
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Factored Markov Decision Process Models
for Stochastic Unit Commitment

Daniel Nikovski, Weihong Zhang

TR2010-083 October 2010

Abstract

In this paper, we consider stochastic unit commitment problems where power demand and the
output of some generators are random variables. We represent stochastic unit commitment prob-
lems in the form of factored Markov decision process models, and propose an approximate algo-
rithm to solve such models. By incorporating a risk component in the cost function, the algorithm
can achieve a balance between the operational costs and blackout risks. The proposed algorithm
outperformed existing non-stochastic approaches on several problem instances, resulting in both
lower risks and operational costs.

2010 IEEE Conference on Innovative Technologies

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part
without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include
the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of
the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or
republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All
rights reserved.

Copyright c©Mitsubishi Electric Research Laboratories, Inc., 2010
201 Broadway, Cambridge, Massachusetts 02139



MERLCoverPageSide2



Factored Markov Decision Process Models for
Stochastic Unit Commitment

Daniel Nikovski and Weihong Zhang, {nikovski,wzhang}@merl.com, phone 617-621-7510

Mitsubishi Electric Research Laboratories, 201 Broadway, Cambridge, MA 02139, USA, fax 617-621-7550

Abstract—In this paper, we consider stochastic unit commit-
ment problems where power demand and the output of some
generators are random variables. We represent stochastic unit
commitment problems in the form of factored Markov decision
process models, and propose an approximate algorithm to solve
such models. By incorporating a risk component in the cost func-
tion, the algorithm can achieve a balance between the operational
costs and blackout risks. The proposed algorithm outperformed
existing non-stochastic approaches on several problem instances,
resulting in both lower risks and operational costs.

I. INTRODUCTION

Given a collection of generating units, demands, and oper-
ational constraints over a time horizon, the problem of unit
commitment is concerned with finding the optimal sched-
ules and amounts of generated power for each generator. In
the past, the generators have typically been assumed to be
fully controllable (e.g. fossil-burned, nuclear), and the future
electrical power demand has been assumed to be completely
known. Under these assumptions, various combinatorial opti-
mization methods have been proposed, including ones based
on dynamic programming, Lagrange relaxation, mixed integer
programming, etc. [1].

In reality, though, these assumptions are not correct. Future
power demand can rarely be predicted with errors less than
2% on prediction horizons of 24 hours or longer, so demand
is in fact a random variable with at least that much standard
deviation. Moreover, the rapidly increasing penetration of re-
newable power sources, such as photovoltaic panels and wind
turbines, makes these assumptions less and less reasonable.
The highly variable and intermittent output of renewable power
sources affects significantly the net amount of power that
has to be generated by means of controllable generators, by
influencing both the demand and supply side. On the demand
side, the power generated by renewables owned by customers
changes the amount such customers would request from the
electrical utility in order to supplement their needs. On the
supply side, the amount generated by the renewables owned
by the utility would similarly change the amount it needs to

generate in order to meet demand. The effects on the demand
and supply sides do not balance each other, but rather act in
sync to increase the volatility of power demand for controllable
generators, and thus exacerbate the planning problem for
utilities.

One traditional way to plan for deviations from expected
demand and supply has been to include a safety margin
of extra capacity (for example, 3%) to be committed for
production. This results in operating more and/or larger units
than are necessary to meet expected demand. This approach is
largely heuristic, and is not likely to work in the future, when
renewable energy sources become even more widespread.

An alternative approach is to recognize that the uncertainty
in power demand and generator supply makes the decision
problem a stochastic one. A stochastic operational scheduler
computes a schedule that is robust to future variations of
supply and demand, and provides a safety margin implicitly,
by planning for all possible contingencies. One significant
difficulty associated with this approach has been how to
represent all such possible contingencies, and how to plan for
them. One proposal organizes all future possible realizations of
the system (called scenarios) as a tree of scenario bundles [2].
However, this model for representing stochasticity is limited
to only the few scenarios included in it, whereas in a practical
system the future evolution can be realized in an infinite
number of ways. Our work aims to expand this approach by
improving the probabilistic modeling of system evolution.

We propose a method for finding the optimal conditional
operational schedule of a set of power generators under
stochastic demand for electrical power and stochastic output
of some generators. Unlike traditional operational schedules,
which are fixed in advance, a conditional operational sched-
ule depends on the future state of the observable random
variables (demand and output), and can result in different
actual schedules depending on the observed outcomes for these
variables. The scheduler explicitly balances the operational
cost of electricity generation with the risk of not being able to
meet future electricity demand. We represent the stochastic



dynamics of the components of the system as a factored
Markov decision process (MDP) model, and propose efficient
approximate algorithms for computing suitable conditional
operational schedules.

II. FACTORED MARKOV DECISION PROCESSES FOR

STOCHASTIC UNIT COMMITMENT PROBLEMS
A. Stochastic Unit Commitment

A stochastic unit commitment (UC) problem is an opti-
mization problem under uncertainty. Let N be the number
of available controllable generator units, and T be the total
length of the planning horizon, in suitable units (typically,
one hour). The objective function is presented in Equation
II.1, where ui

t ∈ {0,1} represents the commitment status (on
or off) for unit i at step t, xi

t represents the number of time
steps that unit i has been on/off, and dt are the realizations of
the random demand Dt , 1≤ t ≤ T , assumed to be coming from
a known stochastic process. Similarly, if there are K uncon-
trollable generators, we assume that the realizations yk

t of their
random output amounts Y k

t also come from known stochastic
processes. The configuration of all controllable units at time t

is ut = [u1
t ,u

2
t , . . . ,u

N
t ], and respectively the operating times of

all controllable units at that time are xt = [x1
t ,x

2
t , . . . ,x

N
t ]. The

vector of realizations of all uncontrollable generators at time
t is yt = [y1

t ,y
2
t , . . . ,y

K
t ].

J∗ = minu1,u2,...,uT Eu0,x0,yt ,dt{∑T−1
t=0 [∑N

i=1 fi(xi
t ,u

i
t ,yt ,dt)

+ ∑
N
i=1 hi(xi

t ,u
i
t ,u

i
t+1)+gt(ut ,yt ,dt)]}

(II.1)

Here fi(xi
t ,u

i
t ,yt ,dt) denotes the operating cost of operating

unit i in configuration ui
t and state xi

t for one time step in order
to meet demand dt when the uncontrollable generators output
electricity amount yt . The function hi(xi

t ,u
i
t ,u

i
t+1) denotes

the cost of switching to configuration ui
t+1 at the end of

the step. The third cost component, gt(ut ,yt ,dt), denotes the
equivalent cost of the risk of not being able to meet demand dt

under output of uncontrollable generators yt with the chosen
configuration of all units ut . This cost is proportional to the
probability that the total capacity of the committed units in
ut plus what the uncontrollable generators produce (yt ) is less
than the demand dt :

gt(ut ,yt ,dt) = αPr(
N

∑

i = 1

ui
tcapi +

K

∑

k = 1

yk
t < dt),

where capi is the maximal generation capacity of unit i.
A suitably chosen proportionality coefficient α specifies the

relative preference between minimizing operating cost and risk
of failure to meet demand. In Equation II.1, E{} denotes the
expectation operator with regard to the initial configuration
u0, operational time x0, and the realizations of demand dt and
output yt . By adding the operating cost and risk compensation
cost together, the objective function represents a trade-off
between fuel costs and risk.

A UC problem has to observe several constraints in mini-
mizing the total cost. The load balance constraint states that
the total generation must be equal to the demand dt at any
time step. If pi

t is the generation of unit i at hour t, then

N

∑
i=1

pi
tu

i
t +

K

∑
k=1

yk
t −dt = 0, for t = 1,2, . . . ,T. (II.2)

In most markets, a specific amount of spinning reserve is
explicitly required by regulators. The positive excess spinning
reserve constraint indicates that the total committed spinning
capacity should be greater than the sum of the load and the
required spinning reserve. Let rreq

t be the required spinning
reserve. Then:

N

∑
i=1

capiui
t +

K

∑
k=1

Ȳ k
t −dt − rreq

t ≥ 0, (II.3)

where Ȳ k
t is the expected output of uncontrollable gener-

ator k at time t. Given an existing commitment status ui
t−1,

operation time xi
t−1, and new commitment status ui

t , the new
operational time xi

t can calculated as in Equation (II.4) where
T cl

i is the “cold start” time of unit i, T dn
i is the minimum down

time of unit i, and T up
i is the minimum up time of unit i [3].

xi
t =



1 if −T cl
t ≤ xi

t−1 ≤−T dn
i and

ui
t = 1 (start up)

xi
t−1 +1 if 1≤ xi

t−1 ≤ T up
i −1

(up and must stay up)
T up

i if xi
t−1 = T up

i and ui
t = 1

(up and available to shut down)
−1 if xi

t−1 = T up
i and ui

t = 0
(shutting down)

xi
t−1−1 if −T dn +1≤ xi

t−1 ≤−1
(down and must stay down)
or −T cl

i +1≤ xi
t−1 ≤−T dn

i and
ui

t = 0
(down and available to start up)

−T cl
i if xi

t−1 =−T cl
i and ui

t = 0

(II.4)

Other constraints that this paper considers include the mini-
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Figure II.1. DBN for a power generation problem with three controllable
and one uncontrollable power generators.

mum and maximum generation capacity of the units, minimum
up and down time constraints, and unit availability constraints.
Additional constraints, such as maximal up/down times, can be
accommodated by suitable modifications to Equation (II.4).

B. Stochastic UC as a Factored Markov Decision Process

We propose to represent a power generation system con-
sisting of multiple generators of the type described above by
means of a factored Markov decision process (fMDP), and
find the optimal conditional operational schedule by means of
approximate dynamic programming [4]. The fMDP is usually
expressed graphically as a dynamic Bayesian network (DBN).
A DBN consists of circles that represent random variables,
diamonds that represent decision variables, and directed edges
connecting the circles and diamonds that represent the statis-
tical dependence between the corresponding variables. A ran-
dom variable is conditioned probabilistically on all variables
from which a directed edge is connected to it. Conversely, lack
of edges between variables signifies statistical independence
between them. When dealing with a time-dependent system,
each time period (e.g. one hour) is represented by its own set of
random variables. Three time slices of the DBN for an example
stochastic unit commitment problem with four generators, one
of which uncontrollable, are shown in Fig. II.1.

In Fig. II.1, one random, real-valued, and uncontrollable
variable represents the power demand. Another random, real-
valued, and uncontrollable variable represents the output of a
photovoltaic generator. Three conventional controllable gen-

erators are shown, too; their discrete variables xi
t take on

T cl +T up different values, and represent the operational time
of the respective generator. Three decision variables (shown
as diamonds) represent the individual decisions ui

t to turn
on/off the corresponding generators, and thus commit them for
power production. The probabilistic evolution of the system
is described by local conditional probability tables for each
variable, where the conditional dependence is defined only on
the parents of that variable in the graph of the DBN. Thus,
the DBN serves as a compact representation of a large Markov
decision process whose state space is exponentially large in the
number of states of the individual variables over which it is
factored.

In order to specify a factored MDP, the state, action, and
transition model for each individual variable must be defined.
This is done differently for controllable variables (generators)
and uncontrollable generators and the demand variable, as
described below. The reward/cost model is described jointly
for all variables in the fMDP.

State: The complete state of a controllable generation unit
i is described by its commitment status ui

t and its operational
time xi

t . It is denoted by (ui
t ,x

i
t). The state of all controllable

units at time t is the cross product of the state of all units
at that step. It is denoted by (ut ,xt) where ut (respectively,
xt ) is the vector of ui

t (respectively, xi
t ) over all units i. The

state of the variable representing demand Dt is a discrete
variable that corresponds to the deviation of demand from
its expected value D̄t at time t, normalized by the standard
deviation σt of demand at that time. A suitable number of
discrete bins for that variable can be chosen, for example with
width one standard deviation. The state of a random variable
Y k

t representing the output of an uncontrollable generator can
be represented similarly, as a deviation from its expected value
Ȳ k

t , suitably normalized with respect to its standard deviation.

The state of the system at one step is the cross product
of the state of all units (controllable and uncontrollable) and
the demand variable. Therefore, the system state at time t is
represented as (ut ,xt ,Yt ,Dt). A particular state with concrete
instantiation for the demand Dt = dt and the output of non-
controllable generators Y k

t = yk
t , 1≤ k≤K, will be denoted by

(ut ,xt ,yt ,dt).

Action: Actions change both the commitment status and
operational time of the units. An action with respect to a unit
i at time t is its intended commitment status ui

t at the next
step. An action with respect to all units, denoted by ut , is the
vector of such settings over all units. Note that a state of a



unit indicates its commitment status and operational time at the
current step, while an action indicates their intended status at
the next step. Note also that given a state (ui

t ,x
i
t) and an action

ui
t+1, the operational time xi

t+1 of a controllable generator is
uniquely determined by Equation (II.4).

State transition: Given a state (ui
t ,x

i
t) and an action ui

t+1, the
operational time xi

t+1 of a controllable generator is uniquely
determined by Equation (II.4). So, for controllable units, state
(ui

t ,x
i
t) transitions deterministically to (ui

t+1,x
i
t+1) according to

that equation.

For the demand variable D, we assume that the next demand
Dt+1 depends only on the current demand Dt (Markovian
property of the underlying stochastic process) with transition
probability Pr(Dt+1 = dt+1|Dt = dt). For the uncontrollable
generators, we make similar assumptions that Y k

t+1 depends
only on Y k

t , with probability Pr(Y k
t+1 = yk

t+1|Y k
t = yk

t ). For
most generators, these are reasonable assumptions that capture
the major part of the transition dynamics of their outputs.
For example, whether a photovoltaic unit would produce
less than one standard deviation below its expected value
depends mostly on whether it was producing that much in the
previous time step; this is the typical situation under cloudy
conditions, which tend to persist over fairly long periods of
time. Conversely, its output is only very weakly coupled to
the output of other uncontrollable generators, for example a
wind turbine. These transition probabilities can be estimated
either from statistical data, or by means of discretizing a
suitable continuous stochastic Markov process, such as the
auto-regressive process of order 1 (AR(1) process).

We can also compute the joint transition probability for
the entire system Pr(ut+1,xt+1,yt+1,dt+1|ut ,xt ,yt ,dt), from the
transition probabilities of the individual random variables as

Pr(yt+1,dt+1|yt+1,dt) = Pr(dt+1|dt)
K

∏
k=1

Pr(yk
t+1|yk

t ), (II.5)

if ut , xt , ut+1 and xt+1 conform to Equation (II.4), or
zero otherwise (impossible transition). It can be observed
that although the MDP has a very large joint state space, its
transition structure is very sparse.

Cost: Unlike transition probabilities, which can be specified
separately for each individual variable, the transition cost
is specified for the entire MDP. Given a joint MDP state
(ut ,xt ,yt ,dt) and an action ut+1, the immediate one-step cost
c(ut ,xt ,ut+1,yt ,dt) is computed as

c(ut ,xt ,ut+1,yt ,dt) = ∑
N
i=1 fi(xi

t ,u
i
t ,yt ,dt)+∑

N
i=1 hi(xi

t ,u
i
t ,u

i
t+1)

+ gt(ut ,yt ,dt)
(II.6)

where the switching costs hi(xi
t ,u

i
t ,u

i
t+1) and risk cost

gt(ut ,yt ,dt) are computed as described above, and the fuel
costs fi(xi

t ,u
i
t ,yt ,dt) are computed by solving the following

economic dispatch problem:
minimize ∑i Fi(pi

t) subject to the generation limits for all
generators and the load balance constraint for this particular
realization of the uncontrollable variables yt and demand dt :

N

∑

i = 1

ui
t pi

t +
K

∑
k=1

yk
t −dt = 0

where Fi(pi
t) is the cost of producing pi

t units of electricity
by generator i; typically, this function is quadratic in pi

t , and
the economic dispatch problem can be solved by means of
quadratic programming. The objective of economic dispatch
is to find the optimal generation amounts pi

t of the commit-
ted units so that the cost of generation is minimized for a
specific realization of the random variables. After the optimal
generation amounts [p1

t , p2
t , . . . , pN

t ] are found, the individual
generation costs can be calculated as fi(xi

t ,u
i
t ,yt ,dt) = Fi(pi

t),
1≤ i≤ N.

Given such an MDP, we can define its cost-to-go functions
Jt for each step t and each joint state of the MDP. For the
terminal step T , when no further decisions will be made,
JT (uT ,xT ,yT ,dT ) = 0.

For all other steps, the cost-to-go function Jt(ut ,xt ,yt ,dt) is
defined iteratively by means of a Bellman equation, as follows
[5]:

Jt(ut ,xt ,yt ,dt) = minut+1{c(ut ,xt ,ut+1,yt ,dt)

+∑dt+1,yt+1
Pr(dt+1,yt+1|dt ,yt)Jt+1(ut+1,xt+1,yt+1,dt+1)}

(II.7)
Note that the transition probabilities Pr(dt+1,yt+1|dt ,yt)

are factored conveniently as per Equation II.5, due to the
conditional independence relations in the DBN of the MDP.
The cost-to-go function J0(u0,x0,y0,d0) of the initial state
of the generators and demand would then correspond to the
minimum in Equation II.1: J∗= J0(u0,x0,y0,d0), which is the
minimal expected cost of the conditional operation scheduler.
This cost can be found be computing the costs-to-go of all
states in the MDP.

Furthermore, if these costs are computed and stored, the
optimal decision ut+1 = πt(ut ,xt ,yt ,dt) for time step t and state



(ut ,xt ,yt ,dt) can be identified as the one that minimizes the
right-hand side of the Bellman equation II.7:

πt(ut ,xt ,yt ,dt) = argminut+1{c(ut ,xt ,ut+1,yt ,dt)

+∑dt+1,yt+1
Pr(dt+1,yt+1|dt ,yt)Jt+1(ut+1,xt+1,yt+1,dt+1)}

(II.8)
This policy is conditioned upon the current realizations of

the random variables yt and dt , so it represents a conditional
scheduler. By observing the outcomes yt and dt for each
consecutive time step, different actual operating schedules will
be obtained.

III. SOLVING FMDP MODELS WITH AGGREGATED NET

DEMAND

The objective of solving the stochastic unit commitment
problem represented by the fMDP is to find the optimal
policy that maps the states of the fMDP onto the decision
variables that signify which generators will be turned on/off
in the next period, where optimality is defined in terms of
jointly minimizing production cost and risk of failure. The
straightforward method of solving fMDPs is to expand the
factored state and solve the resulting flat MDP by means
of dynamic programming, applying equation II.7 repeatedly,
starting from the terminal step and proceeding backwards to
the first step [5]. However, for most practical problems, e.g.
when T cl = T up, the number of generators N = 20, the number
of one-hour time periods T = 24, the expanded MDP will
have |X | = T (T cl + T up)N = 24 · 1020 distinct states for the
controllable generators only, and would be impossible to solve.

One practical simplification of the problem is to aggregate
the output of the uncontrollable generators Yt into the demand
variable, by subtracting these outputs from the total demand
Dt to arrive at the net demand D′t . If all uncontrollable random
variables are Gaussian processes, then D′t is a Gaussian pro-
cess, too, with expected value (mean) D̄′t and variance σt for
each time period t. Henceforth, we will assume that Dt denotes
the net demand. For planning purposes, the net demand Dt can
be computed by subtracting the expected values Ȳt at the time
of planning (t = 0). When executing the policy, the actually
observed realizations yt at time t can be used to estimate the
distribution of the random variable Dt+1, so that the estimates
of the transition probabilities Pr(dt+1|dt ,yt) will in fact be
based on yt , when determining the optimal configuration ut+1

by means of Equation II.8.
Another computational simplification of the problem is to

reduce the size of the MDP in a reasonable manner. Intuitively,
if forecasts for the values of the continuous random variables

Dt and Yt are known in advance, and the assumption that these
are Gaussian processes holds true, most of the configurations
of the generators ut at time t would be irrelevant to satisfying
demand at that time. Some of them will have capacities too
low to meet demand, and others will use unnecessarily many
generators to meet demand economically. By considering only
configurations ut of the controllable part of the MDP whose
maximal committed capacity (MCC) is close to the expected
net demand D̄t , we can drastically reduce the size of the space
of the MDP.

A practical way of identifying such suitable configurations
is to run a fast deterministic algorithm for unit commitment for
several possible values of target reserve β such that the target
demand is (1+β )D̄. Suitable schedules Sβ are identified for
each β , and the generator configurations ut present in Sβ are
included in the reduced state space of an approximate solver,
which essentially switches between individual segments from
multiple schedules Sβ , depending on the time evolution of
power demand and uncontrollable generators.

Hence, the fundamental idea of the solution algorithm is
to identify suitable configurations for representative demands,
and then use them to produce schedules for any possible
realization of demand. We use an AND/OR tree ([6]) to
represent all selected configurations of the generators and
possible realizations of future demand. The AND/OR tree is
then used for planning for any demand instances.

A. Building the AND/OR tree

An AND/OR tree has two types of nodes — AND nodes
and OR nodes. An AND/OR tree is a tree where (1) its root
is an AND node, (2) it has alternating levels of AND and
OR nodes, and (3) its terminal nodes are AND nodes [6]. An
AND/OR tree is shown in Figure III.1 where the AND/OR
nodes are respectively in rectangular/circular shapes. Note that
in this case the outputs of the uncontrollable generators Yt have
been aggregated into the net demand variable Dt , and are not
included in the AND/OR tree.

An AND node for the UC problem is associated with a
system state (ut ,xt ,dt) at time step t, whereas an OR node
is associated with the action ut at that time. The root node
corresponds to the initial state of the UC system. The values
of the nodes are evaluated bottom-up. For an OR node ut+1,
if its parent AND node is (ut ,xt ,dt) and its children (AND)
nodes are {(ut+1,xt+1,dt+1)|dt+1}, then the value of the OR
node is evaluated as



(u , x , d )

(u , x , d ) (u , x , d )

u u

0 0 0

1
1

1
2

1
1

1
1

1 1
1

1
1

uuu uu u
2
1

2
2 1

2 2
2

2
1

2
2

1
2

u2
1 u2

2

2
1

2
1(u , x , d ) 2 2 2

1 1(u , x , d ) 2
2

2
2(u , x , d ) 2 2 2

2 2(u , x , d ) ... (u , x , d )2
1

2
7 (u , x , d )2

1
2
7

2 (u , x , d ) (u , x , d )2
2

2
8

2
2

2
8

2

2
1
2(u , x , d )2

1 1(u , x , d )11
1 2 1 2

1

2
1 2

2
1 2

2
1 2

2
1 2

Figure III.1. An AND/OR tree example

Vt(ut+1|ut ,xt ,dt) = c(ut ,xt ,ut+1,dt)

+ ∑dt+1
p(dt+1|dt)Vt+1(ut+1,xt+1,dt+1)

(III.1)
Note that the notation Vt(ut+1|ut ,xt ,dt) means that the value

of OR node is conditional on its parent AND node. For an
AND node (ut ,xt ,dt), its value Vt(ut ,xt ,dt) is evaluated as
follows:

Vt(ut ,xt ,dt) =

{
c(uT ,xT ,uT ,dT ), if t = T

minut+1 Vt(ut+1|ut ,xt ,dt) otherwise
(III.2)

Note that the minimization in minut is over all children OR
nodes ut+1, and that no configuration switching cost is incurred
at the last step, since the continuation of the schedule at that
time is yet unknown.

1) The root node (u0,x0,d0) is the initial state of the
system, and is the first node of the tree, at level 0. Since
the levels correspond to the time steps in a UC problem,
we use steps to refer to levels. The rest of the tree is
built over time steps: the AND nodes at Step t and an
OR node are used to build AND nodes at Step t + 1.
The OR nodes correspond to the suitable configuration
selected earlier. For a node (ut ,xt ,dt), we use every
candidate configuration to produce AND nodes at the
next time step. Let the OR node be ut+1. The status
of the units at next time step is (ut+1,xt+1). Since the
demand at t + 1 is uncertain, we generate an AND
node for every possible demand, suitably discretized
into several discrete variables. So, the set of next AND
nodes is {(ut+1,xt+1,dt+1|dt+1)}. The process of tree
constuction repeats until completion at Step T .

2) The values of the AND and OR nodes in the tree are
computed by means of Equations (III.1) and (III.2),
applied in a bottom-up manner. In evaluating the non-
terminal AND nodes, there must be an OR node that

achieves the minimum in Equation (III.2). The action
represented by that OR node is the best action of the
system state represented by the parent AND node.

B. Evaluating MDP Policies

Once a policy has been computed and stored in the
AND/OR tree, we adopt a sampling approach to evaluate
its operational cost and risk under future random demand
D. For this purpose, we draw a suitable number of samples
d = [d1,d2, . . . ,dT ] from the demand variable D (e.g., 1000
samples). For each sample, we start from the root of the
tree and execute the actions specified by the tree. Such
an execution results in a path in the tree. Specifically, an
execution path is a sequence of system states and actions
{(u0,x0,d0),u1,(u1,x1,d1), . . . ,uT ,(uT ,xT ,dT )} that are pre-
scribed by the initial system state, the AND/OR tree, and
the demand realization d = [d1,d2, . . . ,dT ]. The cost of a path
can be accessed by solving the economic dispatch problem
for each step, given the prescribed configurations ut , while its
risk can be calculated using the committed capacity ut and the
realization of demand dt . The overall risks and costs are the
average across the paths associated with the demand samples.

The most expensive part of the algorithm is the building
and evaluation of the AND/OR tree, because it is exponential
in the planning horizon T , where the base of the expeonent is
the number of discrete levels of discretization for the demand
variable Dt . However, when an AND node is added to the
tree, a feasibility check is performed first: a node is added
only when it meets all temporal constraints plus the demand
and load constraints, and the economic dispatch associated
with the node has a feasible solution.

IV. EXPERIMENTAL RESULTS

We experimented with the proposed method on a test
problem adopted from [3], extended with the introduction of
uncertainty in the demand. The standard deviation of demand
was assumed to be 2% of expected demand: σt = 0.02D̄t .
No uncontrollable generators were used, so the net demand
is equal to the total demand. The approximate algorithm from
the previous section was implemented and compared against
two existing algorithms: one of them was based on a priority
list ([1]), and the other one was the decommitment algorithm
proposed in [3]. Our results showed that the approximate
solution method provides a good balance between generation
cost and risk of failure to meet demand. We performed
experiments on two UC examples: one with 4 units, and



another one with 20 units. We were able to calculate the truly
optimal MDP solution for the 4-unit UC example, so we were
able to investigate the accuracy of our approximation scheme
on that problem, too. The experiments were performed on a
computer with Intel Core 2 Duo E6600 CPU (2.40GHz). The
algorithm was implemented in MATLAB 7.9.0 (R2009b).

A. Experimental Conditions

The generation cost of a committed unit i at time t is
computed as a quadratic function of the produced amount of
power by the unit: fi(xi

t ,u
i
t ,dt) = ci

0 +ci
1 pt

i +ci
2(pi

t)
2. The unit

switching and start-up cost is expressed as h(xi
t ,u

i
t ,u

i
t+1) =

tcsti + bcsti(1− exp(−γxi
t)), if ui

t = 0 and ui
t+1 = 1, and zero

otherwise. In the start-up cost, the fixed component tcsti
represents the cost of starting generator i, while the second
term bcsti represents the cost of starting the boiler and varies
exponentially with the length of the time that the unit has been
off.

Under a Gaussian assumption for demand (Dt ∼N(D̄t ,σ
2
t )),

the risk compensation cost gt(ut ,dt) is given by

α
′ ·CFSO ·

∫
∞

∑i ui
t capi

1√
2πσ2

t
exp(− (D− D̄t)

2

2σ2
t

) ·dD

where α ′ is the proportionality constant, CFSO is the full
system operating costs (the cost of the system in which all
units are turned on and generate according to their maximum
capacity), and the integral is the failure probability (risk).
Failure happens when the actual demand D is greater than
the Maximum Committed Capacity (MCC) ∑i capiu

i
t of all

operating units. By increasing the constant α , the weight of
the risk component in the objective function is increased, thus
favoring configurations with higher MCC, at the expense of a
higher operational cost for running such configurations.

B. A 4-unit example

The decision horizon of the 4-unit UC problem was 24
hours. The coefficients tcsti and bcsti of the start-up costs for
the four units were [200,2000;500,20000;100,700;44,100].
The fuel cost coefficients [c0,c1,c2] for the four
units were [0.00211,16.51,02.7; 0.00063,21.05,1313.6;
0.00712,22.26,371.0; 0.00413,25.92,660.8], in chosen
cost units. The minimum up and minimum down
times were [3,3,2,2] and [4,4,3,3]. The minimum
and maximum capacities were [10,10,10,10] and
[100,90,80,60], here and henceforward, in chosen
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Figure IV.1. Performances of the algorithms on a 4-unit problem

power units. The expected demand vector was
D̄=[105,85,65,140,100,105,125,145,165,185,205,245,265,285,
200,140,100,105,125,145,165,185,205,225]. The spinning
reserves were 15 for all time steps. The initial operational
times were x0 = [5,−5,5,−5].

The risk versus cost curves for various methods are pre-
sented in Figure IV.1. “Conditional exact” refers to the algo-
rithm that solves the MDP exactly, i.e., all Bellman backups
(Equation II.8) were performed. “Conditional approximate”
refers to the algorithm proposed in the previous section. In
the figure, the horizontal axis is the percentage of the extra
operational cost with respect to a reference operational cost,
taken to be the lowest experimentally obtained operational
cost for any scheduler on this problem. For this problem
instance, it can be seen that the solution of the proposed
algorithm is very close to optimality (the conditional exact
solution), and the algorithm outperforms significantly both the
priority list and the decommitment algorithms in balancing
operational costs and risks. For the lowest levels of risk, which
are probably close to the desired cost/risk trade-off point of
an actual generation system, the loss of optimality is less than
1%, whereas the gain in costs with respect to deterministic
schedulers is greater than 9%.

C. 20-unit example

In this experiment we used all 20 generators described in
[3]. The expected demand vector was [2133.3, 2133.3, 2066.7,
2066.7, 2133.3, 2133.3, 2266.7, 2400.0, 2400.0, 2400.0,
2333.3, 2200.0, 2133.3, 2133.3 ,2200.0, 2266.7, 2400.0,
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Figure IV.2. Performances of the algorithms on a 20-unit problem

2400.0, 2400.0, 2400.0, 2333.3, 2200.0, 2200.0, 2066.7]. The
required spinning reserve was 133.3. It was no longer possible
to find the truly optimal conditional schedules, but it is possible
to compare the performance of the conditional approximate,
priority list, and decommitment algorithms (Figure IV.2).
Again, the results show that the proposed novel algorithm
uniformly achieved a much better risk/cost balance than the
priority list and the decommitment approaches, with opera-
tional cost savings around 4% for the lowest levels of risk.

V. CONCLUSION

We have described a general method for representing the
stochastic dynamics of power generation systems under mul-
tiple sources of uncertainty such as variable power demand
and intermittent renewable energy sources, and have intro-
duced a class of conditional generation schedules where the
unit commitment decisions are conditioned upon the state of
observable random variables. The proposed factored Markov
decision process models represented in the form of dynamic
Bayesian networks are compact and are also easy to specify,
maintain, and extend with new power sources.

We have also proposed a concrete algorithm for finding
such conditional operational schedules for power generation
that depend on a single random variable — the net demand
that aggregates in itself all sources of randomness. The algo-
rithm focuses on small subsets of all possible configurations
of generators in order to compute the schedule efficiently.
Experimental results suggest that the resulting conditional
schedules are close to the truly optimal ones, and provide
a much better trade-off between generation cost and risk of

failure to meet demand than two known non-stochastic unit
commitment algorithms that compute fixed schedules.

In the proposed solution algorithm, we use AND/OR trees to
represent, find, and evaluate the optimal conditional schedule.
However, this algorithm is by no means the only possible way
to solve stochastic generation problems represented by means
of fMDPs and DBNs. In future work, we plan to investi-
gate other solution methods based on approximate dynamic
programming that could result in much better computational
complexity. Furthermore, the current solution aggregates the
variability of all stochastic variables into the net demand to the
controllable power generators, for the sake of computational
efficiency. This simplifies the planning problem, because the
branching in the AND/OR tree is based only on that single
variable. However, even higher efficiency might be possible
if the conditional schedule is conditioned on the values of
each individual stochastic component. This would significantly
increase the complexity of the planning process, and would
depend critically on finding more computationally efficient
solution methods for the underlying fMDP models.

The formulation of the fMDP described in the paper as-
sumes that all generators would switch to their intended
configurations ui

t without fail. This allows us to use the
decision variables ui

t as components of the state of the system,
thus simplifying the planning process. If the possibility of
equipment failure must be taken into account, the actual
configuration U i

t of the generators should be included as
a random state variable in the DBN, and its probabilistic
dependence on the intended configuration ui

t can be modeled
according to the failure probabilities of individual generators.
Such an extension is completely compatible with the proposed
modeling formalism of factored Markov decision processes.
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