MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

The Gamma Variate with Random Shape
Parameter and Some Applications

Maaref, A.: Annavajjala, R.

TR2011-007 December 2010

Abstract

This letter provides a new outlook at the Gamma distribution and its involvement in the perfor-
mance analysis of digital communications over wireless fading channels. Whereas the Gamma
distribution is usually regarded as a two-parameter distribution with a scale and shape factors that
are deterministic parameters, we investigate the implications and insight that can be drawn from
considering a Gamma variate with a random shape factor. Applications of such a distribution in
the context of information transmission over a wireless fading channel are provided and novel
average symbol error probability (SEP) expressions for single and multi-channel reception are
derived involving the Laplace transform of the new distribution. We analytically prove and verify
via numerical simulations that the average SEP results induced by the random shape parameter
are lower bounded by those obtained using a deterministic fading severity whose value equals
the expected value of the random shape parameter.
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Abstract—This letter provides a new outlook at the Gamma urban area of Valencia in Spain [3] prove that the Nakagami-
distribution and its involvement in the performance analyss of parameter, hence the shape factor of the underlying Gamma
digital communications over wireless fading channels. Wieas anq0m variable used to model the fading channel, is inher-
the Gamma distribution is usually regarded as a two-paramegr " iabl h b d within th fi f h
distribution with a scale and shape factors that are determistic ently vanable ev_en when observe W' n - € conlines of the
parameters, we investigate the implications and insight tat can Same urban environment. A normalized histogram of ithe
be drawn from considering a Gamma variate with a random parameter at 900MHz band [3, Fig. 3] reveals thaactually
shape factor. Applications of such a distribution in the conext ranges frommy,i, = 0.5 t0 muma = 3.5 with an average
of information transmission over a wireless fading channelare 5i.,e of i, = 1.56 and a standard deviation of,, = 0.34.

provided and novel average symbol error probability (SEP) . - . w
expressions for single and multi-channel reception are déred Hence the fading severity does indeed vary from “severely

involving the Laplace transform of the new distribution. We fading” to “lightly fading”. In general, the fading seveyiis
analytically prove and verify via numerical simulations that the influenced by a number of parameters such as the environment
average SEP results induced by the random shape parameterer type, the operating frequency, the transmitter and receive
Iower_ bounded by those obtained using a deterministic fadig antenna heights, polarizations and separation distanoeths
severity whose value equals the expected value of the random . L .
shape parameter. as the relative posrnon of the scatterers. In pr_actu:etfﬂi;e N
parameters are subject to change even assuming a low mobilit
or static fading environment. Therefore, instead of trepthe
fading severity index as deterministic, we propose to madel
as a RV and evaluate the Laplace transform (LT) of the ensuing
Gamma variate when its shape parameter is drawn from some
|. INTRODUCTION distribution that is known a priori, thereby revealing irsting
The Gamma variate which belongs to the family of contirihsights on the Gamma distribution when leveraged from this
uous distributions, has long been associated with the rirgglel"€W angle.
of wireless fad|ng channels and as such has p|ayed an imporThe remainder of this letter is as follows. In Section I, we
tant role in the performance analysis of digital commuridzat Present the Gamma distribution with random shape parameter
systems over fading channels. As a notable example, smafld determine its Laplace transform. In Section Ill, we pro-
scale fading of the wireless channel gain is often model¥ifle applications of the new distribution to the performanc
by the versatile Nakagami: distribution which has been analysis and average SEP evaluation of digital modulations
shown to fit experimental data [1] and whose correspondifyer fading channels with and without diversity reception.
power statistics are Gamma distributed [2]. The appeal §ection IV provides numerical results along with an associ-
the Gamma distribution owes as much to its simplicity as @€d technical discussion and finally concluding remarles ar
its mathematical tractability compared to other distiug Presented in Section V.
which may not always lend themselves to further analytical
derivations. [I. GAMMA DISTRIBUTION WITH RANDOM SHAPE
A Gamma-distributed random variable (RW)is denoted PARAMETER
asg ~ Y(k,Q), with £ > 0 being the shape factor aftl> 0 . . .
the scale(parazmeter. In the con?ext of infgrmation transions Let § ~ .T(k_,Q). Hence, the probability density function
over wireless fading channels, the scale param@teelates (PDF) of 3 is given by
to the average fading power whereas the fading/shadowing e~ agh—l
severity is captured by the shape paramételin many prac- fo(x) = W’ k=1 and x>0, 1)
tical scenarios, notably those involving user/scatterebitity
where the fgding environment is con_stantly cnanging, i'F m%’herel“(n) _ ?e—uun—ldu is the standard Gamma function.
not be possible to determine the fading severity a priori. Un 0
surprisingly, recent measurement campaigns conducteukin The LT of the PDF (1),L3(s) = Ele~*/], can be expressed
as
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When the shape parameteris drawn from a probability [1l. APPLICATIONS
distribution, (1) and (2) represent the conditional PDF and The fading severity index—also known as the scintillating

conditional LT, conditioned ori’ = k, where K" is a RV jndex or coefficient of variation (CV) [4}-of the single-variate
representing the shape parameter. Focusing on (2), we Wriggamma distribution with random shape parameter is computed

La(s) = Ele*|=E[E{e ™’ |K=k as R —
" - E %(1 +] Q)K[] {E[ |10g<1+5§>K] cvo B VYO ER 9)
- ° — Tl “VEE K
= Lx (log(14s0Q)). 3
i (log (14 02)) ®) whereVar (K) denotes the variance df. Here, it is worth-
Note that (3) is valid when the RX is continuous or discrete. while noticing that the CV depends on the first two moments
The expected value gf can be obtained from (3) as of the shape factor distribution rather than its actual ealu
Now, consider communication over a single-input single-

Elf] = ——Ls(s) output (SISO) flat fading channel. Witk the average symbol
ds 5=0 energy andN, the one-sided power-spectral density of the
_ Q E [Keflog(H»sQ)K} additive white Gaussian random process, the instantaneous
1+ sQ <=0 received signal-to-noise ratio (SNR)4s= (E,/Ny)/3, where
= QF[K]. (4) g denotes the instantaneous fading power. Whéna Gamma
) _ RV with random shape parameter, the average received SNR is
Note that (4) can alternatively be obtained &a§3] = 7 = Ely] = (Es/No)E|f] = (E,/No)QK, whereK = E[K]
E[E{f | K = k}] = E[Qk] = QE[K]. is the average fading severity. That is, we can express tie sc
Since a = log(1+ Q) > 0, making use of Jensen'sparameter as
inequality implies thatE[e—*%] > e~ *F[K] That is, a lower _ Ny
bound on (3) is obtained as follows - WESF' (10)
La(s) > (1+ SQ)fE[K] ' (5) Assuming)M-PSK modulation, the average SEP is [9]
M—-1)m
Note that (5) becomes an equality whdd = £k with - 1 s sin2 =
probability one. Psym-psk = = / L, ( ¥ 2]\94> do
We now extend (3) and (5) to the case of multiple Gamma T 0 st
RVs with arbitrarily correlated shape parameters. We consider (M —1)x
N RVsfy,...,y. Let K, denote the shape parameter RV as- 1 r E, sin? i &0
sociated with3,,. We assume that conditioned &\, ..., Ky o / P\ N, sin20
01,..., 8N are independent. That is w‘{) ,
al 1L 5 sin® =
fo Bl Krrin (@1, 2N) = Hlfﬁnm (za).  (6) = / Lk <log <1 + % Sinﬁ)) do. (11)
n= 0
The joint LT of 31,..., 8N IS obtained as Upon using (5) in (11), we have
E[h ,,,,, BN (51, ey SN) =F |:6 2in=1 S"ﬁ"} . (MMU7r 20 1 K
Y Y L P yv—psk 2> / Pl e ) (12)
= _ [e n=1 Kl,...,KNH J 1+? L
[N proving that the average SEP induced by the random shape
= E H E[e* | K ]1 parameter is in fact lower bounded by the one obtained with
;";1 a deterministic fading severity index whose value equads th
_ B H (14 5,0 ),Kn expected value of the random fading severity index. Thi®is n
L nem only an intuitive result but also one that is valid for a wide

range of fading severity index distributions.

= Lryxy (log (L4 5180), .. log (1 + snw))(7) We can also consider the case with antennas at the

whereas Jensen’s inequality yields receiver with maximal ratio combining (MRC). Here, the
instantaneous received SNR on thie branch is denoted by
Lr,,..ky (log(1+s1Q1),...,log (1 + snfn)) i, whereas the SNR at the output of the MRC receiver is
N _B[K.] v = Zle ~;. We denote the scale and shape parameters on
> I (1 + ) " (8) theith branch by, and K, respectively. Similar to (10), we
n=1 have
As will be shown in Section lll, expressions in (3) and 0 =%, Ni , (13)
(5), as well as their multivariate counterparts in (7) anyl (8 Es K

have d|r?Ct applications to the perform.ance analysis @alin  1\ote that the CV is related to another fading severity measuhich is
modulation schemes over wireless fading channels. the amount of fading (AF) defined as AE CV2.



Uniformly Distributed Fading Severity Index
T T T

where7, = (Es/No)E[3] is the average received SNR and 10, —— 1

— \ . . = -‘ B X
K, = E[K]] is the average fading severity on ttté branch, s et X S
A 10 = erauuy.
respectively. <
Assuming arbitrarily correlated, ..., 5., as in (6), we §1°'2’
haveL,(s) = L+,,.. 4. (s,...,s), and an expression similar é’m—s,
to (11) and (12) can be obtained as 5 | —*—sPskik=1
@ 10| —e—BPSK k=5
(M-1)m g
i € | —E—BPSKiK-ULS]
— d6‘ (é”m —p— BPSK: Lower Bound
Psyv-psk = —Lky,. Ky § 10| - % - 8Psk=1
0 < 8-PSK: k=5
107 | = A = 8-PSK: K ~ U[1, 5]
3, sin® & 3, sin® - 4 - 8-PSK: Lower Bound
10g 1+ ?_1 sinZ2 6 PR 710g 1+ ?_L sinZ 0 (14) 107 . i i i i i i
0 2 4 6 8 10 12 14 16 18 20
_ Average Received SNR [dB]
(M—1)x K
> f dae HL 1 ) (15) Fig. 1. Average SEP of BPSK arttPSK modulations on Gamma fading
= L S“‘zzﬁ channels with uniform fading severity index.
K, sin2 0

Expressions similar to (11)! (12)! (14) and (15) can also | Discrete Distribution Approximation of Measured Nakagami Parameter
obtained for other modulation formats such #sQAM. We 04 ‘ ‘ ‘ ‘ ‘

note that (11) and (14) are valid for arbitrary distribusoof
the fading severity indeX(, and we only need the LT oK
to compute the average error rates.
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IV. NUMERICAL RESULTS
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In this section, we provide numerical results to illustrat ___16-QAM on Measured Nakagami Fading Channels
the analytical ones obtained in the previous two sectior e -y - :
Fig. 1 shows the average SEP &f-PSK modulation with
M € {2,8} on Gamma fading channels. Both deterministi
and random fading severity indexes are considered. W —e— Lower Bound
deterministic fading severity index, we consider= 1 and —o— Average

. . . . =—8— Upper Bound
k = 5, whereas with random fading severity index we assun : : ; ‘ ‘
that K is uniformly distributed over the intervafl, 5]. 0 pverage Received SNR per bit [dB] %
From Fig. 1, we conclude thdt = 1 leads to a first-order
d!VerS!ty performance, whereds = 5 predicts _a flfth-o_rder Fig. 2. Average BER of 16-QAM on measured Nakagamfading channels.
diversity performance. On the other hand, with a uniformly
distributed random fading severity index, the diversitgder

of average SEP is conservatively estimated to be within thRician fading channel model with random line-of-sight (DOS
induced by the deterministic fading severity indexes. Hig. component, in which case analog results for the CV, the
further upholds the lower bound obtained using a detertinisaverage SEP and its lower bound can also be derived.
fading severity whose value equals the expected value of the
random shape parameter. Fig. 2 illustrates the averageroit e ACKNOWLEDGMENT
rate (BER) performance of 16-QAM on measured Nakagami-
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