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Image Transmission over Block Fading Relay

Channels
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and Laurence B. Milstein, Fellow, IEEE

Abstract—In this paper, we are concerned with the design
and analysis of joint source-channel coding schemes for block
fading channels with relay-assisted distributed spatial diversity.
Assuming a progressive image coder with a constraint on the
transmission bandwidth, we formulate a joint source-channel
rate allocation scheme that maximizes the expected source
throughput. Specifically, using Gaussian as well as BPSK inputs
on flat Rayleigh fading channels, we lower bound the average
packet error rate by the corresponding mutual information
outage probability, and derive the average throughput expression
as a function of channel code rates as well as channel SNR
for both a frequency-division multiplexing-based baseline system
without relaying, and a half-duplex relay system with a decode-
and-forward protocol. At high signal-to-noise ratio (SNR), for
the systems considered in this paper, we show that our rate
optimization problem is a convex function of the channel code
rates, and we show that a known recursive algorithm can be used
to predict the performance of both systems.

Index Terms—Joint source channel coding, progressive image
communication, unequal error protection, cooperative relaying.

I. INTRODUCTION

WHEN we transmit source bits through an unreliable
channel, we need channel bits to protect information

from channel noise. However, due to limited bandwidth, power
or delay constraints, channel resources should be shared by
source and channel bits optimally in the sense of distortion or
throughput. Therefore, the problem is how to decide the ratio
of source and channel bits under the system constraints. This
problem has been considered for progressive source coding
such as embedded zerotree wavelet (EZW) coding [1], set
partitioning in hierarchical trees (SPIHT) [2] and JPEG2000
[3], where the decoding of the progressive image stops at
the first packet error. Due to its progressive property, we
need to push the first error event as far back as possible
in the packet stream for better performance. To do that,
earlier packets generally need more protection than others, and
therefore unequal error protection (UEP) outperforms equal
error protection (EEP).
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Many studies have appeared on the design and analysis of
joint source-channel coding schemes for various channels of
both theoretical and practical interest. For example, in [4], the
progressive transmission of images jointly with rate compati-
ble punctured convolutional (RCPC) codes was proposed and
investigated for binary symmetric channels. Later, this was
extended to fading channels with a product code structure
[5], where the product codes consist of RCPC codes in a
row and Reed Solomon (RS) codes in a column. In [6],
optimization using dynamic programming was proposed to
choose block length as well as appropriate code rate. To do
that, the authors defined a general performance measure, where
the performance measure could be mean-squared error (MSE),
peak signal-to-noise ratio (PSNR), or the number of received
source bits. A more computationally efficient algorithm was
proposed by Chande and Farvardin in [7], where the optimal
UEP solution was computed recursively. Later, Stanković et
al. introduced a faster algorithm to find the rate-optimal UEP
solution by computing the run-length profile of the code
rates [8]. Nosratinia et al. proposed a parametric approach
for source-channel bit allocation, where the exact bit error
rate (BER) corresponding to each coding rate was modelled
empirically for certain channels [9]. An information-theoretic
approach for joint source-channel bit allocation was also
presented by Gunduz et al. [10] and Etemadi et al. [11], where
both considered layered transmission of successively refinable
Gaussian sources over quasi-static fading channels, and found
theoretical bounds for expected distortion using well-known
rate-distortion expressions for a Gaussian source. Recently,
joint source-channel coding was considered in cooperative
relaying systems, where cooperative relaying can improve
channel performance by providing additional diversity. Gun-
duz et al. [12] considered joint source-channel coding for
cooperative relaying systems when channel state information is
only known at the receiver (CSIR) and quasi-static channels
are assumed, and investigated the performance in terms of
the distortion exponent. Shutoy et al. [13] proposed layered-
cooperative coding to exploit a relay’s diversity gain for a
video source. Finally, in [14], hybrid error protection was
proposed, where cooperative diversity was considered as an
additional protection tool beyond forward error correction.

In this paper, we use an information-theoretic framework
to analyze the source-channel rate allocation to maximize
the throughput of a progressive image in a system either
with or without a cooperative relay. This analysis provides an
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approximate bound on the system performance at high SNR
in terms of average throughput, which may not be optimal
in the sense of distortion. However, the throughput-optimal
approach has some advantages over the distortion-optimal
approach. First, the throughput-optimal approach can be ana-
lyzed mathematically without considering the source charac-
teristics. And, the UEP solution can be found at the transmitter
and receiver independently without any additional signaling
between them, since the average channel gain, which is needed
in the throughput-optimal approach, is known by both the
transmitter and the receiver. Moreover, the throughput-optimal
approach can allow one to find the distortion-optimal solution
using a local search algorithm and the source statistics in
linear time [28]. We study both Gaussian and symmetric
BPSK inputs over block fading channels, and get the mutual
information (MI) outage probability, which is a lower bound
on the actual packet error rate (PER) of a BPSK-based system
[15],[16]. Although there are well-known expressions for
mutual information and outage probability for Gaussian inputs,
a closed-form expression for the capacity when either PSK
or QAM inputs is used is not known. However, both bounds
and approximations have been widely studied (e.g.,[17]-[20]).
In this paper, we use [18] to find an approximation for the
MI outage probability for BPSK inputs. Then, we derive
an average source throughput expression using MI outage
probability and the progressive property of the source. We
prove that this rate-optimization problem is a convex function
of the channel code rates at high SNR, and the solution can
be found by using a recursive algorithm introduced in [8]. Our
predicted system performance and average channel code rates
upper bound the simulation results.

The rest of this paper is organized as follows. In Section II,
we introduce the system model for the transmission of pro-
gressive images. Using both Gaussian and BPSK inputs, in
Section III, we present expressions for the average source
throughput for the baseline as well as the relay-based systems.
In Section IV, we provide a simple algorithm to determine
the optimal channel code rates under a bandwidth constraint.
Numerical and simulation results are presented in Section V,
and we conclude this work in Section VI.

II. SYSTEM MODEL

We consider a general progressive image transmission sys-
tem consisting of a single source and destination either with
or without relays. The image source rate is denoted by Rs
pixels/sec. If we assume rs bits-per-pixel (bpp), then the
total source rate is Rsrs bits/sec. The source bit stream is
packetized into M packets, which are protected by suitable
channel codes. All the packets are assumed to have equal
channel codeword length, n. The total bandwidth available for
the source is W Hz, whereas the duration of a code symbol
is denoted by Ts. Assuming a Nyquist pulse-shaping filter at
the transmitter, we have

W =
1 + β

Ts
, (1)

where β is the roll-off factor of the pulse-shaping filter.

We assume the channels between all the nodes are ran-
dom, independent, and constant over the packet duration.
The coherence bandwidth is assumed to be the same as the
bandwidth of a sub-channel, where the bandwidth of a sub-
channel is defined as W/N and N is the number of relays.
We assume Rayleigh fading channel, so the square of the
fading amplitude follows an exponential distribution, and the
additive noise is i.i.d. white Gaussian and independent for each
channel. We assume that the receivers of the relays and the
destination know the instantaneous channel realizations, and
the transmitters of the source and the relays know only the
mean channel gain.

The destination combines the received channel code sym-
bols on the N sub-channels using maximal ratio combining
(MRC). We assume that the system is able to detect any
errors and halts decoding of subsequent packets following an
erroneous packet.

A. Baseline System

In the baseline system, the transmission bandwidth W is
equally divided into N uncorrelated sub-bands and the source
repeats each packet over the N sub-channels. The bit duration
of each sub-channel is Ts1 = NTs. If Kj denotes the number
of information bits in the jth packet, where j = 1, . . . ,M , then
the channel code rate of the jth packet is rBL

c (j) = Kj/n,
where n is the packet length in bits. The total transmission
time for a given image is M × n × Ts1 . In this time, the
total number of source bits generated is RsrsMnTs1 which
is assumed to be equal to

∑M
j=1Kj = n

∑M
j=1 r

BL
c (j). That

is, we have the rate constraint

n

M∑
j=1

rBL
c (j) = RsrsMnTs1 = NRsrsMn

1 + β

W
≤Mn.

(2)
If TBL

b (j) denotes the information bit duration, and RBL
b (j) =

1/TBL
b (j) denotes the corresponding bit rate for the jth packet,

then, using the relation nTs1 = KjT
BL
b (j), we have

RBL
b (j) =

Kj

n

1
Ts1

=
rBL
c (j)
NTs

= r̃BL
c (j)

W

N
, (3)

where r̃BL
c (j) = rBL

c (j)/(1 + β).
Let αj,l denote the channel fading amplitude experienced

by the jth packet on the lth sub-channel. We assume that the
αj,l, for j = 1, . . . ,M and l = 1, . . . , N , are independent and
identically distributed (i.i.d) Rayleigh random variables, with
second moment E[α2

j,l] = Ω1. The total average transmission
power budget at the source is PT . Therefore, the average power
per sub-channel is P1 = PT /N .

B. Half-duplex Relay System

We assume N relay nodes, each of them and the source
occupying a bandwidth of W/N , as presented in Fig. 1. The
source transmits each packet sequentially through one of N
sub-channels. Each packet is received by the destination as
well as by all the N relays. The packets are assumed to be
further protected by suitable cyclic redundancy check (CRC)
codes to aid verification of their integrity. With this, only those



KIM et al.: SOURCE-CHANNEL RATE OPTIMIZATION FOR PROGRESSIVE IMAGE TRANSMISSION OVER BLOCK FADING RELAY CHANNELS 3
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Fig. 1. (a) Baseline system and (b) half-duplex relay system, where Si and
Ri are the ith packet transmission at the source and the relay, respectively.

relay nodes that successfully decode the source packets re-
encode and forward them to the destination. For simplicity, we
assume that the probability of undetected error is very low, and
can be ignored. The destination combines all the packets that it
receives from the source and the relay nodes in an appropriate
manner before proceeding with channel decoding. For the lth
packet, we denote by αsd,l the fading amplitude on the path
from the source to the destination, αjsr,l the fading amplitude
on the path from the source to the jth relay node, and αjrd,l
the fading amplitude on the path from the jth relay node to
the destination. Similar to the baseline system, we assume that
αsd,l, α

j
sr,l and αjrd,l, for j = 1, . . . , N and l = 1, . . . ,M , are

independent and Rayleigh distributed, with second moments
E[α2

sd,l] = Ωsd, E[(αjsr,l)
2] = Ωjsr and E[(αjrd,l)

2] = Ωjrd.
If we denote by Lj the number of information bits in the jth

packet, then the code rate of the jth packet with cooperation
is rCoOp

c (j) = Lj/n, j = 1, . . . ,M . In the half duplex relay
system, where the relays transmit and receive in different
time slots, 2M time slots are required to transmit M packets.
Since the bit duration of the half duplex relay system, Ts2 ,
is equal to that of the baseline system, the length of each
time slot is (n/2)Ts2 = (n/2)NTs, which is half of a packet
transmission time. This leads to the following rate constraint

with cooperation :

M∑
j=1

Lj = RsrsMTs2n/2 ≤Mn/2

⇒ 1
M

M∑
j=1

rCoOp
c (j) =

1
2
NRsrsTs ≤

1
2
, (4)

where the effective channel code rate of the jth packet,
rCoOp
c (j) = Lj/n. If we denote by Ps the average transmit

power of the source, and by Pj the average transmit power
of the jth relay node, then we have the following energy
constraint :

Ps(n/2)Ts2 +
N∑
j=1

Pj(n/2)Ts2 = PTnTs1

⇒ Ps +
N∑
j=1

Pj = 2PT , (5)

where PT is the average transmission power of the source
without cooperation.

III. THROUGHPUT PERFORMANCE ANALYSIS

In this section, by assuming large block lengths and block
fading of the channel over the packet duration nTs1 , we lower
bound the actual PER by the channel mutual information
(MI) outage probability [22], which is defined [23] as the
probability that the instantaneous MI observed by a packet,
which is a random variable (r.v.), is below the attempted
information bit rate. Then, we derive the average throughput
expression for each system using the MI outage probability.

A. Gaussian Inputs

1) Baseline System: Let πBL
j denote the MI outage proba-

bility for the jth packet, which is a lower bound of the PER,
at the destination. For the jth packet, the MI (in bits/sec) is

MIBL(j) =
W

N
log2

(
1 +

N∑
l=1

P1

N0
W
N

α2
j,l

)
. (6)

The corresponding MI outage probability is

πBL
j = Prob

(
MIBL(j) < RBL

b,j

)
= Prob

(
W

N
log2

(
1 +

N∑
l=1

P1

N0
W
N

α2
j,l

)
≤ Wr̃BL

c (j)
N

)

= Prob

(
N∑
l=1

α2
j,l

Ω1
≤ 2r̃

BL
c (j) − 1

Γ

)

= γinc

(
2r̃

BL
c (j) − 1

Γ
, N

)
, (7)

where we have used the fact that ζ ,
∑N
l=1 α

2
j,l/Ω1 is

a Gamma-distributed r.v. with probability density function
(PDF)

fζ(x) =
e−xxN−1

Γ(N)
x ≥ 0, (8)



4 TECHNICAL REPORT

and where Γ(n) =
∞∫

u=0

e−uun−1du is the standard Gamma

function [26], and γinc(x, n) in (7) is the incomplete Gamma
function, which is defined as [26]

γinc(x, n) ,
1

Γ(n)

x∫
u=0

e−uun−1du. (9)

In (7) Γ = P1Ω1N/(N0W ) = PTΩ1/(N0W ) is the average
received signal-to-noise ratio (SNR) per sub-channel.

Due to the progressive nature of the source, only the packets
decoded successfully until the first decoding failure are used
by the source decoder for reconstructing the source. Let us
denote by SBL

k the probability of successfully receiving k
source packets at the input of the source decoder. Then, we
have

SBL
0 = πBL

1

SBL
k = πBL

k+1

k∏
i=1

(1− πBL
i ) k = 1, . . . ,M − 1 (10)

SBL
M =

M∏
i=1

(1− πBL
i ).

The average number of source bits successfully decoded by
the source decoder in the baseline system is

T BL(rBL
c ) =

M∑
j=1

(
j∑
i=1

Ki

)
SBL
j

= n(1 + β)
M∑
j=1

(
j∑
i=1

r̃BL
c (i)

)
SBL
j , (11)

where rBL
c =

(
r̃BL
c (1), . . . , r̃BL

c (M)
)
. The source-channel rate

allocation problem for the baseline system can then be stated
as

maximize T BL(rBL
c ) (12)

subject to
M∑
j=1

r̃BL
c (j) ≤ M

1 + β
. (13)

2) Half-duplex Relay System: We denote by q(i, j) the
probability of decoding error of the jth packet at the ith relay
node, which is computed as follows: Let MI(i, j) denote the
MI of the jth packet at the ith relay, then

MI(i, j) =
W

N
log2

(
1 +

Ps

N0
W
N

(αisr,j)
2

)

=
W

N
log2

(
1 + γisrN

(
αisr,j

)2
Ωisr

)
, (14)

where γisr = Ps

N0W
Ωisr, i = 1, . . . , N . The transmission

rate of the jth packet with cooperation is RCoOp
b (j) =

2r̃CoOp
c (j)W/N , where r̃CoOp

c (j) = rCoOp
c (j)/(1 +β). Then,

q(i, j) = Prob
(

MI(i, j) < RCoOp
b (j)

)
= Prob

((
αisr,j

)2
Ωisr

<
22r̃CoOp

c (j) − 1
γisrN

)

= γinc

(
22r̃CoOp

c (j) − 1
γisrN

, 1

)
, (15)

which follows from the fact that (αisr,j)
2/Ωisr is exponentially-

distributed with unit mean.
Let Dj denote the set of relay nodes that successfully

decode the jth source packet. Then the probability that relays
in the set Dj are only able to decode jth source packet is

Prob(Dj) =

∏
i∈Dj

(1− q(i, j))

×
 ∏
k 6∈Dj

q(k, j)

 (16)

owing to the independence of the decoding errors at the relays,
which is attributed to the spatial independence of the channel
fading.

At the destination, we assume that each source packet is
maximal-ratio combined. Then, the MI of the jth packet at
the destination, conditioned on Dj , is

MI(Dj) =
W

N
log2

(
1 +

Ps

N0
W
N

α2
sd,j +

∑
l∈Dj

Pl

N0
W
N

(αlrd,j)
2

)

=
W

N
log2

(
1 +Nγsd(αsd,j)

2/Ωsd +

N
∑
l∈Dj

γlrd(α
l
rd,j)

2/Ωlrd

)
, (17)

where γlrd = Pl

N0W
Ωlrd, l = 1, . . . , N . Conditioned on Dj , the

probability of jth packet error at the destination is

πCoOp
j (Dj) = Prob

(
MI(Dj) <

2r̃CoOp
c (j)W
N

)
= Prob

(
γsd(αsd,j)

2/Ωsd +

∑
l∈Dj

γlrd(α
l
rd,j)

2/Ωlrd <
22r̃CoOp

c (j) − 1
N

)
.

(18)

To simplify (18) further, define

Z(Dj) , γsd(αsd,j)
2/Ωsd +

∑
l∈Dj

γlrd(α
l
rd,j)

2/Ωlrd. (19)

Assuming γsd, γlrd, ∀ l ∈ Dj , are all distinct, and using the
moment generating function approach, it is easy to show that
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the PDF of Z(Dj) is given by

fZ(Dj)(z) = λ0(Dj)
1
γsd

exp
(
− z

γsd

)
+∑

l∈Dj

λl(Dj)
1
γlrd

exp
(
− z

γlrd

)
, (20)

where

λ0(Dj) =
∏
l∈Dj

γsd
γsd − γlrd

(21)

and λl(Dj) =
γlrd

γlrd − γsd
×

∏
m∈Dj ,m 6=l

γlrd
γlrd − γmrd

.

(22)

Upon using (20) in (18), we arrive at

πCoOp
j (Dj) = λ0(Dj)γinc

(
22r̃CoOp

c (j) − 1
γsdN

, 1

)
+

∑
l∈Dj

λl(Dj)γinc

(
22r̃CoOp

c (j) − 1
γlrdN

, 1

)
.

(23)

Finally, upon averaging (23) over all possible decoding sets,
the average probability of error for the jth packet is

πCoOp
j =

∑
Dj

Prob(Dj)πCoOp
j (Dj). (24)

Once πCoOp
j is found, the probability of successfully receiving

k packets at the input of the source decoder with cooperation,
PCoOp
k , can be expressed in a form similar to (10), where the
πBL
j in (10) is replaced by πCoOp

j of (24).
The average number of source bits successfully decoded by

the source decoder with cooperation is

T CoOp(rCoOp
c ) =

M∑
j=1

(
j∑
i=1

Li

)
PCoOp
j

= n(1 + β)
M∑
j=1

(
j∑
i=1

r̃CoOp
c (i)

)
PCoOp
j ,

(25)

where rCoOp
c =

(
r̃CoOp
c (1), . . . , r̃CoOp

c (M)
)
. The source-

channel rate allocation problem with half-duplex relayed trans-
mission can then be stated as follows :

maximize T CoOp(rCoOp
c ) (26)

subject to
M∑
j=1

r̃CoOp
c (j) ≤ M

2(1 + β)
. (27)

B. BPSK Inputs

In order to apply the results of an information-theoretic anal-
ysis to practical system design, BPSK inputs are considered.
Although a closed-form expression for the symmetric capacity
with respect to BPSK inputs is not known, it is possible to
compute the symmetric capacity numerically. However, in this

paper, we use both bounds and an approximation for sym-
metric capacity instead of numerical computation. Both upper
and lower bounds for the symmetric capacity were derived
by Baccarelli in [17], and approximations were proposed in
[18], [19], and [20]. In this paper, the upper bound of [17]
and the approximation in [18] of the symmetric capacity for
BPSK inputs are used to find an upper bound on the average
throughput of the rate-optimal UEP for the system. From (10)
in [17], an upper bound for the MI of the baseline system is

MIBL
BPSK(j) <

W

N

(
1− log2

(
1 +

exp

(
−2

N∑
l=1

P1

N0
W
N

α2
j,l

)))
, (28)

and the upper bounds of MIs for the relay system are

MIBPSK(i, j) <
W

N

(
1− log2

(
1 +

exp

(
−2

Ps

N0
W
N

(αisr,j)
2

)))
, (29)

and

MIBPSK(Dj) <
W

N

(
1− log2

(
1 + exp

(
− 2

Ps

N0
W
N

α2
sd,j −

2
∑
l∈Dj

Pl

N0
W
N

(αlrd,j)
2
)))

. (30)

From (9) in [18], the approximation of the MI for the baseline
system is

MIBL
BPSK(j) ≈ W

N

(
1− exp

(
−2b

N∑
l=1

P1

N0
W
N

α2
j,l

))
, (31)

and the approximations of MIs for the relay system are

MIBPSK(i, j) ≈ W

N

(
1− exp

(
−2b

Ps

N0
W
N

(αisr,j)
2

))
,

(32)
and

MIBPSK(Dj) ≈ W

N

(
1− exp

(
− 2b

Ps

N0
W
N

α2
sd,j −

2b
∑
l∈Dj

Pl

N0
W
N

(αlrd,j)
2

))
, (33)

where b is a parameter that equals 0.6573 for BPSK inputs
[18]. The approximated average throughput expressions of
each system with respect to BPSK inputs can be derived in
the same manner as those with Gaussian inputs, so details are
not presented here.

IV. OPTIMUM SOURCE-CHANNEL RATE ALLOCATION

In this section, we discuss an algorithm to find the opti-
mal source-channel rate allocation to maximize the average
throughput of each system. In [8], a recursive algorithm
to find the throughput-optimal solution was proposed. We
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show that the same algorithm can find the throughput-optimal
solution for our information-theoretic framework. All objective
functions for baseline as well as relay systems are concave
over rBL

c or rCoOp
c at high SNR, which can be proved by

showing that the Hessian matrix of the objective function is
negative definite. Detailed concavity proof is presented in the
appendices. Then, the optimal UEP can be found by M partial
differentiations as follows :

∂T M ((rc))
∂rc(i)

= 0 i = 1, . . . ,M. (34)

If there is no solution for the ith equation, then the ith element
of the optimal UEP is min{R} or max{R}, where R is the
set of possible code rates. In particular,

∂T M ((rc))
∂rc(M)

= (1− πM )− rc(M)
∂πM
∂rc(M)

= 0, (35)

where πM is the MI outage probability of the M th packet,
presented in (7) and (23). That is, we can find the optimum
rate of the last packet first, and then find the rate of the
(M −1)th packet recursively. Therefore, we can find the rate-
optimal UEP policy, r∗c = (r∗c (1), r∗c (2), · · · , r∗c (M)), using
the algorithm of [8]:

1) Set i = 1 and r∗c (M) = arg maxrc(M)∈R T 1((rc(M)))
for all rc(M) ∈ (0, 1]

2) If i = M , then r∗c = (r∗c (1), r∗c (2), · · · , r∗c (M)) and stop.
3) Set i = i + 1 and r∗c (M − i + 1) =

arg maxrc(M−i+1)∈(0,rc(M−i)] T i((rc(M − i +
1), r∗c (M − i), · · · , r∗c (M))). Go to step 2),

where T i((rc)) is the average throughput expression of the
last i packets. Note that, at low SNR, this algorithm will find
a sub-optimal UEP policy since the convexity of the average
throughput was not proved.

V. A PRACTICAL SYSTEM DESIGN EXAMPLE AND
SIMULATION RESULTS

In this section, we consider a BPSK-based practical embed-
ded image transmission system with and without cooperative
relays and then present the results of joint source-channel rate
allocation based on the analysis as well as simulations. Since
we find the information-theoretic rate-optimal solution, any
embedded source coders and channel coding schemes can be
considered. If the PER of a specific channel coding scheme
is known, the rate-optimal UEP policy can be found [7] [8].
Instead, the MI outage probability can provide an approximate
bound on the average throughput for high SNR, since the PER
is lower bounded by MI outage probability.

A. Simulation Setup

For the simulation, we use SPIHT to encode Lena image
with 0.4 bit per pixel (bpp) of source rate. For channel
encoding, RCPC and RCPT codes are considered. The RCPC
codes have constraint length 3 and generator polynomial (23,
35) in octal. The rate of the mother code is 1/4, and the
length of the codeword is fixed to 1000 bits, which is also
the length of a packet, L. We consider 13 punctured code
rates, RRCPC={8/32, 8/30, 8/28, 8/26, 8/24, 8/22, 8/20, 8/18,
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Fig. 2. EEP channel code rate profile of the baseline system at SNR of 4
dB, where three independent sub-channels are assumed.

8/16, 8/14, 8/12, 8/10, 8/9}. Since we assumed fixed packet
length, there are 13 different source block sizes corresponding
to code rates. For RCPT codes, the encoder consists of two
identical recursive systematic convolutional (RSC) coders with
memory of 2 and generator polynomial (7,5) in octal. The rate
of the mother code is 1/3 and the codeword length is 1000
bits. We also consider 9 punctured code rates, RRCPT={8/24,
8/22, 8/20, 8/18, 8/16, 8/14, 8/12, 8/10, 8/9}. We use soft
output Viterbi decoding with 10 iterations. Regarding the
bit budget, we assume the total number of packets, M , is
fixed at 100, so the optimization must find the code rates
of 100 different packets which maximize average throughput.
The channel is assumed to be block fading, so the channel
gain is constant within a packet, but independent packet by
packet. For a comparison of two systems, we assume they have
same bandwidth, transmission time and energy. In the baseline
system, the total transmit power is equally allocated to the
subchannel, but in the half-duplex relay system, twice the total
transmit power of the baseline system is equally allocated to
the source as well as to the relay to make them have the same
transmit energy, as shown in (5). For the half duplex relay
system, we assume a single relay is located halfway between
the source and destination, and the path loss exponent is set
to 4.

B. Simulation Results

In this subsection, we provide simulation results and com-
pare them with the analytical results. Although any real
number between 0 and 1 can be a code rate theoretically, we
restrict the possible code rate for the analysis to be bounded by
the minimum and maximum code rates of the RCPC or RCPT
codes in order to get comparable results. In Fig. 2, the average
throughputs of the rate-optimal EEP for the baseline system
are presented, where RCPC and RCPT codes are considered.
As explained in [29], the iterative decoding performance of the
RCPT code approaches the maximum-likelihood (ML) bound
as the number of iterations increases. Therefore, Fig. 2 shows
that the rate-optimal EEP channel code rate approaches the
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analytical bound as better channel coding schemes are used.
In the figure, the three solid curves represent the analytically-
derived average throughputs, which are computed by using the
MI outage probability of the Gaussian and BPSK inputs. For
Gaussian inputs, the rate-optimal EEP code rate is approxi-
mately 0.9. However, for BPSK inputs, the rate is reduced
to 0.65. On the other hand, the rate-optimal EEP channel
code rate for the RCPC codes is 8/16 and the channel code
rate for the RCPT codes is 8/14 with 5 iterations, 8/14 with
10 iterations, and 8/13 with 100 iterations, so the optimal
code rate is approaching 0.65 asymptotically. The average
throughputs and PSNRs of rate-optimal UEP policies for the
baseline and the half-duplex relay systems are presented in
Fig. 3 and 4. Due to the path loss reduction, as well as
the cooperative diversity gain, the half duplex relay system
is better than the baseline system, especially at SNR around
12 dB. However, the average throughput of the half-duplex
relay system saturates at intermediate SNRs. In contrast, the
throughput of the baseline system is significantly enhanced as
SNR increases and the crossover of the two curves appears at
around 20 dB, which is caused by the loss in the spectral
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Fig. 5. Average channel code rate of baseline system and half duplex relay
system. Effective code rate is presented, where effective code rate is defined
as the ratio of the number of information bits and the length of packet.
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Fig. 6. Average RCPC and RCPT channel code rate of baseline system and
half duplex relay system. For the half duplex relay system, code rate per time
slot is presented.

efficiency of the half-duplex relay system. Same trend is
observed for average PSNR. In Figs. 5 and 6, average code
rates of UEP policies for the two systems are presented. Fig. 5
shows the effective code rate, rc, where the effective code rate
is defined as the ratio of the number of information bits per
packet to the packet length. In the half-duplex relay system, the
packet consists of two time slots, where the second time slot
is the repetition of the first slot if relay decodes the first time
slot successfully. Therefore, even though the two systems have
the same channel code rates, the number of information bits
per packet in the half-duplex relay system is half of that in the
baseline system, and the effective code rate of the half duplex
relay system cannot be greater than 1/2 max{R}, as shown in
Fig. 5. Interestingly, the average code rates for the half-duplex
relay system is fixed at 4/9 after 12 dB of channel SNR.
This is mainly caused by the high diversity gain of the relay
system, which allows for a higher code rate. Fig. 6 presents the
average RCPC and RCPT code rates, where the code rate of
the half-duplex relay system represents the code rate per time
slot, not per packet. As shown in this figure, the average code
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Fig. 7. Channel code rate profile of the baseline system at 18 dB

rates corresponding to the half duplex relay system converge to
max{R} at an SNR around 14 dB. That is, when channel SNR
is greater than 14 dB, half duplex relay system can choose the
highest code rate for all packets and then rate-optimal UEP
becomes EEP. Finally, the rate-optimal UEP profiles of the
baseline system at an SNR of 18 dB are presented in Fig. 7.
The UEP profiles of the RCPC and RCPT codes are found
using the corresponding PER and the algorithm of [8], while
two above curves represent UEP profiles computed by using
approximated MI outage probability and its lower bound. The
stepwise UEP profiles are also presented by rounding the UEP
profiles of the MI outage probability to the nearest RCPC
and RCPT code rates. As can be seen, in most packets, the
analytically-derived UEP channel code rates are higher than
the UEP channel code rates of the RCPC and RCPT codes,
since the MI outage probability lower bounds the PER. This
can help in finding the rate-optimal UEP for a specific channel
coding scheme by reducing the possible code-rate set.

VI. CONCLUSION

We studied source channel rate allocation for a general pro-
gressive image transmission system over a block fading relay
channel. In particular, we derived the outage probability for the
baseline and the half-duplex relay systems with Gaussian as
well as BPSK inputs. We then derived the average throughput
expressions using the channel MI outage probability, which is
a lower bound on the PER. To solve the optimization problem,
we proved the concavity of the objective functions at high SNR
and then found the solution using the recursive algorithm from
[8]. We compared the average throughput and the rate-optimal
UEP code rates found from the analysis with those obtained
from simulations of a BPSK-based system. Numerical results
indicated that our information-theoretic system model yielded
an approximate upper bound at high SNR on the system
performance for the actual BPSK-based system with capacity
achieving channel coding.

TABLE I
MI OUTAGE PROBABILITIES OF BASELINE SYSTEM

General Form πi = γinc(
1
Γ
f(ri), N)

Gaussian Inputs f(ri) = 2ri − 1

BPSK Approx. f(ri) = − ln(1−ri)
2b

BPSK Upper Bound (UB) f(ri) = − ln(21−ri−1)
2

APPENDIX A
CONCAVITY OF AVERAGE THROUGHPUT EXPRESSION FOR

THE BASELINE SYSTEM

In this appendix, we demonstrate the concavity of average
throughput for the baseline system when the SNR >> 1.
Ignoring constants, the average throughput expression of the
baseline system is

T (rc) =
M∑
l=1

(
l∑

k=1

r̃c(k))Sl =
M∑
l=1

r̃c(l)
l∏

k=1

(1− πk). (36)

As can be seen in [8], for the rate-optimal UEP solution of
a progressive image, the following nondecreasing condition
holds : r̃c(1) ≤ r̃c(2) ≤ · · · ≤ r̃c(M). Therefore, we can
focus on the region of rc which satisfies the nondecreasing
condition for the concavity proof. To generate comparable
results, we also restrict the range of rc to be between min{R}
and max{R}, where {R} is the set of possible rates for the
RCPC and RCPT codes. For simplicity of notation, we replace
T (rc), r̃c(i), dπi

dri
, and d2πi

dr2
i

by T , ri, π′i and π′′i . From (36), we
can derive the second and cross partial derivatives of T (rc).
Since πi is a function of ri, the second order and cross partial
derivatives of T are

∂2T
∂ri2

= −2π′i
i−1∏
k=1

(1− πk)−
M∑
l=i

rlπ
′′
i

l∏
k=1
k 6=i

(1− πk) (37)

and

∂2T
∂ri∂rj

= −π′i
j∏

k=1
k 6=i

(1− πk) +
M∑
l=j

rlπ
′
iπ
′
j

l∏
k=1
k 6=i,j

(1− πk) (38)

respectively, where i < j. The MI outage probability, πi, for
both Gaussian and BPSK inputs, are presented in Table I. Note
that MI outage probability for BPSK inputs are approximated
to get closed form expression. The first and second order
derivatives of πi, where

πi =
1

(N − 1)!

1
Γ
f(ri)∫
0

e−uuN−1du, (39)

are given by

π′i =
(

1
Γ

)N
e−

1
Γ
f(ri) (f(ri))

N−1
f ′(ri)

1
(N − 1)!

(40)

and (41), respectively.
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π′′i =
(

1
Γ

)N
e−

1
Γ
f(ri) (f(ri))

N−2 1
(N − 1)!

(
− 1

Γ
f(ri) (f ′(ri))

2 + (N − 1) (f ′(ri))
2 + f(ri)f ′′(ri)

)
(41)

Since f(ri) and f ′(ri) are positive for all inputs, πi and π′i
are positive, too. Moreover, π′′i is also positive if

Γ >



2ri(2ri − 1)
N2ri − 1

, for Gaussian inputs

ln(1− ri)
2b (ln(1− ri)−N + 1)

, for BPSK approx.

ln(21−ri − 1)
2 (2ri−1 ln(21−ri − 1)−N + 1)

, for BPSK UB.

From (38), the cross derivative of average throughput is given
by (42). Note that f(ri) and f ′(ri) are limited by f(max{R})
and f ′(max{R}). Therefore, if Γ is large enough, (38) will
be negative since its first term will become dominant. Next,
we prove the following inequalities :

−1
2
∂2T
∂ri2

+
∂2T
∂ri∂rj

> 0 (43)

−1
2
∂2T
∂rj2

+
∂2T
∂ri∂rj

> 0. (44)

Eqs. (43) and (44) can be shown by (45) and (46), where πj
and π′j are monotonic increasing functions of ri and

π′j(1− πi)− π′i(1− πj) > (π′j − π′i) + πj(π′i − π′j)
= (1− πj)(π′j − π′i) > 0.

Now consider the Hessian matrix of the objective function.
Note that the negative definiteness of the Hessian matrix
implies the strict concavity of the objective function. Let Hm

denote the mth principal submatrix of the Hessian matix,
which is computed from the objective function, T . We have
shown that all elements of the Hessian matrix, (37) and (38),
are negative, and (43) and (44) are hold. Therefore, for any
positive integer i and j less than or equal to M , we can
represent − ∂2T

∂ri
2 = 2ai > 0 and − ∂2T

∂ri∂rj
= ai − δij > 0,

where ai > 0 and 0 < δij < ai. Then, Hm can be
simplified as in (47). If we define −Gm as in (48), where
ηij = am − am

aj
(ai − δij) > 0, then

det(−Hm) =
a1

am

a2

am
. . .

am−1

am
det(−Gm) (49)

and the sign of det(−Hm) is equivalent to that of det(−Gm).
To evaluate the sign of det(−Gm), we use the following
theorem introduced in [24] and lemmas.

Theorem 1: If all the principal minors of a matrix are
positive and all the elements off its main diagonal are negative,
then all the elements of its inverse are positive [24].

Lemma 1: If A is a positive definite matrix whose elements
are all positive, and Z is an all-zero matrix except it has an
off diagonal positive element in the ith row and jth column
which is less than the (i, j)th element of A, then A − Z is
also a positive definite matrix.

Proof: Let’s consider all principal submatrices of A−Z.
Since only the (i, j)th element differs between (A − Z) and

A, up to the max(i − 1, j − 1)th principal submatrix, their
determinants are unchanged. If we assume i < j, then the
jth and subsequent principal submatrices will have different
determinants. Denote the jth principal submatrix of A as Aj
and that of Z as Zj . Then, we can define a matrix, Xj , where
Xj is an all zero matrix except for its ith row, and satisfies

Xj = ZjA
−1
j . (50)

From Theorem 1, all elements of A−1
j are negative except its

diagonal element. Since there is only one positive element in
Zj , the nonzero diagonal element of Xj , xii, is negative. Then,

Aj − Zj = (I −Xj)Aj (51)

and

det(Aj−Zj) = det(I−Xj) det(Aj) = (1−xii) det(Aj) > 0.
(52)

Therefore, the determinant of the jth principal submatrix is
positive. In the same way, we can show the positiveness of all
submatrices’ determinants. Since all submatrices have positive
determinant, the new matrix, A− Z, is positive definite.

Lemma 2: The following matrix is positive definite for any
positive number am :

F =


2am am am . . . am
am 2am am . . . am
am am 2am . . . am

...
...

...
. . .

...
am am am . . . 2am

 .

Proof: For the ith principal submatrix of F , Fi,

det(Fi) = (am)m2
3
2

4
3
. . .

i+ 1
i

> 0 (53)

With Lemma 1 and 2, −Gm is positive definite, which
implies that both det(−Gm) and det(−Hm) are positive for
all m. Therefore, the Hessian matrix is negative definite and
the average throughput is a concave function over r.

APPENDIX B
CONCAVITY OF THE AVERAGE THROUGHPUT EXPRESSION

FOR THE HALF-DUPLEX RELAY SYSTEM

The average throughput expression for the half-duplex relay
system is equivalent to that for the baseline system except for
its packet error probability. Instead of following all steps in
the previous appendix, we show the following inequalities for
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∂2T
∂ri∂rj

= −
(

1
Γ

)N 1
(N − 1)!

e−
1
Γ
f(ri) (f(ri))

N−1
f ′(ri)

j∏
k=1
k 6=i

(1− πk) +
(

1
Γ

)2N ( 1
(N − 1)!

)2

·

e−
1
Γ
(f(ri)+f(rj)) (f(ri)f(rj))

N−1
f ′(ri)f ′(rj)

M∑
l=j

rl

l∏
k=1
k 6=i,j

(1− πk) (42)

−1
2
∂2T
∂ri2

+
∂2T
∂ri∂rj

= π′i

i−1∏
k=1

(1− πk)

(
1−

j∏
k=i+1

(1− πk)

)
+

1
2

M∑
l=i

rlπ
′′
i

l∏
k=1
k 6=i

(1− πk) +
M∑
l=j

rlπ
′
iπ
′
j

l∏
k=1
k 6=i,j

(1− πk) > 0 (45)

−1
2
∂2T
∂rj2

+
∂2T
∂ri∂rj

=
(
π′j(1− πi)− π′i(1− πj)

) j−1∏
k=1
k 6=i

(1− πk) +
1
2

M∑
l=j

rlπ
′′
j

l∏
k=1
k 6=j

(1− πk) +
M∑
l=j

rlπ
′
iπ
′
j

l∏
k=1
k 6=i,j

(1− πk) > 0 (46)

−Hm =


2a1 a1 − δ12 a1 − δ13 . . . a1 − δ1m

a1 − δ21 2a2 a2 − δ23 . . . a2 − δ2m
a1 − δ31 a2 − δ32 2a3 . . . a3 − δ3m

...
...

...
. . .

...
a1 − δm1 a2 − δm2 a3 − δm3 . . . 2am

 (47)

−Gm =


2am am − η12 am − η13 . . . am − η1m

am − η21 2am am − η23 . . . am − η2m
am − η31 am − η32 2am . . . am − η3m

...
...

...
. . .

...
am − ηm1 am − ηm2 am − ηm3 . . . 2am

 (48)

the half duplex relay system :

∂2T
∂ri2

< 0 (54)

∂2T
∂ri∂rj

< 0 (55)

−1
2
∂2T
∂ri∂rj

+
∂2T
∂ri2

> 0 (56)

−1
2
∂2T
∂ri∂rj

+
∂2T
∂rj2

> 0, (57)

where the superscript ′CoOp′ was dropped throughout this
appendix and T CoOp(rCoOp

c ), rCoOp
c (i), and the first and

second partial derivatives of πCoOpi are denoted by T , ri,
π′i, and π′′i , respectively. Then, the remainder of the proof
is equivalent to that of the baseline system. As shown in (24),
the average error probability for the jth packet in the relay
system is given by

πj =
∑
Dj

Prob(Dj)πj(Dj), (58)

where Prob(Dj) is the probability that the relay nodes in a set,
Dj , decode the jth source packet successfully, and πj(Dj) is

the probability that the jth packet is in error at the destination,
conditioned on Dj . With the high SNR assumption and the fact
that, for small x, exp(−x) ≈ 1−x, Prob(Dj) and πj(Dj) can
be approximated as [25]

Prob(Dj) =

∏
i∈Dj

(
1− γinc

(
f(rj)
γisrN

, 1
))

×

 ∏
k 6∈Dj

γinc

(
f(rj)
γksrN

, 1
)

≈
∏
k/∈Dj

f(rj)
γksrN

(59)

and

πj(Dj)

= Prob

γsd(αsd,j)2
Ωsd

+
∑
l∈Dj

γlrd(α
l
rd,j)

2

Ωlrd
<
f(rj)
N


≈ 1

(|Dj |+ 1)!

(
f(rj)
N

)|Dj |+1 1
γsd

∏
l∈Dj

1
γlrd

. (60)
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πj ≈
∑
Dj

1
(|Dj |+ 1)!

(
f(rj)
N

)N 1
γsd

∏
k/∈Dj

1
γksr

∏
l∈Dj

1
γlrd

(61)

π′j ≈
(
f(rj)
N

)N−1

f ′(rj)
∑
Dj

1
(|Dj |+ 1)!

1
γsd

∏
k/∈Dj

1
γksr

∏
l∈Dj

1
γlrd

(62)

π′′j ≈
(f(rj))

N−2

NN−1

(
(N − 1) (f ′(rj))

2 + f(rj)f ′′(rj)
)∑
Dj

1
(|Dj |+ 1)!

1
γsd

∏
k/∈Dj

1
γksr

∏
l∈Dj

1
γlrd

(63)

TABLE II
DECODING ERROR PROBABILITY OF HALF-DUPLEX RELAY SYSTEM

General Form q(i, j) = γinc(
1

γi
sr(N)

f(ri), 1)

Gaussian Inputs f(ri) = 22ri − 1

BPSK Approx. f(ri) = − ln(1−2ri)
2b

BPSK Upper Bound (UB) f(ri) = − ln(21−2ri−1)
2

With (59) and (60), πj and its derivatives are approximated
as in (61), (62), and (63). and Note that f ′(rj) and f ′′(rj) are
positive for any inputs. Therefore, the approximations of both
π′j and π′′j are positive, and (54), (56), and (57) can be proved
as shown in the previous appendix. To prove the remaining
inequality, we define

Lj =
∑
Dj

1
(|Dj |+ 1)!

1
γsd

∏
k/∈Dj

1
γksr

∏
l∈Dj

1
γlrd

.

Then, the approximation of ∂2T
∂ri∂rj

is shown in (64), where
Li is equivalent to Lj , since the possible sets of Dj are the
same as the possible sets of Di. Since f(ri) and f ′(ri) are
limited by f(max{R}) and f ′(max{R}), the second term will
be relatively small if the SNR is high enough, and then

∂2T
∂ri∂rj

≈ −Li
(
f(ri)
N

)N−1

f ′(ri)
j∏

k=1,k 6=i

(1− πk) < 0.

APPENDIX C
OPTIMIZATION OF SOURCE-CHANNEL RATE ALLOCATION

Due to the concavity of the average throughput expression,
the optimal UEP is the peak of the expression, if it exists. The
peak can be found by M partial differentiations as follows :

∂T
∂ri

= 0 i = 1, . . . ,M. (65)

If there is no solution for the ith equation, then the ith element
of the optimal UEP is min{R} or max{R}. In particular, ∂T

∂rM

will be
∂T
∂rM

= (1− πM )− rMπ′M = 0. (66)

That is, we can find the optimum rate of the last packet first
and then find the rate of the (M−1)th packet recursively. This
recursive algorithm is equivalent to that introduced in [8].
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