
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Privacy Preserving Probabilistic Inference
with Hidden Markov Models

Pathak, M.; Rane, S.; Sun, W.; Raj, B.

TR2011-017 May 2011

Abstract

Alice possesses a sample of private data from which she wishes to obtain some probabilistic
inference. Bob possesses Hidden Markov Models (HMMs) for this purpose, but he wants the
model parameters to remain private. This paper develops a framework that enables Alice and
Bob to collaboratively compute the so-called forward algorithm for HMMs while satisfying their
privacy constraints. This is achieved using a public-key additively homomorphic cryptosystem.
Our framework is asymmetric in the sense that a larger computational overhead is incurred by
Bob who has higher computational resources at his disposal, compared with Alice who has
limited computing resources. Practical issues such as the encryption of probabilities and the
effect of finite precision on the accuracy of probabilistic inference are considered. The protocol
is implemented in software and used for secure keyword recognition.

International Conference on Acoustics Speech and Signal Processing (ICASSP)

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part
without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include
the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of
the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or
republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All
rights reserved.

Copyright c©Mitsubishi Electric Research Laboratories, Inc., 2011
201 Broadway, Cambridge, Massachusetts 02139

MERLCoverPageSide2

PRIVACY PRESERVING PROBABILISTIC INFERENCE WITH HIDDEN MARKOV MODELS

Manas Pathak
∗
, Shantanu Rane

†
, Wei Sun

†
and Bhiksha Raj

∗

∗ Carnegie Mellon University, Pittsburgh, PA 15213, USA
† Mitsubishi Electric Research Laboratories, Cambridge, MA 02139, USA

ABSTRACT

Alice possesses a sample of private data from which she wishes to
obtain some probabilistic inference. Bob possesses Hidden Markov
Models (HMMs) for this purpose, but he wants the model parame-
ters to remain private. This paper develops a framework that enables
Alice and Bob to collaboratively compute the so-called forward al-
gorithm for HMMs while satisfying their privacy constraints. This
is achieved using a public-key additively homomorphic cryptosys-
tem. Our framework is asymmetric in the sense that a larger compu-
tational overhead is incurred by Bob who has higher computational
resources at his disposal, compared with Alice who has limited com-
puting resources. Practical issues such as the encryption of probabil-
ities and the effect of finite precision on the accuracy of probabilistic
inference are considered. The protocol is implemented in software
and used for secure keyword recognition.

Index Terms— Homomorphic Encryption, Hidden Markov
Model, Forward Algorithm, Speech Recognition

1. INTRODUCTION

This paper presents a privacy-preserving framework for probabilis-
tic inference based on Hidden Markov Models (HMMs). Classifica-
tion based on HMMs is common in machine learning and is nearly
ubiquitous in applications related to speech processing. We are par-
ticularly interested in a multi-party scenario in which the data and
the HMMs belong to different individuals and cannot be shared. For
example, Alice wants to analyze speech data from telephone calls.
She outsources the speech recognition task to Bob, who possesses
accurate HMMs obtained via extensive training. Alice cannot share
the speech data with Bob owing to privacy concerns while Bob can-
not disclose the HMM parameters because this might leak valuable
information about his own training database.

Probabilistic inference with privacy constraints is a relatively
unexplored area of research. To our knowledge, the only detailed
treatment of privacy-preserving probabilistic classification appears
in [1]. In that work, inference via HMMs is performed on speech
signals using existing cryptographic primitives. Specifically, the pro-
tocols are based on repeated invocations of privacy-preserving two-
party maximization algorithms, in which both parties incur exactly
the same protocol overhead. In contrast, we present an asymmet-
ric protocol that is more suitable for client-server interaction; the
thin client encrypts the data and provides it to a server which per-
forms most of the computationally intensive tasks. Further, HMM-
based probabilistic inference involves probabilities and real numbers

∗This work was carried out when Manas Pathak was an intern at Mit-
subishi Electric Research Laboratories. Manas Pathak was partially sup-
ported by National Science Foundation Grant No. 1017256.

s1! s2! s3! s4! s5!

x5!x1! x2! x3! x4!

a12! a23! a34! a45!

a21! a32! a43! a54!

a11! a22! a33! a44! a55!

ALICE!

BOB!

bj(xt)!

Fig. 1. An example of a 5-state HMM. In this work, Alice (client)
possesses the data or features extracted from the data to be classified,
while Bob (server) possesses a privately trained HMM.

which must be approximated for encrypted-domain processing. Ac-
cordingly, we consider the effect of finite precision, underflow and
exponentiation in the ciphertext domain.

The remainder of this paper is organized as follows: Section 2
reviews the tools that will be used for secure probabilistic inference
in this paper, viz., Hidden Markov Models (HMMs), homomorphic
encryption and oblivious transfer. Section 3 describes a privacy-
preserving protocol to implement the probabilistic inference using
the so-called forward algorithm of HMMs. An application to secure
speech recognition is presented in Section 4.

2. REVIEW OF HMM AND SECURE PRIMITIVES

2.1. Hidden Markov Models

A HMM, depicted in Fig. 1, can be regarded as a generalization of a
Markov chain in which the state is not directly visible but generates
an output which can be observed. The outputs are also referred to
as observations. Since observations depend on the hidden state, an
observation reveals information about the underlying state.

By definition [2], a Hidden Markov model is a triple λ =
(A, B, Π), in which

• A = (aij) is the state transition matrix. Thus, aij =
Pr{qt+1 = Sj |qt = Si}, 1 ≤ i, j ≤ N , where {S1, S2, ..., SN}
is the set of states and qt is the state at time t;

• B = (bj(vk)) is the matrix containing the probabilities of the
observations. Thus, bj(vk) = Pr{xt = vk|qt = Sj}, 1 ≤
j ≤ N, 1 ≤ k ≤ M , where {v1, v2, ..., vM} is the alphabet
of observation symbols, and xt is the observation at time t;

• Π = (π1, π2, ..., πN) is the initial state probability vector,
that is, πi = Pr{q1 = Si}, i = 1, 2, ..., N .

For a given sequence of observations x1,x2, ...,xT and a HMM
λ = (A, B, Π), one problem of interest is to efficiently compute

the probability Pr{x1,x2, ...,xT |λ}. A well-known solution to this
problem is the so-called forward algorithm.

2.2. Forward Algorithm of HMMs

Define αt(j) = Pr{x1,x2, ...,xt, qt = Sj |λ}, the joint probability
of an observation sequence in state j at time t. The forward algo-
rithm proceeds as follows:

1. Initialize α1(j) = πjbj(x1), 1 ≤ j ≤ N ;
2. For each 1 ≤ j ≤ N , compute

αt+1(j) =

"
NX

i=1

αt(i)aij

#
bj(xt+1)

for all 1 ≤ t ≤ T − 1; This is called the induction step.
3. Obtain Pr{x1,x2, ...,xT |λ} =

PN
j=1 αT (j).

In the problem considered here, Alice possesses the observation
sequence x1,x2, ...,xT and Bob has the HMM λ. They must ex-
ecute the forward algorithm without revealing their information to
each other, such that Alice can obtain Pr{x1,x2, ...,xT |λ}.

2.3. Homomorphic Cryptosytems

For any two messages m1, m2 and an additive homomorphic en-
cryption function ξ(·), the additive homomorphic property ensures
that ξ(m1 + m2) = ξ(m1)ξ(m2). Owing to this property, sim-
ple operations can be performed directly on the ciphertext, enabling
some desirable manipulations on the underlying plaintext messages.
The protocols that we construct in this paper can be executed with
any additively homomorphic cryptosystem. To give a concrete ex-
ample and implementation, we use the Paillier cryptosystem [3],
which is reviewed briefly below.

• Configuration: Choose two large prime numbers p, q, and
let N = pq. Denote by Z∗N2 ⊂ ZN2 = {0, 1, ..., N

2 − 1}
the set of non-negative integers that have multiplicative in-
verses modulo N

2. Select g ∈ Z∗N2 such that gcd(L(gλ

mod N
2), N) = 1, where λ = lcm(p − 1, q − 1), and

L(x) = x−1
N . Let (N, g) be the public key, and (p, q) be

the private key.
• Encryption: Let m ∈ ZN be a plaintext. Then, the cipher-

text is given by

ξr(m) = g
m · rN mod N

2 (1)

where r ∈ Z∗N is a number chosen at random.
• Decryption: Let c ∈ ZN2 be a ciphertext. Then, the corre-

sponding plaintext is given by

ψ(ξr(m)) =
L(cλ mod N

2)
L(gλ mod N2)

= m mod N (2)

Decryption works irrespective of the value of r used during en-
cryption. Since r is chosen at random for every encryption, the Pail-
lier cryptosystem is probabilistic, and therefore semantically secure,
i.e. repeated encryptions of the same number result in different ci-
phertexts. It can now be verified that the following homomorphic
properties hold for the mapping (1) from the plaintext set (ZN , +)
to the ciphertext set (Z∗N2 , ·),

ψ(ξr1(m1)ξr2(m2) mod N
2) = m1 + m2 mod N (3)

ψ([ξr(m1)]m2 mod N
2) = m1m2 mod N (4)

where r1, r2 ∈ Z∗N and r1 �= r2 in general. For simplicity, we omit
the subscripted random parameter in the following sections.

2.4. 1-of-n Oblivious Transfer

Suppose that Bob has n messages m1, m2, ...mn and Alice has the
index 1 ≤ i ≤ n. Oblivious Transfer (OT) is a protocol to accom-
plish the following (a) Alice obtains mi but discovers nothing about
the other messages (b) Bob does not discover i. There are many
known ways to implement OT [4]. It has been shown that OT is a
sufficient primitive, i.e., it can be used for secure evaluation of any
function, provided that function can be represented as an algebraic
circuit. However, evaluating general functions using only OT is ex-
tremely complex in terms of computation and data transfer costs, so
OT is used sparingly in this work.

3. PROTOCOL FOR SECURE FORWARD ALGORITHM

Assume that Alice (a client) sets up a private and public key pair for
the Paillier encryption function ξ(·), and sends only the public key to
Bob (a server). Assume that, in all calculations involving logarithms,
the base of the logarithm is g ∈ Z∗N2 , which is the parameter used
for Paillier encryption in Section 2. To avoid notational clutter, the
base of the logarithm is not explicitly shown in the sequel.

3.1. Secure Logarithm Protocol

Input: Bob has ξ(θ)
Output: Bob obtains the encryption ξ(log θ) of log θ, and Alice
obtains no information about θ.

1. Bob randomly chooses an integer β, and sends ξ(θ)β =
ξ(βθ) to Alice

2. Alice decrypts βθ, and then sends ξ(log βθ) to Bob.
3. Bob computes ξ(log βθ) · ξ(− log β) = ξ(log θ + log β) ·

ξ(− log β) = ξ(log θ)

Note: In general log β and log βθ are not integers, and we resort to
integer approximations when we implement the protocol. Specifi-
cally, in Step 2, Alice actually sends ξ(�L log βθ�) to Bob, where
L is a large number. For example, with L = 106, our logarithms
are accurate to 6 decimal places. Similarly, in Step 3, Bob actually
computes ξ(�L log βθ�)ξ(−�L log β�) = ξ(�L log β + L log θ� −
�L log β�). Every multiplication by L is compensated by a corre-
sponding division at every decryption step that Alice performs. The
effect of these finite precision approximations is further discussed in
Section 4.

3.2. Secure Exponent Protocol

Input: Bob has ξ(log θ)
Output: Bob obtains the encryption ξ(θ), and Alice obtains no in-
formation about θ.

1. Bob randomly chooses β ∈ Z∗N2 and sends ξ(log θ)ξ(log β) =
ξ(log θ + log β) = ξ(log βθ) to Alice.

2. Alice decrypts log βθ, and then sends ξ(βθ) to Bob

3. Bob computes ξ(βθ)
1
β = ξ(θ) where 1

β is the multiplicative
inverse of β in Z∗N2 .

Note: As before, multiplication by a large number L followed by
truncation is used to generate an approximation wherever the log-
arithm is involved. Thus, in Step 1 of our implementation of this
protocol, Bob actually sends ξ(�L log θ�)ξ(�L log β�) to Alice. To
compensate for the multiplication by L, Alice decrypts the transmis-
sion from Bob and divides by L in Step 2.

3.3. Secure LOGSUM Protocol

Input: Bob has (ξ(log θ1), ξ(log θ2), . . . , ξ(log θn)) and the con-
stant vector (a1, a2, ..., an);
Output: Bob obtains ξ(log

Pn
i=1 aiθi), and Alice discovers noth-

ing about the θi and ai.

1. With Bob’s input ξ(log θ1), ξ(log θ2), . . . , ξ(log θn), Alice
and Bob execute the Secure Exponent protocol repeatedly so
that Bob obtains ξ(θ1), ξ(θ2), . . . , ξ(θn).

2. Bob exploits the additive homomorphic property of Paillier
encryption to obtain

ξ

nX

i=1

aiθi

!
=

nY

i=1

ξ(aiθi) =
nY

i=1

ξ(θi)
ai

3. Bob and Alice execute the Secure Logarithm protocol, at the
end of which Bob obtains the encryption ξ(log

Pn
i=1 aiθi).

3.4. Secure Forward Algorithm Protocol

Input: Alice has an observation sequence x1,x2, . . . ,xT . Bob has
the HMM λ = (A, B, Π).
Output: Bob obtains ξ(log Pr{x1,x2, ...,xT |λ)}.

Write the matrix B as [b1,b2, . . . ,bN], where for each j =
1, 2, ..., N , bj is a column vector with component bj(vk), k =
1, 2, ..., M . Now, a privacy-preserving version of the forward al-
gorithm for HMMs proceeds as follows:

1. For each t = 1, 2, ..., T and j = 1, 2, ..., N , Bob randomly
chooses γtj and generates a column vector log bj + γtj .

2. Based on the input xt, Alice uses 1-of-M OT to obtain
log bj(xt) + γtj .

3. Alice sends ξ(log bj(xt) + γtj) to Bob

4. Using γtj and the homomorphic property, Bob computes
ξ(log bj(xt) + γtj) · ξ(−γtj) = ξ(log bj(xt)) for j =
1, 2, ..., N , t = 1, 2, ..., T .

5. Bob computes ξ(log α1(j)) = ξ(log πj) · ξ(log bj(x1)) for
j = 1, 2, ..., N

6. Induction Step: For j = 1, 2, ..., N , with Bob’s input
ξ(log αt(j)), j = 1, 2, ..., N and the transition matrix
A = (aij), Alice and Bob run the secure LOGSUM pro-
tocol, at the end of which Bob obtains ξ(log

PN
l=1 αt(l)alj).

7. For all 1 ≤ t ≤ T − 1, Bob computes

ξ(log αt+1(j)) = ξ(log
NX

l=1

αt(l)alj) · ξ(log bj(xt+1))

8. Alice and Bob again run a secure LOGSUM protocol, so Bob
obtains ξ(log

PN
j=1 αT (j)) = ξ(log P (x1,x2, ...,xT |λ))

3.5. Security Analysis

The Secure Logarithm, Secure Exponent and Secure LOGSUM pro-
tocols rely on multiplicative secret sharing to prevent Alice from dis-
covering θ. Bob cannot discover θ because he does not possess the
decryption key for the Paillier cryptosystem. The security of the For-
ward Algorithm protocol derives from the security of the previous
three primitive protocols and the security of 1-of-M OT.

4. SECURE KEYWORD RECOGNITION

Consider the following scenario for privacy-preserving keyword
recognition: Alice has a sampled speech signal, which she converts
into T frames, where each frame is represented by a d-dimensional
vector of Mel Frequency Cepstral Coefficients (MFCCs). Thus Al-
ice possesses xi, i = 1, 2, ..., T where each xi ∈ Rd. Typically,
d = 39 is used in practice. Derivation of MFCCs from speech
signals is an established practice in the speech processing litera-
ture [5]. Bob possesses ∆ different HMMs, each trained for a single
keyword. Alice and Bob will execute a secure protocol, at the end
of which, Alice will discover the keyword that is most likely to be
contained in her speech sample.

Let a d-dimensional vector y of MFCCs have a multivari-
ate Gaussian distribution, i.e., bj(y) = N (µj ,Cj), where j =
1, 2, ..., N indexes the state of a HMM λ. Let z = [yT

, 1]T . Then,
log bj(y) = zT Wjz, where

Wj =

2

664

− 1
2C

−1
j C−1

j µj

0 wj

3

775 ∈ R(d+1)×(d+1)

and wj = 1
2µ

T
j C−1

j µj − 1
2 log |C−1

j |− d
2 log 2π. The above treat-

ment considers y to be a single multivariate Gaussian random vari-
able, though an extension to mixture of multivariate Gaussians is
also possible. Note that the matrix Wj is available to Bob. Fur-
ther, note that log bj(y) is a linear function of products zizj where
i, j ∈ {1, 2, ..., d + 1}. This allows us to simplify the Secure For-
ward Algorithm Protocol of Section 3.4 as follows:

4.1. Simplified Secure Forward Algorithm

1. For each t = 1, 2, ..., T , Alice sets z = [xT
t , 1]T . Alice sends

to Bob the encryptions of all zizj with i, j ∈ {1, 2, ..., d+1}.
2. For each HMM state j = 1, 2, ..., N , Bob obtains the en-

cryption ξ(log bj(xt)) = ξ(zT Wjz) using the additive ho-
momorphic property.

3. Bob executes steps 5–8 from Section 3.4.
Now, the protocol for secure keyword recognition is as follows.

4.2. Protocol for Secure Keyword Recognition

Input: Alice has the MFCC feature vectors x1,x2, ...,xT cor-
responding to her privately owned speech sample. Bob has the
database of HMMs {λ1, λ2, ..., λ∆} where each HMM λδ corre-
sponds to a single keyword, which is denoted by τδ;
Output: Alice obtains δ

∗ = arg maxδ Pr{x1,x2, ...,xT|λδ}.
1. Alice and Bob execute the protocol of Section 4.1 for

each HMM λδ , at the end of which Bob obtains ξ(pδ) =
ξ(log Pr{x1,x2, ...,xT|λδ}), δ = 1, 2, ..., ∆.

2. Bob chooses an order-preserving matrix1
R = (rij)∆×∆

with random coefficients. Using the additively homo-
morphic property of Paillier encryption, he computes the
element-wise encryption given by (ξ(p�1), ..., ξ(p

�
∆)) =

(ξ(p1), ..., ξ(p∆)) · R. Bob sends the result to Alice.
3. Alice decrypts and obtains δ

∗ = maxδ p
�
δ = maxδ pδ . This

is true because R is order-preserving mapping.
4. Alice and Bob perform a 1-of-∆ OT, and Alice obtains the

word τδ∗ .
1See [6] for more details

4.3. Computational Complexity

Let us consider the computational overhead of the protocol in terms
of the number of keywords (∆), the number of HMM states (N), the
time duration of the observation (T) and the size of each observation
(d). Alice has an overhead of O(d2

T) encryptions at the beginning
of the protocol. This initial computational overhead is independent
of the number of keywords and the size of the HMM. Bob has an
overhead of O(d2

N∆T) ciphertext multiplications and exponentia-
tions in order to determine the ξ(log bj(xt)) terms. Finally, to deter-
mine the ξ(αT (j)) terms, Alice and Bob both have an overhead of
O(N∆T). Thus Alice’s total protocol overhead is O((d2 +N∆)T)
while Bob’s total overhead is O(d2

N∆T), which means that Bob’s
overhead grows faster than Alice’s.

4.4. Practical Issues: Fixed Precision and Numerical Underflow

The Paillier cryptosystem is defined over an integer ring but the
speech data consists of real numbers. In our implementation, we
used numbers accurate to 6 decimal places as explained in Section 3.
Furthermore, whenever there was a floating point number in the ci-
phertext exponent – of the form ξ(a)b – then, the fractional part was
truncated, and only the integer portion of b was used in the calcu-
lation. These approximations introduce errors in the protocol which
propagate during the iterations of the forward algorithm.

Another implementation issue is that the value of αt(j) gets pro-
gressively smaller after each iteration, causing underflow after only
a few iterations. This problem would not be encountered if the prob-
abilities were expressed in the form log αt(j). However, it is neces-
sary to consider the actual value of αt(j) as seen in Section 3.4. The
underflow problem is resolved by normalizing αt(1), . . . , αt(N) in
each iteration, such that the relative values are preserved. This neces-
sitates a small change in the protocol, but owing to space constraints,
these details are deferred to a future publication.

4.5. Experimental Analysis

We performed speech recognition experiments on a 3.2 GHz Intel
Pentium 4 machine with 2 GB RAM and running 64-bit GNU/Linux.
We created an efficient C++ implementation of the Paillier cryp-
tosystem using the variable precision integer arithmetic library pro-
vided by OpenSSL. The encryption and decryption functions were
used in a software implementation of the protocol of Section 3.4.

The experiment was conducted on audio samples of length 0.98
seconds each. The samples consisted of spoken words which were
analyzed by ten HMMs each having 5 states. The HMMs were
trained offline on ten different words, viz., utterances of “one”,
“two”, “three”, and so on up to “ten”. Each test speech sample
was converted into 98 overlapping vectors (called frames), a 39-
dimensional feature vector composed of MFCCs were extracted
from each frame. These MFCC vectors serve as Alice’s inputs xi.

Times needed to process audio samples of length 0.98 seconds
using the 10 HMMs were measured. Table 1 gives the processing
times for different key lengths with Paillier homomorphic encryp-
tion. It is evident that stronger keys incur significant cost in terms of
processing time. Note that, once Bob receives the encrypted input
from Alice, the calculation of ξ(log bj(xt)) for all 10 HMMs may
proceed in parallel. This is possible, for instance, in a cloud comput-
ing framework, where Bob has access to several server nodes.

To observe the effect of errors due to finite precision, we com-
pared the values of αT (N) for a given 0.98-second speech sample
derived using the privacy preserving speech recognition protocol as

Activity 256-bit 512-bit 1024-bit
keys keys keys

Alice encrypts input data 205.23 s 1944.27 s 11045.2 s
(Done only once)

Bob computes ξ(log bj(xt)) 79.47 s 230.30 s 460.56 s
(Time per HMM)

Both compute ξ(αT (j)) 16.28 s 107.35 s 784.58 s
(Time per HMM)

Table 1. Protocol execution times in seconds.

well as a conventional non-secure implementation. This compari-
son of αT (N) with and without encryption was performed for each
of the 10 HMMs corresponding to the spoken words “one” through
“ten”. The relative error in αT (N) was measured to be 0.52%. Since
the error between the actual forward probabilities and their finite pre-
cision approximations is very small, the secure speech recognizer
nearly always gives the same output as an HMM-based recognizer
trained on the same data. Actual performance depends on the quality
of the training and test data.

5. CONCLUSION AND OUTLOOK

We described protocols that enable both practical privacy preserving
inference and classification with HMMs. To our knowledge, our ex-
periments constitute the first reported results on this topic. A natural
progression is to extend the protocols to more complete inference,
including decoding from large HMMs with privacy preservation.
Other extensions include privacy preserving inference from gener-
alizations of HMMs such as dynamic Bayes networks. We are cur-
rently investigating these possibilities. Applications for such tech-
nologies are myriad. One area where HMM technology is the basis
for most applications, is the processing of voice, which is arguably
the most personal and private medium of communication. Yet, most
current voice processing systems require full, unobscured access to
the voice of the user. The protocols proposed in this paper represent
the first step towards developing a suite of privacy preserving tech-
nologies for voice processing, including applications ranging from
keyword spotting, to biometrics and full speech recognition.

6. REFERENCES

[1] P. Smaragdis and M. Shashanka, “A Framework for Secure
Speech Recognition,” IEEE Transactions on Audio, Speech and

Language Processing, vol. 15, no. 4, pp. 1404–1413, May 2007.
[2] L. Rabiner, “A Tutorial on Hidden Markov Models and Selected

Applications in Speech Recognition,” Proceedings of the IEEE,
vol. 77, no. 2, pp. 257–286, Feb. 1989.

[3] P. Paillier, “Public-Key Cryptosystems Based on Composite De-
gree Residuosity Classes,” in Advances in Cryptology, EURO-

CRYPT 99. 1999, vol. 1592, pp. 233–238, Springer-Verlag, Lec-
ture Notes in Computer Science.

[4] M. Naor and B. Pinkas, “Oblivious transfer with adaptive
queries,” in Advances in Cryptology: CRYPTO’99, Seattle,
USA, 1999, vol. LNCS 1666, pp. 573–590, Springer.

[5] L. Rabiner and B. H. Juang, Fundamentals of Speech Recogni-

tion, Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1993.
[6] S. Rane and W. Sun, “Privacy Preserving String Comparisons

Based on Levenshtein Distance,” in Proc. IEEE international

Workshop on Information Forensics and Security (WIFS), Seat-
tle, USA, Dec. 2010.

	Title Page
	Title Page
	page 2

	Privacy Preserving Probabilistic Inference with Hidden Markov Models
	page 2
	page 3
	page 4

