (k), . . . , Ĥ
[D]

p (k)} for each tapp. This paper
focuses on the order–domain grouping for MSE evaluations.

IV. PERFORMANCEEVALUATIONS

A. Channel Estimation Error

We evaluate the MSE between the estimated channel matrix
Ĥ(k) and the desired channel matrixH(k):

ε2k , 1

N
E
[∥∥H(k)− Ĥ(k)

∥∥2
F

]
. (26)

We define the average SNR byρ , 1/σ2, where we as-
sume E

[
z(k)z†(k)

]
= σ2IN , E

[
x(k)x†(k)

]
= IM , and

E
[
H(k)H†(k)

]
= IN . We useP = 20 taps for channel

estimations. The number of arriving principal paths isQ = 6,
whose tap positions are randomly selected out of20 taps.
Each principal path has an identical gain on average, and it
is generated by 32 equal–gain subpaths based on the Jakes
model with the maximum Doppler frequencyfD. We consider
M = 2 transmitting antennas andN = 2 receiving antennas.
We generate ani.i.d. random signal following a Gaussian
distribution for the transmitting signal, i.e.,xm(l) ∼ CN (0, 1)
for all l ∈ N+ andm ∈ NM . Note that such a Gaussian signal
is not optimal for a training sequence but for an information
sequence. The MSE is evaluated at the symbol instance of
k = 128. We suppose that the receiver knows the transmitted
signal for channel tracking. For high–order sparse RLS, we
use theL1–L2 regularization.

In Fig. 1, we plot the MSE performance as a function of
normalized maximum Doppler frequencyfDTs for an average
SNR ofρ = 40 dB. For reference, we present the performance
of the conventional RLS algorithm using theD–th order
polynomial (forD ∈ {0, 1, 2}) with and without the genie–
aided ideal knowledge of the non–zero tap positions. For each
simulation point, the forgetting factorλ is manually optimized
to obtain the minimum MSE.

From Fig. 1, it is observed that the MSE performance is
severely degraded especially for the conventional zero–th order
RLS algorithm as the fading speed (fDTs) increases. The 1–
st order RLS improves MSE for fast fading aroundfDTs ≃
0.001, whereas it has a poor performance in slow fading due
to the over–fitting loss. Compared with the genie–aided case,
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Fig. 1. MSE performance as a function of normalized maximum Doppler
frequencyfDTs for an average SNR of40 dB (2× 2 MIMO, P = 20 taps,
Q = 6 paths).

higher–order RLS is more susceptive to the estimation error
caused by the channel sparsity in slow fading;10dB and7 dB
loss in MSE are seen for 1–st and 2–nd order RLS algorithms,
respectively, atfDTs = 10−5. We can see that the performance
of the zero–th order sparse RLS algorithm is comparable to
the ideal performance of the genie–aided zero–th order RLS
for fast fading regimes. The 1–st order sparse RLS further
improves the MSE in fast fading, and its performance in slow
fading is close to the genie–aided 1–st order RLS.

Fig. 2 shows the MSE performance as a function of average
SNR ρ for a normalized maximum Doppler frequency of
fDTs = 0.001. It is found that an optimized parameterγ
is well approximated byγ ≃ aρb with proper constantsa
and b over the whole SNR regimes. As shown in Fig. 2,
the performance curve of the conventional zero–th order RLS
saturates as an average SNR increases, and the 1–st order
RLS outperforms the zero–th order RLS for higher SNRs than
25 dB. The zero–th order SPARLS significantly improves the
MSE of the conventional zero–th order RLS. More remarkably,
it offers good performance close to the ideal case where the
tap positions for non–zero entries are known at the receiver. It
suggests that the SPARLS successfully estimates joint tap co-
efficients and positions with the use ofL1–regularized sparse
regressions. One can see that the high–order RLS degrades
the MSE performance considerably for low SNR regimes
for frequency–selective sparse channels, although it achieves
good performance for high SNRs. This drawback is solved by
the proposed high–order SPARLS, which can achieve near–
optimal performance of genie–aided zero–th order RLS in low
SNRs while its performance in high SNRs approaches to the
genie–aided 1–st order RLS. The 2–nd order regression is not
of use for less–than35dB SNRs in this channel condition.
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B. Capacity Upper-Bound

The channel estimation error in MSE has a great impact
on the equalization performance (e.g., in bit error rate) and
the achievable data rate. We show the effect of MSE on the
data rate in Fig. 3, where we model the estimation error as an
additional Gaussian noise which degrades the rate as follows:

Rk ≤ E

[
log2 det

[
IN +

1

σ2 + ε2k
H(k)H†(k)

]]
≤ min(N,M ′) log2

(
1 +

1

σ2 + ε2k

)
, (27)

where we use Jensen’s inequality. In this figure, we also
present the ideal rate performance when perfect channel state
information (CSI) is available at receivers (ε2k = 0). Shown in
this figure, the conventional zero–th order RLS do not perform
well, especially in the high SNR regimes; approximately
12bps/Hz (over the ideal rate with perfect CSI) is lost at an
average SNR of40dB. It is demonstrated that the high–order
sparse RLS algorithm offers the best performance over all the
SNR regimes in the sense of achievable rate as well as MSE.

V. CONCLUSION

We proposed an improved channel estimation scheme which
efficiently estimates a sparse channel matrix in doubly–
selective fading MIMO channels by means ofL1–Lq regu-
larized high–order RLS algorithm. Through computer simu-
lations, we demonstrated that the proposed high–order sparse
RLS algorithm significantly improve MSE, and the achievable
data rate can be considerably increased compared with the
conventional RLS algorithm. The proposed algorithm can
be implemented for multi-carrier transmissions as well as
single-carrier transmissions. Comparisons to the Fourier basis
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expansion model, fractional-sample-space tap delay line and
tap-position change remain as future works.

APPENDIX

A. Penalized ML Problem

Let us consider the exponentially–weighted noise:
Z ′

k = ZkΛ
−1/2
k , which follows the Gaussian distribution,

vec
[
Z ′

k

]
∼ CN

(
0, σ2Λ−1

k ⊗ IN

)
. When we assume the

observationY k is modeled as

Y k = Ĥ(k)Xk +Z ′
k, (28)

the conditional probability ofY k givenXk andĤ(k) is given

Pr
(
Y k | Xk, Ĥ(k)

)
=

exp
(
− 1

σ2 E(k)
)

det
[
πσ2Λ−1

k

]N , (29)

where E(k) is a weighted MSE defined in (9). It implies
that the L1–regularized problem in (23) is identified as a
maximum–likelihood (ML) estimation problem with a penalty:

max
Ĥ(k)

log Pr
(
Y k | Xk, Ĥ(k)

)
− γ

∥∥vec[Ĥ(k)
]∥∥

1
. (30)

This penalized ML problem is efficiently solved by an
expectation–maximization (EM) approach with the noise de-
composition, proposed in [8–10].

B. Noise Decomposition

We introduce a noise decomposition asZ ′
k = αN kXk +

Ξk, whereN k ∈ CN×M ′
andΞk ∈ CN×k are decomposed

noise matrices of the Gaussian distributions:

vec[N k] ∼ CN
(
0, IM ′ ⊗ IN

)
, (31)

vec[Ξk] ∼ CN
(
0, (σ2Λ−1

k − α2X†
kXk)

T ⊗ IN

)
, (32)



whereα ∈ R+ is a decomposition constant which must fulfil
α2 ≤ σ2/λmax[X

†
kXk] with λmax[·] being the maximum

eigenvalue. Sinceλmax[X
†
kXk] ≃ M ′ for large k and for

independent input,α2 = σ2/5M ′ can satisfy its requirement
condition with a high probability.

With the decomposed noise matricesN k andΞk, we can
rewrite the received signal model in (28) as follows:

Y k = G(k)Xk +Ξk, G(k) = Ĥ(k) + αN k, (33)

whereG(k) ∈ CN×M ′
is a noisy channel matrix.

C. Expectation Step

The conditional probability ofG(k) given an estimatêH(k)
and an observationY k is a Gaussian distribution with mean

Ĝ(k) , Ĥ(k)
(
IM ′ − α2

σ2
XkΛkX

†
k

)
+
α2

σ2
Y kΛkX

†
k. (34)

This is the expectation step (E–step) of the EM algorithm to
obtain the expectation̂G(k) given an estimateĤ(k). Note
that if Ĝ(k) converges toĤ(k) such thatĜ(k) = Ĥ(k), the
above equation reduces into the well–known normal equation,
Ĥ(k)XkΛkX

†
k = Y kΛkX

†
k for the conventional RLS

estimation derived in (13). It implies that using smallerα
approaches the performance of the conventional RLS estima-
tion, while largerα offers a higher gain of the EM algorithm
for sparse matrices. For faster convergence, we can use an
estimated channel by the conventional RLS algorithm as an
initial expectation ofĜ(k) in the E–step.

D. Maximization Step

In the maximization step (M–step) of the EM algorithm, we
solve the penalized ML problem given an expectedĜ(k). We
have

log Pr
(
Y k | Xk, Ĥ(k), Ĝ(k)

)
= −

∥∥Ĥ(k)− Ĝ(k)
∥∥2
F

α2
− κ,

where κ , NM ′ log
(
α2

)
is a constant. The optimization

problem is rewritten as

min
Ĥ(k)

∥∥vec[Ĥ(k)− Ĝ(k)
]∥∥2

2
+ α2γ

∥∥vec[Ĥ(k)
]∥∥

1
. (35)

The maximized solution is obtained as

Ĥ(k) = Fth

(
Ĝ(k), α2γ

)
. (36)

E. Order Extensions

For high–order RLS estimation, we can use a similar EM
algorithm to solveL1–Lq regularized sparse regressions, by
replacingXk with X k andĤ(k) with Ĥ(k). For the E–step,
we just need to use a properα such that

α2 ≪ σ2

λmax[X †
kX k]

≃ σ2

M ′
k2 − 1

k2(D+1) − 1
≃ σ2

M ′k2D
. (37)

For the M–step, we have the problem for each order:

min
Ĥ

[d]
(k)

1

α2

∥∥vec[Ĥ [d]
(k)− Ĝ

[d]
(k)

]∥∥2
2
+ γ

∥∥vec[Ĥ [d]
(k)

]∥∥
1

+ µd

∥∥vec[Ĥ [d]
(k)

]∥∥
q
. (38)

For q ∈ {1, 2}, the optimal solution is given as

Ĥ
[d]
(k) = Fth

(
Ĝ

[d]
(k), α2

(
γ + µdωd

))
, (39)

whereωd is chosen such thatωd = 1/
∥∥vec[Ĥ [d]

(k)]
∥∥
1

for
q = 2 andωd = 1 for q = 1. For more generalq, see [15].
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