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Abstract
We develop a recursive least squares (RLS) algorithm which employs L1-Lq regularized sparse
regressions to estimate a sparse channel matrix in frequency time selective fading for multi
output (MIMO) wireless communications. We propose an improved sparse RLS by using an
order extension technique for rapid fading channels. Simulation results demonstrate that the
proposed sparse RLS algorithm offers a significant improvement over the conventional RLS
algorithm.
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Abstract—We develop a recursive least—squares (RLS) algo- achievable data rate.
rithm which employs £,-L, regularized sparse regressions to  Notations: Throughout the paper, we describe matrices and

estimate a sparse channel matrix in frequency—and—time selectlvevectors by bold—face italic letters in capital cases and small

fading for multi-input multi—output (MIMO) wireless communi- . X
cations. We propose an improved sparse RLS by using an order C2S€S, respectively. LeX’ < C™*" be a complex-valued

extension technique for rapid fading channels. Simulation results (m x n)—dimensional matrix, wher€ denotes the complex
demonstrate that the proposed sparse RLS algorithm offers a field. The notationsx*, X, X, X!, tr[X], det[X], and
significant improvement over the conventional RLS algorithm. | X|lr represent the complex conjugate, the transpose, the
Hermite transpose, the inverse, the trace, the determinant, and
the Frobenius norm o, respectively. The operataiec[X]
There has emerged a lot of focuses on sparse signal regtisiotes the vector—operation which stacks all columnXof
sions among the researchers in the fields of signal processimg a single column vector in a left—to—right fashion, and
and information theory (e.g., [1-6]). Although those workthe operatorz stands for the Kronecker product. The set of
contain theoretical fundamentals, most of the algorithms amal numbers and integers are denoted®bgndN. The non-
not tailored to time—varying environments with real-tim@egative sets in real numbers and integersRyeand N .
requirements. Recently, Bajwet al. [2] used the Dantzig A positive ring from1 to m is represented b{¥,,,. A matrix
selector [3] and least-squares (LS) for sparse channel sehs-denotes amn—dimensional identity matrix. Th€, vector
ing. Choiet al. [7] investigated an expectation—maximizatiothgrm is defined aiz|, = (3, ‘xi‘q)l/q, the £o—quasi vector
(EM) method for doubly—selective multi-input multi-outputorm ||z||, is the number of non—zero entries, afid, vector
(MIMO) sparse channels. Although those methods offer goegrm is given ad/z||o = max; |z;]. A multivariate complex—
estimates with improved mean-square error (MSE), the und@siyed Gaussian distribution with meanand covariances
lying sparsity is not fully exploited to reduce the complexityis denoted byCA/(1, X). A positive operator is written by
In [8,9], an £,-regularized recursive least-squares (RLS)), £ max(0,r) for a real valuer € R. The expectation is
algorithm was introduced for adaptive filtering. The spars@presented b{[ .
RLS algorithm is based on an EM algorithm proposed in
[10]. It was shown that the sparse RLS algorithm significantly [I. MIMO C HANNEL ESTIMATION SCHEME
outperforms the conventional RLS algorithm both in terms g, channel Model

MSE and compgtanonal complexity for time—varying sparse We considerl x N MIMO systems in whichlM antennas
channels. In this paper, we extend it to MIMO systems.

" : . . . are used at the transmitter add antennas are used at the
In addition, we improve the algorithm by introducing order ~ . s ;

. . . . receiver. Letr,, (k) € C be a transmitting signal from the—
extension techniques (or, basis expansion model) [11—13]t 0

enhance the ability of channel tacking. For order extensioq'sI antennas € Ny) at thek—th symbol instance. We assume

. . at no signal is transmitted before the symbol index 1,
we use anC,—L, regularized sparse regressions [14,15]. The (k) = 0 for any k < 1, and that the average power of

. . ; S ST e,
order extension technique enjoys a significant gain in high”’ o . . . o
SNR regimes and for fast fading, whereas it can degradegﬂﬂne transmission signal is normalizedigge,,, (k)|"] = 1. The

f(r]equency—selective channel is modeled by a sample—space

low SNRs and for slow fading in general. The key idea behiq . )

. ; . tapped delay line. The-th tap is denoted b¥,, ,,, ,(k) € C
the use O.f theﬁ“& r(_egularlzed Sparse regressions for hlghﬂ)p?he chanzel between thne—rt)h transmitting%hterz;éa)and the
order estimation lies in the fact that the higher—order channqg_[th receiving antenna at the-th time instance. We suppose
matrix becomes highly sparse. Therefore, we can expiﬁ‘tﬂ the maxigr;num delav in symbol is at mdgt. PP
that the sparse regression can automatically deal with t he receiving sianal th thle)ith svmbol is modeled as
drawback of the high—order estimation schemes in low SNR gsig y
regimes. Through computer simulations, we demonstrate that P M
the proposed sparse high-order RLS algorithm significantly ~ ¥n(k) = > > hnmp(B)zm(k —p) + za(k), (1)

outperforms conventional schemes in the sense of MSE and p=0m=1

I. INTRODUCTION



with y,,(k) € C andz, (k) € C being the receiving signal andThe exponential weighting enables a low—complexity imple-
the additive noise at the—th receiving antennan(€ Ny). mentation with rank—one update instead of computing a direct

When we define matrix inverse as follows:
y(k) 2 [ (k) - yn(k)] eV, ) ¢ =~y ix(k), e = (k) — H(k— Dx(k), (14)
A
hiap(k) - himp(k) 1 ¢.cl
H,(k) £ eCV M (3) by, = Xsﬁk,l - #T;(k)’ (15)
hnap(k) - A oarp(k) R R ];kCT
2(k) 2 [e1(k) - wu(k)]’ € CMXL, 4 HE=HE-1)+ TT;(/@ (16)
s T o oNx1 g
2(k) = [21(k) k)] e €, , ©) It reduces the arithmetic complexity fro@[M’3] to O[M"?].
Hk) - [HO(k) Hp(k)] e 7 ©) C. E ded—Order RLS Algorith
(k) 2 [T (k) - a:T(k:fP)]T e cMx1 @ © xtended—Order gorithm

. . S In [12], the optimally—weighted LS channel estimation and
with M" = M (P + 1), we can rewrite the receiving signals: the high—order RLS are studied. In general, the conventional

P RLS algorithm can suffer from a severe performance degra-

y(k) = ZHp(k)a:(k —p)+ z(k) dation in rapid fading channels even if we use an optimized
p=0 forgetting factor. To deal with channel variation, high—order

= H(k)x(k) + z(k). (8) RLS algorithm which extends a polynomial order for re-

ressions was introduced. It offers a significant performance

The vectorx (k) stands for the transmit?ed signal which StaCk%nprovement in rapid fading and high SNR regimes. The high—
the pastP” symbols as well as the-th signalz(k). Upon the order estimation scheme is extended for non—coherent MIMO

time instancek, we wish to estimate the time-varying channel, mnications with Grassmann space—time coding in [13].
matrix H (k) by using the known transmitted signa({) and Here, we describe the high—order RLS channel estimation

the received signay(l) obtained in the past for anye N;. algorithm, in which we model the channel variation in the
B. Conventional RLS Algorithm past samples (fof € Nj, at the k—th estimation symbol) by
Here, we first review one of the most widely used channBigher—order polynomial as follows:

estimation algorithms; a recursive least-squares (RLS) [16]. D A
In the RLS algorithm, an exponentially-weighted MSE:) H(l) = ZldH (k) = H(k)D(1), (17)
is minimized as follows d=0
k ) N
. a k1 - where the order—extended channel ma#xk) and the order
Igl(llg {g(k) a ;)‘ Hy(l) a H(k)X(l)Hg extension matrixD(l) are defined as
N A ? A | o [0] r[D] NxM'(D+1)
=tr[(Yk—H(k)Xk)Ak(Yk—H(k)Xk)w}, @ FAw=[a"w . AV w|ec . @a8)
anpor.. ... 1pr. % M’ (D4+1)x M’
where we defined D() = [I°Tu PIw] eC - (19

7yl

Y2 [y(l) - y(k)] e CVE (10) The channel matrisl * (k) € CN*M’ corresponds to thé—

Ay 2 diag [)\k—l . )\0] € RF¥k. (11) th order term of the time—varying ghar_mel polynomial model.
N . We assume that the order extension is uptee N, which

Xk = [X(l) X(/f)] eC : (12)  should be optimized according to the channel condition.

The parameteh € R, is termed forgetting factor which con- With the aforementioned channel model, the optimization
trols the tradeoff between the tracking ability and the noise tdiroblem for the high—order channel estimation is reformulated:
erance in time—varying channels. The forgetting factor should k
be adjusted according to the channel condition; typically, wemin {5’(kz) £ ZAk‘lHy(Z) - ?—l(k:)D(l)x(l)H
use ) ~ 0.98. In [17], a near—optimal forgetting factor has #(*) =1
been reported for frequency—flat Rayleigh fading channels in N N §
single antenna systemsi,,, ~ 1 — (2(27rfDTS)2/02)1/3, - tr[(Y’“ —HE)Xi) Ak (Y~ H(R)X) ”’ (20)
where fp, Ty ando? denote the maximum Doppler frequencyWh

: . : . ere
the symbol duration, and the noise variance, respectively.

The LS solution at thé—th sample is given as X, 2 [DW)x(1) - Dk)x(k)] e CM' P>k (21)
. -1 N N
H(k) = YkAXi, (XkAXL) . (13) Hence, substituting> (k)x (k) for x(k) and (k) for H (k)
_— in (15) and (16), we can implement the high—order estimation

By € CM/ XM in a recursive manner. With an RLS estimation of high—order



channel?-l( ), the desired estimate of the MIMO channel is In appendix, we present an algorithm derivation of SPARLS

obtained asH (k) = #H(k)D(k). with a slight modification from [8-10] for MIMO channels.
The higher—order RLS channel estimation offers more accike algorithm is summarized below

rate estimates for fast fading channels in high SNR regimes;. |nitialize A(0) =0, B(0) =0, ﬁ(o) -0

while it can degrade the performance in low SNRs and fob. for all input x (k) and observatiory(k;) do

slow fading channels due to over—fitting loss. In this paperg. A(k) = Ak — 1) + QX(k)XT(k)

we introduce£,—L, regularized regression scheme to deal4: B(k) = \B(k 1)+ 2y(k)x7(k)

with the overfitting loss. The key idea lies in the fact that the5: repeat 7

channel gains of higher—order terms tend to be small in slow. AN 6 L

fading and the order—extended chanf&lk) becomes sparse. VE ?I((]Z)) :I;t(hk()éI(kM)’ a;;l)(k)) +B(k)

. £;—L, REGULARIZED SPARSEHIGH—ORDERRLS 8: until H(k) converges

In this section, we first introducé, —regularized sparse RLS % €nd fc?r _
algorithm, proposed in [8,9], which is based on the lassdwe function 7, (z, 8) for z € C and 5 € Ry is referred to
sparse matrix regression [19, 20]. We then generalize it to tAg asoft-thresholdunction [10], which is defined as

group lasso sparse regression [14, 15], k=L, regularized B
RLS algorithm, for order—extended channel estimations. Fen(z, B) = (1 - ﬂ) (24)
A. Sparse Channel Matrix Regression For a complex—valued matrix argume@t(k) € CN*M'| the

The frequency—selective wireless channel usually hasfunction F;,(G(k), 5) generates element-wise thresholding
few significant multi-path components, that leads to a spaffes each complex—valued entry. The algorithm described above
matrix for H (k) € CN>*M’_More importantly, the tap position can be further simplified by considering zero-valued entries
for those principal paths is not known prior to the estimation iwithin thresholding (for more detail description, see [8, 9]). It
general. A joint estimation of tap positions and tap weights céxas been reported that a couple of iterations are sufficient for
be performed by novel approaches of sparse matrix regressiomvergence. The computational complexity beco®g3aN ']
techniques in compressive sensing, such Las matching which is significantly lower than that of the conventional RLS,
pursuit,[,1 lasso [19, 20],£,—L, group lasso [21], andl;— O[M'?], for a sparse matrix) < M.

~ logistic regression methods [14]. C. £L1-L, Regularized Sparse High—Order RLS Algorithm

Suppose that there are few non—zero taps in the channel, i.€.,

|[vec[H (k ||0 = NMQ < NM(P+1). A sparse regression Since the sparsity of the high—order channel mamigk)

is obtained by solving the following optimization problem: is thought to be more significant when we extend polynomial
. order D, the sparse regression becomes more important in
min  ||vec[H (k)]
)

1 o st E(k)<e  (22) high-order RLS estimation even if the original channel matrix
H (k) is not sparse. To the best of authors’ knowledge, there is
where ¢ is a positive constant controlling the allowableno literature investigating the high—order sparse regression. We
estimation error level. The above optimization problem igsow propose a high—order RLS algorithm which empldys-
computationally intractable due to its non—convexity. A cong, regularized sparse matrix regression for order extensions.
vex relaxation provides a viable alternative, whereby fhe We focus onﬁl_ﬁq regularized regression method for the
quasi—norm, ||vec[H (k)]||o, is replaced by theC; norm, application of high-order RLS channel estimation as follows:
||vec[H(k)]|l:. The Lagrangian formulation shows that the

solution can bé equivalently derlvedAfrom the problem: ,T(l,?) 95/ + 7Hvec Hl n ZMdHVeC (k)] Hq
min 60+ vec[H D), (23) (25)

where a Lagrangian multipliey € R, represents a tradeoffThe first term is the weighted MSE for high—order RLS defined

between error and sparsity. Tiie—regularized regression can" (20). the dne;](t tlerm is am:,jl —norm penalty for the matrix
be solved in a computationally efficient way as in [22]. Not§Parsity, and the last term denotes a summatiod snorm

that the transmitting signak(1) should be properly chosen SOpenal'ues for high—order channel matrices. For drhth order
that there exists a unique solution [2, 18]. polynomial, we introduced individual penalty parameteysc
' Ry. If we setuy = 0, it reduces to the lasso regression for

B. £,—-Regularized Sparse RLS Algorithm order—extended sparse RLS.

In [8,9], £i—regularized sparse RLS regression (termed !N appendix, the extension for high—order RLS with-£,
SPARLS) was introduced for the application of the zero—fi¢gularized sparse regressions is described. We summarize the
order RLS channel estimation in single—antenna systems. Affégh—order sparse RLS as follows:
reviewing SPARLS with MIMO extensions in this section, we 1: Initialize .A(0) = 0, B(0) = 0, H(0) =
will further extend it to high—order RLS algorithm by means 2: for all input x(k) and observatiory(k) do
of £1—L, regularized estimation method. 3 Ak) = AkE-1)+ %D(k)x(k)xT(k)DT(k)



4 Bk) = MB(k — 1) + &y (k)x! (k)D' (k) ° RIS O o
5: repeat sl RLS 1st @

6 G(k) = 'i‘:[(k:) (IM/(DJrl) - A(k)) + B(k) EEAAES (1)21 ——

n A = Fa (@ 0),020 + pawa) o RRYRIE o

) o o @Y T Hidld RLS 2nd (Genie) B

8 until H(k) converges A5

9:

H(k) = H(k)D(k)
10: end for
The parametew,; € R, is dependent oy, as addressed in
the appendix.

It should be noted that there are many choices to make a§ 30¢
partition for H(k) when we use the group lasso regression. =2

Square Error (dB)

We introduce two strategies; drder—domain groupingvhich 2% -
makesD +1 groups of{FIgd] (k). ..., D (1)) for each order -40 =
d as in (25) and iitap—domain groupingvhich makesP + 1 45 o ' 1
groups of{I?[LO](k), . ISIPD (k)} for each tapp. This paper ¢ mo
focuses on the order—domain grouping for MSE evaluations.  -50 - = ” = "
10 10 10 10 10
IV. PERFORMANCEEVALUATIONS Normalized Maximum Doppler Frequency
A. Channel Estimation Error Fig. 1. MSE performance as a function of normalized maximum Doppler
We evaluate the MSE between the estimated channel mafffguency/o for an average SNR of0dB (2 x 2 MIMO, 7= 20 taps,
H (k) and the desired channel mattH (k): = 6 paths).
e & %E[HH(I{) ~H®)[3]. (26)

higher—order RLS is more susceptive to the estimation error

We define the average SNR hy £ 1/0%, where we as- caused by the channel sparsity in slow fadibggB and7 dB
sumeE[z(k)z'(k)] = o®In, E[z(k)x'(k)] = I, and lossin MSE are seen for 1-st and 2-nd order RLS algorithms,
]E[H(k)HT(k:)] = Iy. We useP = 20 taps for channel respectively, afpT, = 10~°. We can see that the performance
estimations. The number of arriving principal pathsjs= 6, of the zero—th order sparse RLS algorithm is comparable to
whose tap positions are randomly selected out@ftaps. the ideal performance of the genie—aided zero—-th order RLS
Each principal path has an identical gain on average, andat fast fading regimes. The 1-st order sparse RLS further
is generated by 32 equal-gain subpaths based on the Jakgsoves the MSE in fast fading, and its performance in slow
model with the maximum Doppler frequengy. We consider fading is close to the genie—aided 1-st order RLS.
M = 2 transmitting antennas and = 2 receiving antennas. Fig. 2 shows the MSE performance as a function of average
We generate an.i.d. random signal following a GaussianSNR p for a normalized maximum Doppler frequency of
distribution for the transmitting signal, i.ez,, (1) ~ CN(0,1) fpTs = 0.001. It is found that an optimized parameter
for all I € N, andm € Ny,. Note that such a Gaussian signais well approximated byy ~ ap® with proper constants
is not optimal for a training sequence but for an informatioand b over the whole SNR regimes. As shown in Fig. 2,
sequence. The MSE is evaluated at the symbol instancetlod performance curve of the conventional zero—th order RLS
k = 128. We suppose that the receiver knows the transmittedturates as an average SNR increases, and the 1-st order
signal for channel tracking. For high—order sparse RLS, virLS outperforms the zero—th order RLS for higher SNRs than
use thel;—L- regularization. 25dB. The zero—th order SPARLS significantly improves the

In Fig. 1, we plot the MSE performance as a function d¥ISE of the conventional zero—th order RLS. More remarkably,
normalized maximum Doppler frequengy T, for an average it offers good performance close to the ideal case where the
SNR of p = 40 dB. For reference, we present the performandap positions for non—zero entries are known at the receiver. It
of the conventional RLS algorithm using thB-th order suggests that the SPARLS successfully estimates joint tap co-
polynomial (for D € {0,1,2}) with and without the genie— efficients and positions with the use 6f-regularized sparse
aided ideal knowledge of the non—zero tap positions. For eaggressions. One can see that the high—order RLS degrades
simulation point, the forgetting factoris manually optimized the MSE performance considerably for low SNR regimes
to obtain the minimum MSE. for frequency-selective sparse channels, although it achieves

From Fig. 1, it is observed that the MSE performance good performance for high SNRs. This drawback is solved by
severely degraded especially for the conventional zero—th ordlee proposed high—order SPARLS, which can achieve near—
RLS algorithm as the fading spee¢i(l;) increases. The 1— optimal performance of genie—aided zero—th order RLS in low
st order RLS improves MSE for fast fading arourid7; ~ SNRs while its performance in high SNRs approaches to the
0.001, whereas it has a poor performance in slow fading dgenie—aided 1-st order RLS. The 2—nd order regression is not
to the over—fitting loss. Compared with the genie—aided casd,use for less—thaB5dB SNRs in this channel condition.
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Fig. 2. MSE performance as a function of average SNRff¢fs = 0.001  Fig. 3.  Achievable rate performance as a function of average SNR for

(2 x 2 MIMO, P = 20 taps,Q = 6 paths). fpTs = 0.001 (2 x 2 MIMO, P = 20 taps,Q = 6 paths).

B. Capacity Upper-Bound expansion model, fractional-sample-space tap delay line and
The channel estimation error in MSE has a great impa@P-Position change remain as future works.

on the equalization performance (e.g., in bit error rate) and APPENDIX

the achievable data rate. We show the effect of MSE on tt&e
data rate in Fig. 3, where we model the estimation error as an

additional Gaussian noise which degrades the rate as follows-€t Us EPBSider_ the ~exponentially-weighted  noise:
Z, = ZA, ', which follows the Gaussian distribution,

1 Z,] ~ CN(0,0%A;" ® Iy). When we assume the
Ry, < E|log,det|In + ——— H(k)H'(k vec[Zy] T L, N
k= [Og? ¢ [ N+ o2+ ¢2 (k) H( )H observationY’;, is modeled as

Penalized ML Problem

< min(N, M") log, (1 n W) @7) Yy = H(k) Xy + Z}, (28)
g k N

. . - the conditional probability oY, given X, and H (k) is given

where we use Jensen’s inequality. In this figure, we also P yor.g F (k)isg

present the ideal rate performance when perfect channel state . exp(—%g(k})>
information (CSI) is available at receivers; (= 0). Shown in Pr(Yy | X, H(k)) = —— (29)
this figure, the conventional zero—th order RLS do not perform det[ro2A; "]

well, especially in the high SNR regimes; approximatelyhere £(k) is a weighted MSE defined in (9). It implies
12 bps/Hz (over the ideal rate with perfect CSl) is lost at aghat the Li—regularized problem in (23) is identified as a

average SNR of0dB. It is demonstrated that the high—ordepayimum-likelihood (ML) estimation problem with a penalty:
sparse RLS algorithm offers the best performance over all the

SNR regimes in the sense of achievable rate as well as MSEIax log Pr(Y'y | Xy, H(k)) — | vec[H (k)]||,. (30)
V. CONCLUSION This penalized ML problem is efficiently solved by an

We proposed an improved channel estimation scheme whikpectation—maximization (EM) approach with the noise de-

efficiently estimates a sparse channel matrix in doublgemposition, proposed in [8-10].

selective fading MIMO channels by means 6f-£, regu- B. Noise Decomposition

larized high—order RLS algorithm. Through computer simu-=

lations, we demonstrated that the proposed high—order sparsé/e introduce a noise decomposition & = aN; X +

RLS algorithm significantly improve MSE, and the achievabl&+, whereA’; € CY*M" and =), € CV** are decomposed

data rate can be considerably increased compared with fisse matrices of the Gaussian distributions:

conyentional RLS algorithm. The propo_set_j algorithm can vec[Ax] NCJ\/(O,IM/ ®IN), (31)

be implemented for multi-carrier transmissions as well as _ o 1 — T

single-carrier transmissions. Comparisons to the Fourier basis vec[Z] ~ CN(0, (0% 4, — o’ X X3)" @ I),  (32)



wherea € R is a decomposition constant which must fulfiFor ¢ € {1, 2}, the optimal solution is given as

0% < 0%/ Amax| X1 X 1] With Apax[] being the maximum

A ld] 2,ld]
eigenvalue. Since\..[X| X ] ~ M’ for large k and for H (k) = Fu (G (k)7a2(7+ﬂdwd))v 39)
independent inputp? = 02/5M’ can satisfy its requirement _ o 1d]
condition with a high probability. wherew, is chosen such thaty = 1/||vec[H ~(k)]||, for

With the decomposed noise matricA§, and =, we can ¢ =2 andwg = 1 for ¢ = 1. For more genera{, see [15].

rewrite the received signal model in (28) as follows:
Y, =Gk)Xy+E,  Gk)=Hk) +aNy, (33)
whereG(k) € CN*M' is a noisy channel matrix.

C. Expectation Step
The conditional probability o€ (k) given an estimatéT (k)

(1]

(2]
(3]

and an observatiol’;, is a Gaussian distribution with mean [4]

A A a? o2 ;
G(k) = H(k) (IM/ - ﬁXkAka)-F?YkAka. (34)

(5]

This is the expectation step (E-step) of the EM algorithm t%]

obtain the expectatioi~(k) given an esEimatd?I(ﬁ). Note
that if G(k) converges taH (k) such thatG(k) = H (k), the

(7]

above equation reduces into the well-known normal equation,

H(k)X A X =
estimation derived in (13). It implies that using smalter

approaches the performance of the conventional RLS estim&!
tion, while largera offers a higher gain of the EM algorithm

Y A, X for the conventional RLS [g]
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