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Abstract
This paper introduces a stochastic partially homogeneous model for adaptive signal detection.
In this model, the disturbance covariance matrix of training signals, R, is assumed to be a
random matrix with some a priori information, while the disturbance covariance matrix of the
test signal, RO, is assumed to be equal to R, i.e., RO = R. On one hand, this model extends
the stochastic homogeneous model by introducing an unknown power scaling factor between
the test and training signals. On the other hand, it can be considered as a generalization
of the standard partially homogeneous model to the stochastic Bayesian framework, which
treats the covariance matrix as a random matrix. According to the stochastic partially ho-
mogeneous model, a scale-invariant generalized likelihood ratio test (GLRT) for the adaptive
signal detection is developed, which is a knowledge-aided version of the well-known adaptive
coherence estimator (ACE). The resulting knowledge-aided ACE (KA-ACE) employs a col-
ored loading step utilizing the a priori knowledge and the sample covariance matrix. Various
simulation results and comparison with respect to other detectors confirm the scale-invariance

and the effectiveness of the KA-ACE.
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Abstract— This paper introduces a stochastic partially homo- unknown scaling factor [5]-[8]. A recent addition to the non
geneous model for adaptive signal detection. In this model, the homogeneous model is a stochastic heterogeneous model [9]-
disturbance covariance matrix of training signals,R, is assumed [11], in which two layers of random matrices are used to model
to be a random matrix with some a priori information, while ' . . . .
the disturbance covariance matrix of the test signal,Ro, is the het.erogenelty between the test arlld.tralnlng signals. Th
assumed to be equal to\R, i.e., Ry = AR. On one hand, this Model includes not only the power variation across the range
model extends the stochastic homogeneous model by introducingbut also the structural difference of the covariance matrix
an unknown power scaling factor A between the test and |n this paper, we consider the partially homogeneous model,
training signals. On the other hand, it can be considered as a which has received much attention over the last decadedB]-|

generalization of the standard partially homogeneous model to o o ider th iallv h del
the stochastic Bayesian framework, which treats the covariance ON€ motivation to consider the partially homogeneous mode

matrix as a random matrix. According to the stochastic partially iS due to the use of guard cells in radar signal processing.
homogeneous model, a scale-invariant generalized likelihood ratio In array signal processing and space-time adaptive pringess
test (GLRT) for the adaptive signal detection is developed, (STAP), a number of guard cells are often used to mitigate the
which is a knowledge-aided version of the well-known adaptive sidelobe effects and hence separate the test signal anthgrai

coherence estimator (ACE). The resulting knowledge-aided ACE . | hich | diff b h
(KA-ACE) employs a colored loading step utilizing thea priori  Signals, which may lead to a power difference between the tes

knowledge and the sample covariance matrix. Various simulation and training signals [12]. A stochastic partially homogeure
results and comparison with respect to other detectors confirm model is proposed in this paper, which is different than the

the scale-invariance and the effectiveness of the KA-ACE. standard partially homogeneous model. This model allows us
Index Terms— Partially homogeneous model, knowledge-aided, t0 incorporate soma priori knowledge of the environment,
generalized likelihood ratio test, Bayesian inference. while also retaining the heterogeneity between the test and

training signals by using the power scaling factor. Spealific

| INTRODUCTION we consider the following hypothesis testing problem [8]:-[

For the adaptive signal detection problem, a homogeneous Ho: xo=do, xp=dp,k=1- K, 1)

environment is usually assumed, where the test signal share Hi: xXo=as+dg, xp=dp,k=1,--- K,
the same covariance matrix with the training signals [1], Nl )
[2]. Recently, a Bayesian approach to the detection probldifi€réxo € C**"is the test signalx, = dy,k = 1,--- , K,

emerged [3], [4], where the covariance matrix is assum& target-free training signals,is theknown array response,

to be randomly distributed with some prior distribution® IS @nunknown complex-valued amplitudej, andd, are

The resulting detectors are often referred to as knowleddedependent, zero-mean complex-valued Gaussian ditdbu
aided (KA) detectors for the stochastic homogeneous en{&Ndom vectors with covariance matrices given by
ronment. Using both measured L-band clutter data and high- H H

. F{dody } = Rog =R, FE{did;'} =R, 2
fidelity KASSPER data, the KA detectors were shown to {dodq’} 0 {dydi’} 2)
have improved performance than the conventional detectqffere X is an unknown power scaling factor. Furthermore,
when the homogeneous training signals are limited [4]. F@fe assume the covariance matfto be random and has a

non-homogeneous environments, several models have begfplex inverse Wishart distribution, i.€R ~ CW (-

proposed. One of these models is the compound-Gaussjam’ ©) [31, [41, [9]:

model, in which a power-varying texture component across _

range bins is used to characterize the heavy-tailed clutter (R) = |(M—N)R} o~ (n=N) tx(R"'R) 3)

distributions in radar, especially for sea clutter. Anotimadel - T(N, p) R[N ’

is a partially homogeneous model, where the training sggnal _

share the covariance matrix with the test signal up to avherel (N, ) = aVN=D/2T[\" T (u— N + k) with T'(-)
denoting the Gamma function arld. the known prior co-
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homogeneous model reduces to the stochastic homogenebus likelihood function incorporates the prior knowledBe
model [3], [4]. and retains the information from the sample covarianceirmatr
According to the stochastic partially homogeneous modd, With (7), the likelihood ratio test of (4) reduces to

the scale-invariant generalized likelihood ratio test EGl. N[5 E
is developed within a Bayesian framework. The likelihood g max ‘ 1|

e . ) " ) T= —. 9)
function is first obtained by averaging the conditional dike max \—N |20| L
lihood function w.r.t. the prior distribution of the covari A
ance matrix. Then, maximization of the likelihood function L h i
is performed with respect to the deterministic parameter%‘, Maximization over t_ eScah.ng .Factor A _
namely the scaling factoA and the amplitudex. Finally, From (9), the maximum likelihood (ML) estimate of the
the generalized likelihood ratio test is derived in clo$edn. scaling factor) is
The resulting scale-invariant GLRT is a knowledge-aided)K N _Nia |-L )

: : . i = 3 ’ =0,1,
version of the adaptive coherence estimator (ACE) of [5], A argman)\ ‘ ‘ t=0
which is referred 'Fo as the KA-AQE. Specifically, the prombse — arg min AN ‘A—lyiyiH +S+(u—N) R|L . (10)
KA-ACE uses a linear combination of the sample covariance A
matrix and thea priori matrix R, where the amount of loadingLet = = S + (¢ — N)R. The above cost function can be
R is controlled by the parametgr which reflects the accuracy simplified as
of the priorR. Moreover, the scale-invariance property of the I

- : : MW Ayl + 27 =AY

KA-ACE and numerical comparisons with other detectors are Yiyi T=

|
investigated in this paper. = =" AN (1+ )ﬁly{l’Eflyi)L (11)

|| GENERAL|ZED L|KEL|HOOD RAT|O TEST FOR Tak|ng the |Og'derivative and Setting |t to Zero, we haVe
STOCHASTIC PARTIALLY HOMOGENEOUSENVIRONMENT He—1
: o ) o N Y= Y (12)
In the following, the likelihood function which involves ,\+yZH5—1yi ’

maximization with respect td& and maximization with respect

L which gives the ML estimate ok
to « is discussed.

N L—N
AML,i = a

A. Likelihood Ratio Test N

The KA-ACE is developed from a Bayesian frameworI;rhe cost function reduces to

L
. < L 3
which takes the form as min AN |z:,t.|L = ( ) 1215 AL 4 (14)
ma,\xffl (x0,%1,- -+, Xk |a, A, R) p(R)dR § LN

m

“lyi. (13)

T = 4 ized likell '
m)i\%Xffo o Xk LR p(R)IR (4) Therefore, the generalized likelihood qunctlon becomes
where N o ’20 (/\ML’O)‘
T = max 3
. @ 3 3 3
fi (X0 %1, Xk [ AR, i=0,1, A ‘21 (a,AML,l)]
=fi (xo |, \,R) f (x1, - ,xK |R) et N
= ! {—tr (R7'%))} (5) = s . (15)
T AR DN N R TP AT ( i min (xo — as)" E7" (xo — as)
@
and

C. Maximization over the Amplitude «

—_—1

By minimizing the term(x — as)” 27! (xo — as), the
ML estimate ofa is given by [1, the fourth equation on p. 118]

=\ lyiyF +8, (6)

K
with Yi =Xo — ﬁias, 61 =1, ﬁo =0, andS = Z Xk,Xf.

k=1 Hz-1
The likelihood function can be obtained by averaging the amL = 81{_771)(0, (16)
conditional likelihood function w.r.t. the prior distriban as o sT= s
and the minimum cost function is
. e — 2
/fz (X0>X17 >XK‘aa)‘7R)p(R)dR . H o1 o He—1 |SH.= 1XO|
_ min (xg —as) B (xg—as) =X3 2 "Xg — e
— N : _ig a E
__lw=MR / R~ (RS R )
a(E+1)NANT (N, M)

Taking the N-th square root of (15) and utilizing the mono-

s
_ (= N)R| li(N’K tutl) ’ii’—L’ (7) tonic property of the functiorf(z) = 1/(1 — x), we obtain
a(EADNT (N, p) ANV the KA-ACE statistic as
whereL = K + u+ 1, and |sHE*1x0]2 Hy

2 YKA-ACE (18)

T _ =
KAACE (sHE™'s) (x)E 'x¢) m,

S =i+ u-N)R=X\yy?+S+(u—N)R. (8)



whereyka.ace denotes a threshold set by a chosen probability N=16, K=32, p=17, P=0.01

of false alarm. It is seen that the KA-ACE for the stochastic + AMF ,
partially homogeneous environment takes the same form as Bl o ack ;{' N
that of the standard ACE [5], except that the whitening rmatri o KaOLRT /
is given by 0sl <>~ KA-ACE +

K o ,}'{ +

E:S—I—(M—N)]::{:Zxkxg—‘—(u—]\f)]::{. (29) %oe ‘ +

k=1 =
which uses a linear combination of the sample covariance oa O ‘,"éj o g o axs A
matrix S and the prior knowledg&®. The weighting factor Ot S S A el Shafetie* Sttt
of R is controlled byyu. Specifically, the KA-ACE puts more S B A
weight onR, when the prior matrix is more accurate (i,2.is o

large). In comparison, the standard ACE takes the form of (18 o 2 4 éSCa“ngéF I I TR
but with the whitening matrix given by the sample covariance
matrix Z = S. It is interesting to note that the KA-ACE canfig. 1. Scale-Invariance: Threshold versus the scalingpfak for various

also be derived from other heuristic ways: detectors wherV = 16, K = 32, u = 17, Py = 0.01, and SNR= 25 dB.
o TheMAP-ACE which exploits the maximura posteriori
(MAP) estimate ofR takes the form vector is given bys = [1,---,1]7. The average signal-to-
T noise ratio (SNR) is defined as
MAP-ACE _
m)\a)li{fl (x0,%1, - , XK |, \,R) p(R)} SNR= |a|?sR™1s, (24)
- 7H;ax {fo (x0,x1,-- ,xk [\, R)p(R)} (20)  whereR is the mean of the random covariance maiiixWe
AR set the prior covariance matriR as [9]
It can be shown that the MAP estimate Rfis [4] [R]i; = pl* =71, (25)
Ruapi = % i=0.1 (21) where p = 0.9 is chosen. The simulated performance is
* L+ N’ ’ obtained using 10000 Monte Carlo trials and the probahility

Substituting the MAP estimate into (20), the MAP-ACHalse alarm is set t&; = 0.01. Itis noted that these simulation
takes the same form of (9) and, hence, coincides with tR@rameters, e.g., the covariance matrix of (25) @hd are
KA-ACE (18) afterwards. selected mainly for the convenience of computer simulation
« The MMSE-ACE takes the form of (20) with the mini- In practice, the covariance matrix usually possesses a more
mum mean square error (MMSE) estimatéfofeplacing complex structure, while the probability of false alarm icbu

the MAP estimate, be as low asP; = 10-¢. For each Monte-Carlo trial, the
covariance matrixR is generated from an inverse Wishart
TvMSE - ACE distribution with mearR, and then, the covariance matiR,
max {f1 (x0,%x1," "+ , XK |, \, R) p(R)} |R:RMMSE,1 is generated by multiplyindR with a scaling factor), i.e.,
= = Ry = AR.

In}E\lX {fO (X(J»xla LXK ‘AvR)p(R)} |R:RMMSE,0 ’
(22) A. Scale Invariance

In the first example, we examine the invariance of various
detectors with respect to the scaling facter Among the
examined detectors are Kelly’s GLRT [1], the AMF [2], the
Rumses = /Rfi (Rx0, X1, ,Xr, o, \) dR standard ACE [5], the KA-GLRT [4], and the KA-AMF [4].

In this case, the threshold subject to the probability ofdal
B alarm Py = 0.01 is obtained from Monte Carlo simulations,
T L-N’ when the scaling factor varies from= 1 to A = 16 in a step

where the MMSE estimate @& is obtained as the mean
of the posterior probability [4]

>
: i=0,1, (23)

which is proportional to the MAP estimate of (20)SiZ€ Of 2.
Therefore, the MMSE-ACE resuilts in the form of (9) and Fig. 1 shows the threshold of several detectors as a function

gives the same detection statistic as that of the KA- AC%f the scaling factoi when the number of training signals is

in (18). = 32 and the SNR is 25 dB. As illustrated, the standard
ACE and the proposed KA-ACE have a constant threshold
independent of\ and, hence, is scale-invariant to the power

1. PERFORMANCEEVALUATION scaling factor. By contrast, the thresholds of the AMF and

In this section, simulation results are provided to demothe KA-AMF increase linearly as increases, and the GLRT
strate the performance of the KA-ACE detector, which is alsand the KA-GLRT give thresholds with two distinct phases:
compared to other detectors. In all simulation examples, vaegradually increasing phase wh&ns small; and a saturated
consider the case whe® = 16 channels and the steeringphase when\ is large, e.g.\ > 10 in this example.



N=16, A=8, p=17, P':0.0l N=16, A=8, pu=36, PfZOAOI

[N

“+ ACE (K=16) ‘4 ACE (K=16)
0.9H 'O ACE (K=24) R 0.9H O ACE (K=24)
"% ACE (K=32) % ACE (K=32)

0.8l ——KA-ACE (K=16) ] 0.8l ——KA-ACE (K=16)
z —6—KA-ACE (K=24) S z —6—KA-ACE (K=24) :
F 0.7 X KAZACE (K=32) ‘ ] 2 o7/ =% KA-ACE (K=32) o
o o o
= £
W 06 g W o6
a [a)
TR . W
Sos S 1 S o5
z ; z
J04 S : S o4f
21 Q o
= =
803 1 Bo.
g g

0.2 T 02 T

"
0.1 PRREE 0.1 +
‘ +
-5 0 5 10 15 20 0 5 10 15 20 25 30
SNR (dB) SNR (dB)
(a) (b)

Fig. 2. Probability of detection versus SNR for differeiftwhen N = 16, A = 8, and P; = 0.01 for cases of (au = 17; (b) u = 36.

B. Performance of Detection whitening, and the combining coefficients take into account

For the detection performance comparison, we consider fi§¢ accuracy of the prior knowledge. Simulation resultsasho
ACE and the KA-ACE detectors, which are scale-invariant fhat the KA-ACE offer_s _better probability _Of detgct,on t“*'_“’.
\. Two cases;, — 17 and ;i — 36, are considered, which ACE in cases of sufficient and, respectively, limited tragi
correspond to scenarios with less reliable and more aecurdjgnals- A future direction is to examine adaptive selectio
prior knowledge, respectively. In either case, we constikere of parameteru, which indicates the significance of the prior
training sizesK': 16. K — 24 and K — 32 ,are used. Note covariance matrix, in the proposed stochastic model.

that K = 16 is the minimum training size for the ACE to
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