
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Tracking Motion, Deformation, and Texture
Using Conditionally Gaussian Processes

Tim Marks, John Hershey, Javier Movellan

TR2010-071 June 2010

Abstract

We present a generative model and inference algorithm for 3D nonrigid object tracking. The
model, which we call G-flow, enables the joint inference of 3D position, orientation, and non-
rigid deformations, as well as object texture and background texture. Optimal inference under
G-flow reduces to a conditionally Gaussian stochastic filtering problem. The optimal solution
to this problem reveals a new space of computer vision algorithms, of which classic approaches
such as optic flow and template matching are special cases that are optimal only under special
circumstances. We evaluate G-flow on the problem of tracking facial expressions and head mo-
tion in 3D from single-camera video. Previously, the lack of realistic video data with ground
truth nonrigid position information has hampered the rigorous evaluation of nonrigid tracking.
We introduce a practical method of obtaining such ground truth data and present a new face video
data set that was created using this technique. Results on this data set show that G-flow is much
more robust and accurate than current deterministic optic-flow-based approaches.

IEE Transactions on Pattern Analysis and Machine Intelligence

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part
without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include
the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of
the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or
republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All
rights reserved.

Copyright c©Mitsubishi Electric Research Laboratories, Inc., 2010
201 Broadway, Cambridge, Massachusetts 02139

MERLCoverPageSide2

Tracking Motion, Deformation, and Texture
Using Conditionally Gaussian Processes

Tim K. Marks, Member, IEEE, John R. Hershey, Member, IEEE, and Javier R. Movellan, Member, IEEE

Abstract—We present a generative model and inference algorithm for 3D nonrigid object tracking. The model, which we call G-flow,

enables the joint inference of 3D position, orientation, and nonrigid deformations, as well as object texture and background texture.

Optimal inference under G-flow reduces to a conditionally Gaussian stochastic filtering problem. The optimal solution to this problem

reveals a new space of computer vision algorithms, of which classic approaches such as optic flow and template matching are special

cases that are optimal only under special circumstances. We evaluate G-flow on the problem of tracking facial expressions and head

motion in 3D from single-camera video. Previously, the lack of realistic video data with ground truth nonrigid position information has

hampered the rigorous evaluation of nonrigid tracking. We introduce a practical method of obtaining such ground truth data and

present a new face video data set that was created using this technique. Results on this data set show that G-flow is much more robust

and accurate than current deterministic optic-flow-based approaches.

Index Terms—Computer vision, generative models, motion, shape, texture, video analysis, face tracking.

Ç

1 INTRODUCTION

A central and challenging problem in computer vision is
tracking the motion of a deformable object in three

dimensions using a video sequence from a single camera.
For human-computer interfaces, a nonrigid object of
primary interest is the human face. The motion of the face,
consisting of both rigid motion (changes in the position and
orientation of the head) and nonrigid motion (facial
expressions and other deformations), carries information
about emotions, identity, and speech.

It is well known how 3D objects project to form 2D images
in a camera, and we have an intuitive understanding of how
a person’s face can move in three dimensions. If we express
this knowledge formally, we can use it to perform
3D nonrigid face tracking by incorporating it into a generative
model. This generative model approach begins with a
forward model of how the state of the face—its pose (rigid
position and orientation as well as nonrigid deformation)
and texture (appearance)—changes over time, and how this
3D face generates a 2D image. Given an observed image, the
task is to infer those hidden state values using the forward
model. In other methods such as [1], which seek to directly
estimate the pose of the face from image features without a
generative model of images, it is difficult to incorporate our
prior knowledge.

Generative models are frequently used in the machine
learning community and have recently been applied
successfully in computer vision (e.g., [2], [3], [4], [5], [6]).
One advantage of generative approaches is that they force
us to make explicit the structure of the problem of interest
and enable us to derive optimal solutions. In this way,
they help elucidate the advantages and limitations of
existing algorithms. For example, the generative model
proposed here reveals a new space of computer vision
algorithms, of which classic approaches such as optic flow
and template matching are special cases, optimal only
under very special circumstances.

1.1 Overview of Existing Systems for Nonrigid
3D Face Tracking

Existing face tracking models differ in how they model the
appearance, or texture, of the surfaces of the object. For
example, Torresani and Hertzmann [7] and Xiao et al. [8]
use an appearance model that is constant across all time.
We refer to these as template-based appearance models. In
contrast, the appearance models of [9], [10], [11] do not
remain constant over time, but are completely changed as
each new image is presented. In these systems, each new
observed frame of video is compared with an appearance
model that is based entirely on the previous frame. We call
these flow-based appearance models. One can think of flow-
based approaches as using appearance models which,
rather than remaining constant over time, are reset at each
time step based upon the previous observed image.

There is an inherent trade-off between template-based and
flow-based approaches. The advantage of flow-based ap-
proaches is that they make few assumptions about the
appearance of the object. Flow-based approaches are robust
to gradual changes in appearance because the appearance
model used at a given time comes only from the previous
image. However, optic flow’s appearance model is only as
good as its alignment in the previous frame. As a result,

348 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 32, NO. 2, FEBRUARY 2010

. T.K. Marks is with Mitsubishi Electric Research Laboratories, 201 Broad-
way, Cambridge, MA 02139. E-mail: tmarks@merl.com.

. J.R. Hershey is with IBM T. J. Watson Research Center, Yorktown Heights,
NY 10598. E-mail: jrhershe@us.ibm.com.

. J.R. Movellan is with the Machine Perception Laboratory, University of
California, San Diego, Atkinson Hall (CALIT2), 2400A, 9500 Gilman Dr.,
Mail Code 0445, La Jolla, CA 92093-0445.
E-mail: movellan@mplab.ucsd.edu.

Manuscript received 14 Mar. 2008; revised 2 Oct. 2008; accepted 6 Oct. 2008;
published online 11 Nov. 2008.
Recommended for acceptance by F. Dellaert.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number
TPAMI-2008-03-0153.
Digital Object Identifier no. 10.1109/TPAMI.2008.278.

0162-8828/10/$26.00 � 2010 IEEE Published by the IEEE Computer Society

alignment error tends to build over time, which can cause the
system to completely lose track of the object. This is not a
problem for template approaches because the alignment in
the previous frame has no effect on the appearance model.
However, template-based approaches require good knowl-
edge of the appearance of the object and are unable to adapt
when this appearance changes over time, for example, due to
changes in lighting or facial expression. Template-based and
flow-based appearance models can be considered as the two
ends of a continuum. In the middle of the continuum would
be appearance models that change slowly over time,
gradually incorporating information from newly presented
images into the existing appearance model.

While previous models tend to start with optic flow or
template matching as an image preprocessing primitive,
here we pursue a different approach. First, we formulate a
generative model for video sequences, which we call G-flow,
and then we derive the optimal solution to the tracking
problem under the model. The solution reveals a space of
possible computer vision algorithms that includes optic
flow and template matching as special cases, which are
optimal only in specific conditions.

From this point of view, many previous 3D tracking
algorithms can be seen as approximations to optimal
tracking. For example, the algorithms in [8], [9], [10], [11]
each choose one extreme of the flow-to-template continuum
and commit to a single estimate of pose and appearance at
each time step. In contrast, here we maintain a probability
distribution over the possible poses and textures.

Approaching the tracking problem from an optimality
point of view reveals some important mathematical proper-
ties of the problem. For example, using a reasonable model
of image formation, video generation is a conditionally
Gaussian process [12], [13], [14], [15] given the pose process:
The conditional distribution of the texture given the pose is
Gaussian. This enables us to use a Rao-Blackwellized
particle filter [13], [15], in which the filtering problem is
partitioned into two components: a particle-based nonlinear
component for pose and a linear Gaussian component for
texture given a sequence of pose estimates. Our algorithm
also takes advantage of the fact that the peak and
covariance of the filtering distribution for pose can be
estimated efficiently. We first described the essence of this
approach in [16], [17].

1.2 Collecting Video with Locations of Unmarked
Smooth Features

Although, there are now a number of 3D nonrigid tracking
algorithms, measuring their effectiveness has been difficult.
The problem lies in the lack of video data of real moving
human faces (or other deformable objects) in which there
are no visible marks on the face and yet for which the actual
3D positions of the features being tracked are known.

Here, we present a new method for collecting the true
3D positions of points on smooth facial features (such as
points on the skin) without leaving a visible trace in the video.
This technique, described in Section 5 and Appendix II,
which can be found on the Computer Society Digital Library
at http://doi.ieeecomputersociety.org/10.1109/TPAMI.
2008.278, utilizes infrared markings to accurately measure
the 3D positions of points on the face with infrared-sensitive

cameras, without the markings showing up in the video taken
by visible light cameras. We present the IR Marks video data
set, a new face motion data set that was created using this
technique. This provides an accurate, objective method for
testing and comparing the performance of nonrigid tracking
systems. Section 6 presents our tracking results on this data
set, which we use both to compare our system with other
tracking systems and to measure the effects that changing
parameter values have on our system’s performance.

1.3 Notation

Throughout this paper, we use standard probabilistic
notation: Uppercase letters represent random variables and
random vectors and lowercase letters represent the values
taken by these variables, no matter whether the values are
scalars, vectors, or matrices. We represent sequences using a
subscripted colon, for instance, u1:t ¼def �

u1; u2; . . . ; ut
�

. We
use Im to represent the m�m identity matrix.

2 THE GENERATIVE MODEL FOR G-FLOW

The task of recovering the 3D structure of a moving,
deforming object from sequences of 2D images is a very
challenging problem, partly due to the fact that a given
2D image may be consistent with a large number of
3D explanations. The approach we pursue here takes
advantage of the fact that it is well understood how a
known 3D world generates 2D images (in a camera, for
example). This allows us to formulate the much harder
problem of going from 2D images to 3D structure as
Bayesian inference, enabling us to study the mathematical
structure of the problem.

In this section, we lay out the forward model: how a 3D
deformable object generates a video (a sequence of 2D
images). Then, in Section 3, we describe how to use
Bayesian inference to tackle the inverse problem: determin-
ing the pose (nonrigid and rigid motion) of the 3D object
from an image sequence.

Our generative model incorporates the assumptions that
objects occlude backgrounds and that object and back-
ground texture are statistically independent. It is assumed
that, at the time of object tracking, the system has had
sufficient experience to have good estimates of the
following: models of the 3D geometry of the object and
its possible deformations, pose dynamics, observation noise
(the amount of uncertainty when rendering a pixel from a
given texture value), and texture process noise (how
quickly each texel, or texture element, of the foreground
and background appearance models varies over time). The
following values are left as unknowns and inferred in a
causal manner by the tracking algorithm: object texture
(gray-scale appearance), background texture, rigid pose
(3D orientation and translation), and nonrigid pose (object
deformation, such as facial expression).1

2.1 Modeling 3D Deformable Objects

We represent object structure using a 3D Morphable Model
(3DMM) [18]. A nonrigid object’s structure is specified by
the 3D locations of n points, which we refer to as vertices. To
model nonrigid deformations (e.g., facial expressions), the

MARKS ET AL.: TRACKING MOTION, DEFORMATION, AND TEXTURE USING CONDITIONALLY GAUSSIAN PROCESSES 349

1. Note that throughout this paper, we use the term pose to include not
only the rigid 3D pose of an object, but also its nonrigid deformations.

locations of the vertices are constrained to be a linear

combination of k fixed 3D basis shapes, which we call morph

bases, with coefficients c ¼ ½c1; c2; . . . ; ck�T . This linear com-

bination may then undergo rigid motion (rotation and

translation) in 3D. Finally, a projection model (such as weak

perspective projection) is used to map the 3D vertex

locations onto 2D coordinates in the image plane.
Let the fixed 3� k matrix hi contain the position of the

ith vertex in all k morph bases. Thus, in 3D object-centered

coordinates, the location of the ith vertex is hic. Scale

changes are accomplished by multiplying all k morph

coefficients by the same scalar. In practice, the first morph

basis is often the mean shape, and the other k� 1 morph

bases are deformations of that base shape (e.g., the results

of applying principal component analysis (PCA) to the

3D locations of the vertices in several key frames). In this

case, the first morph coefficient c1 can be used as a

measure of scale. The transformation from object-centered

coordinates to image coordinates consists of a rotation,

weak perspective projection, and translation. Thus, xi, the

2D location of the ith vertex on the image plane, is

xi ¼ grhicþ l, where r is a 3� 3 rotation matrix, l is a 2� 1

translation vector, and

g ¼ 1 0 0
0 1 0

� �
is the projection matrix.

The object pose at time t, denoted by ut, comprises the

parameters of both rigid motion (rotation r and translation l)

and nonrigid motion (morph coefficients c): ut ¼ frt; lt; ctg.
To avoid clutter, we usually omit the subscript t from the

components r; l; and c of the pose parameter.

2.2 Modeling Video Sequences

We model the image sequence Y as a stochastic process
generated by three hidden causes, U , V , and B, as shown in
the graphical model (Fig. 1b). The m� 1 random vector Yt
represents the m-pixel image at time t. The n� 1 random
vector Vt represents the n-texel object texture,2 and them� 1
random vector Bt represents the m-texel background
texture. As illustrated in Fig. 1a, the object pose Ut
determines which object and background texels render
which image pixels at time t.

For our derivations, we assume that the object has n
vertices, one corresponding to each texel in vt, the object
texture map: The ith texel in vt corresponds to the ith vertex
of the object. We further assume that the mapping (which is
a function of the pose, ut) from object texels (in vt) to image
locations (in yt) is one-to-one, i.e., that every object texel
renders exactly one pixel in the image (unless an object texel
is self-occluded, in which case it does not render any image
pixels). Of the m pixels in each observed image, at most n of
the pixels are rendered by the object (one pixel per
unoccluded texel in vt), and the remaining image pixels
are rendered by the background. In practice, we actually
use fewer vertices than pixels; each pixel of the object is
rendered by interpolating the location in the object texture
map from the surrounding vertex positions. The simplify-
ing assumption that the rendering process is a one-to-one
discrete function from vertices/texels to pixels is a con-
venient fiction, in that it simplifies the derivations without
affecting the underlying mathematics.

The ith texel in the object texture map renders the pixel
at xiðutÞ, which is the image location to which vertex i

projects. From Section 2.1, this image location is given by:

350 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 32, NO. 2, FEBRUARY 2010

Fig. 1. (a) Each pixel in image Yt is rendered using the color or gray-scale value of either an object texel (a pixel in the object texture map Vt) or a
background texel (a pixel in the background texture map Bt). The projection function aðUtÞ, where Ut is the pose at time t, determines which texel is
responsible for rendering each image pixel. (b) G-flow video generation model. At time t, the object’s 3D pose Ut is used to project the object
texture Vt into the 2D image. This projection is placed in front of the background texture Bt to generate the observed image Yt. The goal is to make
inferences about the hidden variables ðUt; Vt; BtÞ based on the observed video sequence fY1; . . . ; Ytg.

2. We use the term texel (short for texture element) to refer to each
individual element in a texture map, just as pixel (picture element) refers to
an individual element of an image.

xiðutÞ ¼ grhicþ l. To avoid clutter, we let the dependency of
r; c, and l on ut be implicit in our notation. Moreover, we
index pixels in the image vector yt by their 2D image
locations. Thus, yt

�
xiðutÞ

�
represents the gray-scale value of

the image pixel that is rendered by object vertex i. In our
image generation model, this is equal to the gray-scale
value of texel i in the object texture map plus Gaussian
observation noise:

Foreground pixel xxiðuutÞ:
Yt
�
xiðutÞ

�
¼VtðiÞþWt

�
xiðutÞ

�
; Wt

�
xiðutÞ

�
�N

�
0; �2

w

�
;
ð1Þ

where the random variablesWtðjÞ represent the independent,
identically distributed observation noise (rendering noise) at
every image pixel j 2 f1; . . . ;mg. This model for texture is
reasonable because it models the changes in pixel values due
to sensor noise, which is Gaussian to first approximation.

The background texture map bt is the same size as the
image yt. Every image pixel j that is not rendered by a
foreground texel is rendered by background texel j. The
gray-scale value of each pixel rendered by the background is
equal to the gray-scale value of the corresponding texel in the
background texture map plus Gaussian observation noise:

Background pixel jj:

YtðjÞ ¼ BtðjÞ þWtðjÞ; WtðjÞ � N
�
0; �2

w

�
:

ð2Þ

To combine the scalar equations (1) and (2) into a single

vector equation, we introduce the projection function aðUtÞ,
which is determined by the imaging model (e.g., weak

perspective projection). For a given pose ut, the projection

aðutÞ is a block matrix, aðutÞ ¼def ½avðutÞ abðutÞ�. Here, avðutÞ,
the object projection function, is an m� n matrix of 0s and

1s that tells onto which image pixel each object vertex

projects, e.g., a 1 at row j, column i means that the

ith object vertex projects onto image pixel j. Matrix abðutÞ,
an m�m diagonal matrix of 0s and 1s, plays the same role

for background pixels. Assuming that the foreground

mapping is one-to-one (each texel projects to exactly one

pixel) it follows that abðutÞ ¼ Im � avðutÞ½avðutÞ�T , expres-

sing the occlusion constraint that every image pixel is

rendered by object or background, but not both. Then, we

can express the observation model given in (1) and (2) by a

single matrix equation:

Yt ¼ aðUtÞ
h
Vt
Bt

i
þWt; Wt � N

�
0; �2

wIm
�
; ð3Þ

where �w > 0 is a scalar.
The system dynamics describe how the foreground and

background texture maps change over time. For t � 2, the
system dynamics are given by

Vt ¼ Vt�1 þ Zv
t�1; with Zv

t�1 � Nð0;�vÞ;
Bt ¼ Bt�1 þ Zbt�1; with Zbt�1 � Nð0;�bÞ;

ð4Þ

where the covariance matrices �v and �b are diagonal, and
Zv; Zb;W are independent over time, independent of each
other, and independent of the initial conditions. The n values
on the diagonal of �v represent the variance of the process
noise for each of the n texels of the object texture map.

Similarly, the m values on the diagonal of �b represent the
variance of the process noise for the m background texels.
We let the pose Ut be a Markov process with a known pose
transition distribution: pðut j u1:t�1; y1:t�1Þ ¼ pðut j ut�1Þ. The
form of the pose distribution is left unspecified since our
algorithm does not require the pose distribution or the pose
dynamics to be Gaussian.

2.3 Model Parameters

The initial conditions consist of a distribution for object
pose U1 and Gaussian distributions of object and back-
ground texture, V1 and B1, all of which are independent.
The covariance matrix of V1 is diagonal and the covariance
of B1 is a scalar times the identity matrix. The other model
parameters are: diagonal covariance matrices for the state
transitions (process noise), �v and �b; the pose transition
distribution, pðut j ut�1Þ; and the variance of the image
rendering noise at each pixel, �2

w. Using standard methods,
the above parameters could be either learned from training
data, or inferred dynamically during tracking to adjust to
the observed data. For the results described in this paper,
we simply chose generic parameter values that work well.
For example, we use a weak model for the pose transition
distribution pðut j ut�1Þ that simply constrains object pose to
not change too much in adjacent frames and penalizes facial
expressions whose morph coefficients exceed the range
observed in the training data.

3 INFERENCE IN G-FLOW

Nonrigid 3D tracking is a difficult nonlinear filtering
problem, both because the image location of each vertex is a
nonlinear function of the pose, i.e., aðutÞdepends nonlinearly
on ut, and because the image intensity is a nonlinear function
of image location, i.e., ytðxÞ is a nonlinear function of x.
Fortunately, the problem has a rich structure that can be
exploited: It is reasonable to approximate video generation as
a conditionally Gaussian process [12], [13], [14], [15], as we do
in the G-flow model: If the specific values taken by the pose
sequenceu1:t were known, then the texture processesV andB
and the image process Y would be jointly Gaussian, with a
time-varying parameter aðutÞdetermined by the known pose
ut. Hence, given the poses u1:t, we could use a Kalman filter
[19] to optimally infer the object and background texture
maps from the observed images over time. Essentially, the
model makes the reasonable assumption that if the pose
and appearance of the object were known, then the only
source of variability left in the rendering process would be
Gaussian sensor noise.

3.1 Rao-Blackwellized Particle Filtering

Stochastic filtering is the process of sequentially estimating
the posterior distributions of some target variables given a
sequence of observations. In our case, the observable
sequence is the collection of pixel values, and the target
variables are the pose (rigid motion and nonrigid deforma-
tion) of the object and the texture (appearance) of the object
and the background.

Particle filtering is a popular approach to obtain
approximate solutions to nonlinear stochastic filtering
problems. Unfortunately, standard particle filtering alone
would be insufficient to solve the 3D nonrigid tracking
problem because of the very high dimensionality of the
state space (the joint distribution over pose and texture).
Fortunately, the conditionally Gaussian structure of the task

MARKS ET AL.: TRACKING MOTION, DEFORMATION, AND TEXTURE USING CONDITIONALLY GAUSSIAN PROCESSES 351

makes the problem tractable: We can use a particle filter to
estimate the pose distribution, then use an analytical
solution to obtain the texture appearance given the pose
distribution. The use of a Monte Carlo method on the
analytically intractable components, while integrating out
the tractable components, is known in the particle filtering
literature as Rao-Blackwellization [13], [15]. This approach is
also known in the statistics community as a Monte Carlo
filtering solution for conditionally Gaussian processes [12],
[14]. In a Rao-Blackwellized particle filter, the portion of the
system’s state that must be sampled is of lower dimension
than the full model. This reduces the sampling variance,
and hence, fewer samples (fewer particles) are required in
order to achieve the same level of performance.

3.2 Overview of Inference in G-Flow

Our goal is to find an expression for the filtering distribution
pðut; vt; bt j y1:tÞ, i.e., the posterior distribution of pose and
texture given the observed sequence of images. In addition,
we want the filtering distribution to be updated in a recursive
manner—knowing the filtering distribution at time t� 1 and
given a new image yt at time t, we want to find the filtering
distribution at time t, without requiring the past images to be
stored. The following equation provides the key to doing so.
Using the law of total probability, we can derive:

pðut; vt; bt j y1:tÞ
zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{Filtering

Distribution

¼Z
pðu1:t�1 j y1:tÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

Credibility
of expert

pðut ju1:t�1; y1:tÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
Pose Opinion

of expert

pðvt; bt ju1:t; y1:tÞ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Texture Opinion

of expert ðDistribution
of texture given poseÞ

du1:t�1:

ð5Þ

We can think of the integral in (5) as a weighted sum over
a distribution of particles. Each particle represents a pose
sequence u1:t�1. Given its pose sequence, each particle can
be thought of as an expert that is endowed with: 1) a pose
opinion, i.e, a predictive distribution for the current pose,
pðut j u1:t�1; y1:tÞ; 2) a texture opinion, i.e., a posterior
distribution for the current object and background textures,
pðvt; bt j u1:t; y1:tÞ; and 3) a scalar credibility value,
pðu1:t�1 j y1:tÞ. Because the image generation model is
conditionally Gaussian given the pose, we can perform exact
inference using Kalman filtering to determine the foreground
and background texture distributions for each particle.

We refer to each particle as an expert and use the terms
pose opinion, texture opinion, and credibility as shorthand to
describe how G-flow factorizes the filtering distribution (5).
These terms are just mnemonic handles for referring to the
components of this probability distribution. Table 1
summarizes how we compute each term in the integral.
We cover pose opinion (predictive pose distribution) in
Section 3.4, texture opinion (distribution of texture given
pose) in Section 3.3, and credibility in Section 3.5.

3.3 Expert Texture Opinions

Because the image generation process is conditionally
Gaussian, the distribution of texture given a pose sequence
u1:t and an image sequence y1:t is Gaussian. The mean of this
texture opinion, which can be thought of as an expert’s
texture template, consists of a single texture value for each
texel. The covariance matrix of the texture opinion, which can

be shown to be diagonal, represents the expert’s uncertainty

about the texture values at each texel. The problem of

updating the texture mean and uncertainty maps given a

sequence of poses is equivalent to solving a time-dependent

Kalman filtering problem. The expected values and covar-

iance matrices of the predictive texture maps (the texel means

and variances) are denoted as follows:

predictive texture maps from time tt�1

v̂tjt�1ðiÞ¼
def
ith element of EðVt j u1:t�1; y1:t�1Þ;

b̂tjt�1ðjÞ ¼
def
jth element of EðBt j u1:t�1; y1:t�1Þ;

ð6Þ

Vtjt�1ðiÞ ¼
def
ithdiagonal elem: of CovðVt ju1:t�1; y1:t�1Þ;

Btjt�1ðjÞ ¼
def
jthdiagonal elem: of CovðBt ju1:t�1; y1:t�1Þ:

ð7Þ

We refer similarly to the process noise for each texel:

�vðiÞ¼
def
ithdiagonal element of �v;

�bðjÞ ¼def
jthdiagonal element of �b:

ð8Þ

Just as the subscript tjt�1 above refers to texture estimates at

time t conditioned on the poses and images up to time t� 1,

we will use the subscript t j t to refer to the estimate at time t

conditioned on the pose and image history up to time t. For

example,

v̂tjtðiÞ ¼
def
ithelement of EðVt j u1:t; y1:tÞ: ð9Þ

3.3.1 Kalman Equations for Dynamic Update of Texel

Maps

Assume that by time t, the system already has the means and

variances of the predictive texture maps from the previous

time step: fv̂tjt�1; b̂tjt�1;Vtjt�1;Btjt�1g. By applying the Kalman

filtering equations, we obtain the predictive texture maps at

time t. The Kalman gain for texel i is the scalar quantity

352 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 32, NO. 2, FEBRUARY 2010

TABLE 1
Overview of Inference in G-Flow

To infer the filtering distribution at time t, we evaluate the integral in (5)
as a sum over particles (a.k.a. experts). For each expert, we compute
the three terms in the integral using the method indicated.

K tðiÞ ¼def
Vtjt�1ðiÞ

Vtjt�1ðiÞ þ �2
w

; if texel i is visible;

0; if texel i is occluded:

8<
: ð10Þ

The predictive distribution for the foreground texture map is

v̂tþ1jtðiÞ ¼ K tðiÞ ytðxiðutÞÞ þ ½1�K tðiÞ� v̂tjt�1ðiÞ; ð11Þ

Vtþ1jtðiÞ ¼ ½1�K tðiÞ� Vtjt�1ðiÞ þ�vðiÞ: ð12Þ

The update equations for the background texture map are

identical, but with the object texture means and variances

replaced by the background texture means and variances

(see Table 2).

3.3.2 Interpreting the Kalman Equations

The updated texture map is a combination of the previous
texture map and the new image, and the Kalman gain
dynamically determines the relative contributions of each. It
follows from (10) that

Vtjt�1ðiÞ � �2
w ¼) K tðiÞ � 1; Vtjt�1ðiÞ 	 �2

w ¼) K tðiÞ � 0:

ð13Þ

In other words, if the uncertainty (variance) of a texel in the

object texture map is much larger than the image rendering

noise, then the Kalman gain will be close to 1, and thus, the

information from the texture map will be ignored in favor

of the (more accurate) information from the current image.

MARKS ET AL.: TRACKING MOTION, DEFORMATION, AND TEXTURE USING CONDITIONALLY GAUSSIAN PROCESSES 353

TABLE 2
Summary of the G-Flow Inference Algorithm

On the other hand, if a texel’s variance is much less than the

image rendering noise, then the Kalman gain will be close

to 0, and thus, the information from the current image will

be ignored in favor of the (more accurate) information from

the texture map.

3.4 Expert Pose Opinions

Our goal is to estimate the pose opinion distribution,

pðut j u1:t�1; y1:tÞ; Pose opinion distribution; ð14Þ

which is the belief of expert u1:t�1 about the pose at time t.

Since the effect of the pose ut on the observed image yt is

nonlinear, exact analytical solutions are not available.

However, the spatiotemporal smoothness of video signals

can be exploited to obtain efficient estimates: First approx-

imate the pose opinion of each expert as a Gaussian

distribution, then use importance sampling to correct for

the potential bias introduced by this approximation.

3.4.1 Gaussian Approximation of Each Expert’s Pose

Opinion

Laplace’s method approximates an arbitrary probability

density function (pdf) by a Gaussian function that is

centered at the peak of the distribution and has covariance

matrix proportional to the inverse of the Hessian matrix at

the peak. This is equivalent to approximating the logarithm

of the pdf with a second-order Taylor series approximation

centered about the peak of the distribution. We apply

Laplace’s method to obtain a Gaussian approximation to the

pose opinion distribution of each expert. We then use this

Gaussian approximation as our proposal distribution for

importance sampling. The method requires: 1) finding the

peak of the distribution and 2) estimating the spread of the

pose opinion (the Hessian matrix of the pdf) at the peak.
Finding the peak of an expert’s pose opinion. We can

write the pose opinion distribution of expert u1:t�1 as:

pðut ju1:t�1; y1:tÞ ¼
pðut j u1:t�1Þpðy1:t j u1:tÞ

pðy1:t j u1:t�1Þ

¼ pðy1:t�1 ju1:t�1Þ
pðy1:t ju1:t�1Þ

pðut jut�1Þpðyt ju1:t; y1:t�1Þ:

ð15Þ

To find the peak of this distribution, we need to maximize

(15). Eliminating terms that do not depend on ut, we have

ûtðu1:t�1Þ ¼def
arg max

ut

pðut j u1:t�1; y1:tÞ

¼ arg max
ut

pðut j ut�1Þ pðyt j u1:t; y1:t�1Þ:
ð16Þ

The following expression for the final term in (16), the

predictive distribution pðyt j u1:t; y1:t�1Þ, is derived (99) in

Appendix VI, which can be found on the Computer Society

Digital Library at http://doi.ieeecomputersociety.org/

10.1109/TPAMI.2008.278:

log pðyt j u1:t; y1:t�1Þ ¼ �
m

2
log 2�

� 1

2

Xn
i¼1

log
�
Vtjt�1ðiÞ þ �2

w

�
þ
½ytðxiðutÞÞ � v̂tjt�1ðiÞ�2

Vtjt�1ðiÞ þ �2
w

" #

� 1

2

X
j62XðutÞ

log
�
Btjt�1ðjÞ þ �2

w

�
þ
½ytðjÞ � b̂tjt�1ðjÞ�2

Btjt�1ðjÞ þ �2
w

" #
;

ð17Þ

where xiðutÞ is the image pixel rendered by the ith object
vertex when the object has pose ut, and XðutÞ is the set of all
image pixels rendered by the object in pose ut. In (17), the
first sum corresponds to the foreground pixels and the
second sum corresponds to the background pixels.

We can now convert these sums over both foreground
and background pixels into a sum over only foreground
pixels. We substitute (17) into (16), eliminating terms that
do not depend on ut (see Appendix VI, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TPAMI.2008.278, for
details):

ûtðu1:t�1Þ ¼ arg min
ut

� log pðut jut�1Þ

þ 1

2

Xn
i¼1

� ½ytðxiðutÞÞ �v̂tjt�1ðiÞ�2

Vtjt�1ðiÞ þ �2
w

þlog½Vtjt�1ðxiðutÞÞ þ �2
w�

zffl}|ffl{Foreground terms

�
½ytðxiðutÞÞ �b̂tjt�1ðxiðutÞÞ�2

Btjt�1ðxiðutÞÞ þ�2
w

�log½Btjt�1ðxiðutÞÞ þ �2
w�|ffl{zffl}

Background terms

�!
:

ð18Þ

The sum in (18) is difficult to optimize analytically in the
general case. However, an efficient approximation can be
obtained under the following assumptions: 1) If there are no
self-occlusions (i.e., the object texels are never occluded),
then the second foreground term log½Vtjt�1ðxiðutÞÞ þ �2

w� is
constant with respect to pose, and thus, may be ignored; 2) if
the background terms are ignored, which essentially
corresponds to a white noise background model; and 3) if
the transition probability is Gaussian, then the prior term
log pðut j ut�1Þ becomes a quadratic penalty term. Under
these conditions, the optimization reduces to a nonlinear
least-squares problem, to which we apply the Gauss-New-
ton algorithm. We explain the details of this method for
estimating the peak of the pose opinion in Appendix VII-A,
which can be found on the Computer Society Digital Library
at http://doi.ieeecomputersociety.org/10.1109/TPAMI.
2008.278. Computer vision algorithms such as optic flow
and template matching are special cases of this optimization,
as we will show in Section 4. Whereas previous algorithms
use the result of this optimization as their final pose estimate,
in our system, it is merely the first step in approximating the
posterior distribution over pose.

Hereafter, we index each individual expert by d, where
d 2 f1; 2; . . . ; �g. Then, u

ðdÞ
1:t�1 refers to the pose history of

expert d, and ûtðuðdÞ1:t�1Þ refers to our estimate of the peak of
that expert’s pose opinion, obtained by using Gauss-
Newton to minimize (18).

354 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 32, NO. 2, FEBRUARY 2010

Estimating the spread of the expert’s pose opinion. The
Laplace estimate of the covariance matrix of the pose
opinion of expert d is the inverse of the Hessian matrix of
(18) with respect to ut, evaluated at the peak ûtðuðdÞ1:t�1Þ. This
can be obtained analytically under the same assumptions
listed above for obtaining the peak. (A full derivation is in
Appendix VII-B, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TPAMI.2008.278.) We call this estimated cov-
ariance matrix of the pose opinion UðûtðuðdÞ1:t�1ÞÞ.

Our initial estimate of the pose opinion of expert d is a
Gaussian distribution whose mean is ûtðuðdÞ1:t�1Þ and whose
covariance is proportional to the Laplace estimate
UðûtðuðdÞ1:t�1ÞÞ:

�
�
ut j uðdÞ1:t�1; y1:t

�
¼def
N ût

�
u
ðdÞ
1:t�1

�
; � U

�
ût
�
u
ðdÞ
1:t�1

��	

: ð19Þ

The parameter �>0 controls the width of the distribution.
(Note that letting �!0 is simply equivalent to setting the
new pose ut equal to the peak of the estimated pose
opinion distribution.)

3.4.2 Importance Sampling Correction of the Gaussian

Approximation

Importance sampling [20] is a method for improving the
accuracy of Monte Carlo estimates, by using a proposal
distribution to focus the samples on significant regions, then
weighting the samples to compensate for not sampling from
the true distribution. The basic method is outlined in
Appendix I, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TPAMI.2008.278.

Here, we use importance sampling to improve our initial

Gaussian estimate (19) of the pose opinion of each expert.

For each expert u
ðdÞ
1:t�1, we generate a set of � independent

samples fuðd;1Þt ; . . . ; u
ðd;�Þ
t g from the proposal distribution

�ðut j uðdÞ1:t�1; y1:tÞ. By (15), the pose opinion that we wish to

estimate pðut j uðdÞ1:t�1; y1:tÞ is proportional to the joint dis-

tribution over the current pose and image given the pose

and image history:

p
�
yt; u

ðdÞ
t ju

ðdÞ
1:t�1;y1:t�1

�
¼p
�
u
ðd;eÞ
t juðdÞt�1

�
p
�
yt juðdÞ1:t�1; u

ðd;eÞ
t ; y1:t�1

�
:

ð20Þ
The first term on the right-hand side is the pose transition
probability, which is a parameter of the image generation
model, and the second term is the predictive probability
that is expressed in (17). We compute the unnormalized
importance weights,

�tðd; eÞ ¼
p
�
u
ðd;eÞ
t j uðdÞt�1

�
p
�
yt j uðdÞ1:t�1; u

ðd;eÞ
t ; y1:t�1

�
�
�
u
ðd;eÞ
t j uðdÞ1:t�1; y1:t

� ; ð21Þ

then normalize these importance weights so that they sum

to 1: ~�tðd; eÞ ¼ �tðd; eÞ=
P�

f¼1 �tðd; fÞ. The pose opinion

distribution is thus estimated as a set of � weighted

samples:

p̂
�
ut j uðdÞ1:t�1; y1:t

�
¼
X�
e¼1

�
�
ut � uðd;eÞt

�
~�tðd; eÞ; ð22Þ

where � is the Dirac delta function.

3.5 Expert Credibility

Each expert d has its own precise belief about the poses

from time 1 to time t� 1, denoted as u
ðdÞ
1:t�1. The credibility of

this expert, which we denote as ~w
ðdÞ
t�1jt , is an estimate of

pðuðdÞ1:t�1 j y1:tÞ, which measures how well this expert’s

hypothesis about the poses from time 1 to time t� 1 fits

with the image observed at time t:

~w
ðdÞ
t�1jt � p

�
u
ðdÞ
1:t�1 j y1:t

�
: ð23Þ

At each time step t, we determine this credibility by
updating the expert’s weight from the previous time step,
w
ðdÞ
t�1, which is an estimate of pðuðdÞ1:t�1 j y1:t�1Þ:

w
ðdÞ
t�1 � p

�
u
ðdÞ
1:t�1 j y1:t�1

�
: ð24Þ

The credibility ~w
ðdÞ
t�1jt is then used to compute the expert’s

weight at the current time step, w
ðdÞ
t , which is an estimate of

pðuðdÞ1:t j y1:tÞ. We now give the details of these updates.
After observing image yt, find the credibility using

Bayes rule:

p
�
u
ðdÞ
1:t�1 j y1:t

�|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
Credibility
of expert d;

~w
ðdÞ
t�1jt

/ p
�
u
ðdÞ
1:t�1 j y1:t�1

�|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
Prior weight
of expert d;

w
ðdÞ
t�1

p
�
yt j uðdÞ1:t�1; y1:t�1

�
: ð25Þ

We have already generated a set of � pose samples
fuðd;eÞt : e ¼ 1; . . . ; �g to estimate the pose opinion of the dth
expert. We can now use these same samples to estimate the
final term in (25). Note that

p
�
yt juðdÞ1:t�1; y1:t�1

�
¼
Z
p
�
yt; ut juðdÞ1:t�1; y1:t�1

�
�
�
ut juðdÞ1:t�1; y1:t

� �
�
ut juðdÞ1:t�1; y1:t

�
dut:

ð26Þ

Since the samples u
ðd;eÞ
t were drawn from the proposal

distribution �ðut j uðdÞ1:t�1; y1:tÞ, we can use them to estimate

this integral:

p
�
yt j uðdÞ1:t�1; y1:t�1

�
� 1

�

X�
e¼1

p
�
yt; u

ðd;eÞ
t j uðdÞ1:t�1; y1:t�1

�
�
�
u
ðd;eÞ
t j uðdÞ1:t�1; y1:t

�
¼ 1

�

X�
e¼1

�tðd; eÞ;
ð27Þ

where the last step follows from (21). Substituting (27) into
(25), we obtain a consistent estimate for the credibility of
expert d:

~w
ðdÞ
t�1jt � p

�
u
ðdÞ
1:t�1 j y1:t

�
/ wðdÞt�1

X�
e¼1

�tðd; eÞ; ð28Þ

where we normalize so that the credibilities of all experts

sum to 1:
P�

d¼1 ~w
ðdÞ
t�1jt ¼ 1.

Let u
ðd;eÞ
1:t represent the concatenation of the pose history

of expert d with pose sample e of the same expert:

u
ðd;eÞ
1:t ¼

def fuðdÞ1:t�1; u
ðd;eÞ
t g. Note that

p
�
u
ðd;eÞ
1:t j y1:t

�
¼ p

�
u
ðdÞ
1:t�1 j y1:t

�
p
�
u
ðd;eÞ
t j uðdÞ1:t�1; y1:t

�
: ð29Þ

MARKS ET AL.: TRACKING MOTION, DEFORMATION, AND TEXTURE USING CONDITIONALLY GAUSSIAN PROCESSES 355

Thus, from (23) and (22), a consistent estimator of the
expert’s weight at time t is

p
�
u
ðd;eÞ
1:t j y1:t

�
� ~w

ðdÞ
t�1jt

~�tðd; eÞ: ð30Þ

3.6 Estimating the New Filtering Distribution

If there are � experts, u
ðdÞ
1:t�1, where d 2 f1; . . . ; �g, and each of

these experts has � pose samples u
ðd;eÞ
t , where e 2 f1; . . . ; �g,

then there are a total of �� potential next-generation pose

experts, which we call seeds. The 	 next-generation experts

are obtained by sampling 	 times, with replacement, from

the set of all �� seeds, where, on each draw, the probability

of choosing seed u
ðd;eÞ
1:t is given by our estimate of

pðuðd;eÞ1:t j y1:tÞ from (30). After this resampling step, known

in the literature as a selection step [21], the filtering

distribution is represented by 	 equally weighted pose

experts u
ðdÞ
1:t , where d 2 f1; . . . ; 	g, and w

ðdÞ
t ¼ 1

	 .
The weighted collection of next-generation experts is a

consistent estimator of the filtering distribution for pose at
time t:

pðut j y1:tÞ ¼
Z
pðu1:t j y1:tÞdðu1:t�1Þ �

X	
d¼1

�
�
ut � uðdÞt

�
w
ðdÞ
t ;

ð31Þ

where � is the Dirac delta function. For each new expert u
ðdÞ
1:t ,

the texture opinion is the Gaussian described in Section 3.3.
Thus, our estimator of the filtering distribution (the joint
distribution of pose, object texture, and background texture,
given the images up to time t) is

pðut; vt; bt j y1:tÞ ¼
Z
pðu1:t; vt; bt j y1:tÞdðu1:t�1Þ

�
X
d

�
�
ut�uðdÞt

�
w
ðdÞ
t Nðvt; v̂tjt;VtjtÞN ðbt; b̂tjt;BtjtÞ:

ð32Þ

As is common in particle filters, we do not resample at
every time step [22]. Rather, we resample periodically. We
call video frames at which we resample “resampling
frames,” and call the others “continuation frames.” Table 2
summarizes the entire G-flow inference algorithm that was
presented in Section 3.

4 RELATION TO OPTIC FLOW AND TEMPLATE

MATCHING

In template matching, the same time-invariant texture map
is used to track every frame of video. Optic flow can be seen
as template matching in which the template is completely
reset at each frame for use in the next frame. Optimal
inference in G-flow involves a combination of optic flow-
based and template-based tracking, in which the texture
template gradually evolves as new images are presented.
Pure optic flow and template matching both emerge as
special cases.

4.1 Steady-State Texel Variances

For unoccluded texels, the Kalman filter asymptotically
approaches a steady state. From (12) and (10), the steady-
state variance V1ðiÞ and Kalman gain K1ðiÞ of object
texel i satisfy the following two equations:

V1ðiÞ ¼
�
1�K1ðiÞ

�
V1ðiÞ þ�vðiÞ; K1ðiÞ ¼

V1ðiÞ
V1ðiÞ þ �2

w

:

ð33Þ

Combining these two equations yields the algebraic Ricatti
equation, which we can solve to obtain the steady-state texel
variance V1ðiÞ and Kalman gain K1ðiÞ:

V1ðiÞ ¼
�vðiÞ þ

ffi
�2
vðiÞ þ 4�2

w�vðiÞ
p

2
; ð34Þ

K 1ðiÞ ¼
��vðiÞ þ

ffi
�2
vðiÞ þ 4�2

w�vðiÞ
p

2�2
w

: ð35Þ

A useful descriptive parameter is the variance of the

predictive distribution for the intensity of the image pixel

rendered by texel i:
tðiÞ ¼def Vtjt�1ðiÞ þ �2
w . We call
tðiÞ the

temperature of object texel i at time t in analogy to statistical

mechanics; it measures the amount of noise in the texture

value of each image pixel. Note that
tðiÞ is the denominator

of the first foreground term in the G-flow objective function

(18). We define the steady-state temperature of texel i by

1ðiÞ ¼ V1ðiÞ þ �2
w .

4.2 Optic Flow as a Special Case

Here, we show that optic flow, a classic computer vision
algorithm, can be seen as an approximate solution to the
G-flow inference equation (18). In the process, we see that
optic flow is optimal only under very special circumstances.
Suppose that the pose transition probability pðut j ut�1Þ is
uninformative and that the background is uninformative.
Then the only terms remaining to minimize in (18) are the
two foreground terms. If we further suppose that there are
no self-occlusions (no object texel is ever occluded), then it
follows from (10) and (12) that the second foreground term
log½Vtjt�1ðxiðutÞÞ þ �2

w� is constant with respect to pose and
thus may be ignored. In this case, the only term remaining
to minimize in the G-flow objective function (18) is the first
foreground term:

ûtðu1:t�1Þ ¼ arg min
ut

1

2

Xn
i¼1

½ytðxiðutÞÞ � v̂tjt�1ðiÞ�2

Vtjt�1ðiÞ þ �2
w

: ð36Þ

Suppose we further restrict our model so that the process
noise is the same at every texel and is much larger than the
image rendering noise:

�v ¼ �2
vIn; where �2

v � �2
w: ð37Þ

Once the system has settled to its steady state, it follows

from (34) that every texel will have the same variance

V1 � �2
v , and thus, by (33), every texel’s Kalman gain will be

K1ðiÞ � 1. As a result, the equation for the texture map

means (11) reduces to: v̂tjt�1ðiÞ ¼ yt�1

�
xiðut�1Þ

�
, i.e., the

mean of texel i of the object texture map is simply the texture

value taken from the location of vertex i in the previous

image. Hence, the G-flow objective function (36) further

reduces to

ûtðu1:t�1Þ ¼ arg min
ut

1

2

Xn
i¼1

�
ytðxiðutÞÞ � yt�1ðxiðut�1ÞÞ

�2
: ð38Þ

356 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 32, NO. 2, FEBRUARY 2010

With this objective function, the Gauss-Newton minimiza-
tion that we use to find the peak of the pose opinion (see
Section 3.4.1 and Appendix VII-A, which can be found on
the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TPAMI.2008.278)
reduces to exactly the Gauss-Newton minimization per-
formed in optic flow. Thus, constrained optic flow [9], [10],
[11] is simply a special limiting case of optimal inference
under G-flow, with a single expert (� ¼ 1) and with
sampling parameter �! 0. (For a full explanation of
constrained optic flow, see Appendix V, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TPAMI.2008.278.)

4.2.1 Interpretation

Optic flow is only optimal in the extreme conditions given
by (37), which essentially amount to the object’s texture
changing so fast that, at every point on the object (at every
vertex), the texture value varies a great deal from each
frame to the next. However, optic flow is typically applied
in situations in which the object’s texture changes very little
from each frame to the next. In such situations, the optimal
solution calls not for optic flow but for a texture map that
integrates information across multiple frames.

4.3 Template Matching as a Special Case

Here, we show that template matching, another classic
computer vision algorithm, can also be derived as a special
solution to the G-flow inference problem. Like optic flow,
template matching is optimal only under very special
circumstances. Suppose, as in the optic flow case above, that
the pose transition probability pðut j ut�1Þ is uninformative,
the background is uninformative, and no object texel is ever
occluded. Then, the G-flow objective function (18) again
reduces to (36). We further restrict our model so that the
image rendering noise is much greater than the process
noise at every object texel, i.e.,

�2
w � �vðiÞ for all i 2 f1; . . . ; ng: ð39Þ

By (35), the Kalman gain is K1ðiÞ�0, so by (11), the texture
map means are constant over time. By denoting this fixed
texture template as v̂1ðiÞ ¼def

v̂tjt�1ðiÞ, the objective function
(36) further reduces to the error function that is minimized
by template matching algorithms:

ûtðu1:t�1Þ ¼ arg min
ut

1

2

Xn
i¼1

½ytðxiðutÞÞ � v̂1ðiÞ�2: ð40Þ

4.3.1 Interpretation

Template matching is an optimal solution only under the
extreme conditions expressed by key assumption (39). This
amounts to supposing that, in comparison to the image
rendering noise, the object’s texture value at every point (at
every vertex) is basically constant from each frame to the
next. This is rarely true in real data, and G-flow provides a
principled way to relax this unrealistic assumption of
template methods.

4.4 General Case

In general, if the background is uninformative, then
minimizing the G-flow objective function (18) results in a
weighted combination of optic flow and template matching,

with the weight of each approach depending on the current
level of uncertainty about (i.e., the current variance of) each
texel in the object texture map.

Not only template matching and optic flow but also a
whole new continuum of inference algorithms in between
these two extremes are special cases of G-flow under the
assumption of an uninformative background. When there is
useful information in the background, G-flow can addition-
ally infer a model of the background to improve tracking.

5 EMPIRICAL EVALUATION

Although there are now a number of 3D nonrigid tracking
algorithms [7], [8], [9], [10], [11], [23], [24], measuring their
effectiveness with deformable objects has been difficult.
Currently, evaluation of algorithms is primarily based on
demonstration videos in which the system appears to do
well in a qualitative sense, or on the system’s tracking of toy
data. Quantitative evaluations using real data are not
possible due to the lack of video data sets of real moving
human faces (or other deformable objects) in which there
are no visible marks on the face, and yet for which the
actual 3D positions of the features being tracked are known.
To our knowledge, no publicly available data set yet exists
that provides both the original video and simultaneous
ground truth data during natural head and nonrigid face
motion.

We developed a new data collection method, utilizing an
infrared marking pen that is visible under infrared light but
not under visible light (see Fig. 2). This involved setting up a
rig of visible light cameras (to which the infrared marks
were not visible) for collecting the test video, plus three
infrared-sensitive (IR) cameras (to which the infrared marks
were clearly visible), and calibrating all of the cameras both
spatially and temporally. We collected video sequences
simultaneously in all cameras and reconstructed the
3D ground truth information by hand-labeling several key
frames from the IR cameras in each video sequence. We use
this data set to rigorously test our system’s performance and
compare it to other systems. We are making this data set,
called IR Marks, freely available to other researchers in the
field with the publication of this paper. Fig. 2 shows a single
frame of video from the IR Marks data set. For more details
on the collection method and the data set, see Appendix II,
which can be found on the Computer Society Digital Library
at http://doi.ieeecomputersociety.org/10.1109/TPAMI.
2008.278.

6 RESULTS

In this section, we evaluate the G-flow inference algorithm
(described in Section 3). In the experiments described here,
we have assumed an uninformative background, and thus,
have not implemented the background texture model. For
these experiments, we simplified the G-flow objective
function (18) by eliminating both background terms
(essentially assuming a white noise background) and the
second foreground term. The resulting model is still broad
enough to encompass as special cases optic flow, template
matching, and an entire continuum in between.

MARKS ET AL.: TRACKING MOTION, DEFORMATION, AND TEXTURE USING CONDITIONALLY GAUSSIAN PROCESSES 357

6.1 Comparison with Constrained Optic Flow:
Varying the Number of Experts

Constrained optic flow [9], [10], [11] represents the filtering
distribution for pose using a single point estimate, which
results in a great deal of drift in difficult sequences. (For a
full explanation of constrained optic flow, see Appendix V,
which can be found on the Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/
TPAMI.2008.278.) In contrast, G-flow uses multiple experts
(particles), each of which has its own point estimate for
pose, to represent an arbitrary filtering distribution for
pose. To test the value of maintaining a full estimate of the
pose distribution, we performed tracking runs using

varying numbers of experts on the Emote video sequence
(the most difficult of the three video sequences) of the IR
Marks data set. The graph in Fig. 3a shows a plot of the
average error (in pixels) of each vertex at several different
time points in the sequence. For these results, we used a
texture model of small circular patches around each vertex
and a steady-state Kalman gain of K1ðiÞ�1 (the optic flow
limit). In these conditions, the 1-expert case corresponds
exactly to constrained optic flow [9], [10], [11]. Constrained
optic flow (the line labeled “1 expert”) completely loses
track of the face. However, increasing the number of experts
to 5 improves the tracking performance significantly, and
using 10 or more experts results in dramatic improvement.

358 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 32, NO. 2, FEBRUARY 2010

Fig. 3. Each line represents an average of several runs, showing the error of the vertex locations of the mean expert, averaged across vertices and
runs. (a) The advantage of multiple experts. Constrained optic flow [9], [10], [11], labeled as “1 expert” in the graph, quickly loses track of a difficult video
sequence (the Emote sequence of the IR Marks data set). Multiple experts provide a Monte Carlo estimate of an entire pose distribution, rather than
collapsing the distribution to a single pose estimate. The graph shows that in the optic flow limit, K1ðiÞ � 1, multiple experts greatly improve tracking
performance. (b) Varying the Kalman gain. The results of tracking the Talk1 sequence of the IR Marks data set using 20 experts. The steady-state
Kalman gain was varied fromK1ðiÞ ¼ 0:001 for every object texel (near the template matching limit) toK1ðiÞ ¼ 0:999 for every object texel (near the
optic flow limit). The steady-state temperature
1ðiÞwas kept constant across all values of Kalman gain in order to have the same overall level of noise
in all runs. (The results of tracking the Talk2 sequence are similar to those for Talk1; the Talk2 results are demonstrated in a video available in the online
supplemental material, which can be found on the Computer Society Digital Library at http://doi.ieeecomputersociety.org/10.1109/TPAMI.2008.278.)

Fig. 2. A single frame of video from the IR Marks data set. Before video collection, the subject’s face was marked using an infrared marking pen.

The figure shows the same frame of video simultaneously captured by (a) one of the four visible light cameras and (b) and (c) two of the three

infrared-sensitive cameras. The infrared marks are clearly visible using the infrared cameras, but they are not visible in the image from the visible

light camera.

6.2 Initialization and Error Recovery

The results in Fig. 3a show that having multiple experts
greatly reduces the tendency of flow-based systems to drift
out of alignment. In addition, multiple experts improve
initialization, as Fig. 4 demonstrates. We collected a video (30
frames/sec) of a subject in an outdoor setting who made a
variety of facial expressions while moving her head. A later
motion-capture session was used to create a 3D morphable
model of her face, using five morph bases (k ¼ 5).

Twenty experts were initialized randomly near the correct
pose on frame 1 of the video and propagated using G-flow
inference (with 20 experts, K1ðiÞ�1, small circular patches
texture model). Fig. 4 shows the distribution of experts for
three frames. In each frame, every one of the 20 experts has a
hypothesis about the pose (both rigid and nonrigid). The
38 vertices are projected into the image according to each
expert’s pose, yielding 760 red dots in each frame. In each
frame, the mean of the experts gives a single hypothesis about
the 3D nonrigid deformation of the face (shown from frontal
and profile view in the lower right) as well as the rigid pose of
the face (rotated 3D-axes in the lower left). Notice G-flow’s
ability to recover from error: Bad initial hypotheses are
quickly weeded out, leaving only good hypotheses (video is
available in the online supplemental material, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TPAMI.2008.278).

6.3 Exploring the Continuum from Template to
Flow: Varying the Kalman Gain

The object texture process noise �vðiÞ and the image
rendering noise (observation noise) �2

w provide two degrees
of freedom with which to tune the tracker. Using the
equations in Section 4.1 as a guide, we can choose these
two values in order to get any desired values for the steady-
state Kalman gain K1ðiÞ and the steady-state temperature

1ðiÞ. (Though note that, since �2

w is the same for every pixel
in the image, K1ðiÞ and
1ðiÞ cannot be varied indepen-
dently for each texel.) To assess the effect of varying the

Kalman gain on tracking performance, we performed several
runs, keeping the steady-state temperature
1ðiÞ (the overall
contribution of noise) constant across all runs and all texels.
We varied the steady-state Kalman gain of all object texels
from K1ðiÞ ¼ 0:001 (near the template limit) to K1ðiÞ ¼
0:999 (near the optic flow limit). For each value of K1ðiÞ, we
performed several tracking runs on the Talk1 video sequence
of the IR Marks data set (with 20 experts, dense 3D triangular
mesh texture model). The results, shown in Fig. 3b,
demonstrate that for this video sequence, the template end
of the continuum is best. The results for the Talk2 video
sequence are similar; a video demonstrating the tracking
results on the Talk2 sequence is available in the online
Supplemental Material, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TPAMI.2008.278.

7 DISCUSSION

7.1 Relation to Previous Work

We restrict our comparisons with previous work to
methods that address the same problem as G-flow: tracking
deformable objects in 3D from an image sequence. Hence,
we do not discuss nonrigid structure-from-motion algo-
rithms [25], [26], [27], which use 2D point correspondences
rather than image sequences as input.

7.1.1 Relation to Other Algorithms for Tracking 3D

Deformable Objects

Table 3 compares the features of G-flow and a number of
existing approaches to monocular nonrigid 3D tracking.

Batch versus online processing. Of the existing mono-
cular image-based 3D nonrigid trackers, some [7], [11]
operate in batch mode (with the entire image sequence
available throughout the tracking process) to simultaneously
learn the shape model (learn the morph bases) and infer the
morph parameters (track the vertices). Others operate in an
online fashion (incorporate the information from each new
frame as it appears), which enables them to be considered for

MARKS ET AL.: TRACKING MOTION, DEFORMATION, AND TEXTURE USING CONDITIONALLY GAUSSIAN PROCESSES 359

Fig. 4. G-flow tracking an outdoor video. Results are shown for frames 1, 81, and 620. In each frame, the algorithm simultaneously estimates the
rigid pose of the head and the nonrigid face deformations. There are 20 experts, each of which has a hypothesis about the 3D locations of 38 points
on the face. The set of all 20 experts is represented by 20� 38 ¼ 760 red dots superimposed on the figure at the top of each frame. Despite the large
initial uncertainty about the pose in frame 1, G-flow determines the correct pose by frame 81 and maintains accurate tracking for the remainder of the
sequence. (Video is available in the online supplemental material, which can be found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TPAMI.2008.278.)

real-time and memory-intensive applications. These online
algorithms either have limited ability to learn the shape
model [9] or assume that these morph bases are already
known before the tracking process begins [8], [10]. Here, we
have formulated our approach as an online algorithm.

Because our G-flow system has a well-defined condi-
tionally Gaussian graphical model for generating image
sequences (Fig. 1b), we could alternatively use the EM
algorithm to learn the shape basis in batch mode while
simultaneously inferring a posterior distribution over the
pose parameters (while tracking the vertices). The imple-
mentation details would be similar to those in [7], with
some added complications since we have a conditionally
Gaussian model rather than a simple Gaussian model.

Relation to constrained optic flow and texture template
models. In existing optic flow-based trackers [9], [10], [11],
the goal of inference is to explain the flow vectors. These
systems use optic flow only because the models are
explicitly designed to explain optic flow. Thus, these
systems can be viewed as models for generating flow
vectors. In contrast, G-flow is explicitly designed as a model
for generating images. In G-flow, the goal of inference is to
explain the observed images (all of the pixel intensities) as
well as possible. In our model, optic flow emerges naturally
as part of the inference solution, rather than being the
observable data in the model. As we explained in Section 4 ,

trackers based on constrained optic flow, as well as trackers
based on appearance template matching, are entirely
subsumed into the G-flow model as special cases. G-flow
can be considered as a generalization of both types of
models in which the entire continuum from template
matching to optic flow can be utilized independently by
each texel in the appearance model. Texels whose texture
values remain roughly constant over time may be near the
template end of the tracking spectrum, whereas texels
whose values change rapidly may be near the optic flow
end of the spectrum.

Relation to Torresani and Hertzmann’s 3D generative
template model. The system of [7] is in many ways similar
to the template special case of G-flow. Although they use
raw optic flow on the image sequence to initialize their
system, their inference and learning procedures assume a
template model. Their approach is based on a generative
model for images that closely resembles the template
special case of G-flow, and they too perform Bayesian
inference on their generative model. To make inference
tractable, they assume a purely Gaussian distribution over
the nonrigid pose parameters. In contrast, G-flow makes
inference tractable using Rao-Blackwellization to maintain a
particle-based non-Gaussian pose distribution, and using
Kalman filtering to enable an appearance model that can
span the entire continuum from templates to optic flow.
Finally, the EM algorithm of [7] treats rigid pose (rotation)
as a parameter (with a single value), rather than as a
random variable (which can take on an entire distribution of
values). Thus, while their model accommodates uncertainty
in the morph parameters, it cannot accommodate uncer-
tainty in (cannot maintain a distribution over) the rigid
motion parameters. The tracker of [7] handles self-occlusion
quite well by using an indicator variable that enables texels
to be occluded (or outliers) some fraction of the time. We
may incorporate a similar indicator variable into G-flow in
the future, if we implement batch EM learning. In
comparison to G-flow’s online inference, the system of [7]
is a slow batch processing system: It requires the entire
sequence of images before the tracking process can begin.

Relation to 2D+3D active appearance models. Standard
active appearance models (2D AAMs) [29], [30] are not
directly comparable to G-flow because they are purely
2D models, which track in the 2D image plane without
regard to the 3D configuration of the vertices. However,
there is a 3D extension of the active appearance model, the
so-called combined 2D+3D active appearance model
(2D+3D AAM) [8], [28], which is a real-time, online
3D tracking system. We classify it as a template-based
model because its appearance model does not change over
time.3 The 2Dþ 3D AAM assumes that the 3D morphable
shape model (3DMM) and a corresponding 2D AAM are
known. The system can only track vertex positions that are
consistent with both the 3DMM and the 2D AAM. Perhaps
this system’s biggest weakness is that it cannot handle self-

360 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 32, NO. 2, FEBRUARY 2010

TABLE 3
Approaches to 3D Tracking of Deformable Objects

The table compares the features of G-flow with those of other
approaches. The approaches compared are (left to right): Constrained
optic flow [9], [10], [11]; 2D+3D active appearance models [8], [28]; the
3D generative template model of [7]; and our G-flow model.

3. Note that the 2D+3D AAM appearance model is not a simple template,
but a multidimensional subspace of templates. Rather than choosing the
warp of the observed image that causes it to best match a single texture
template, AAMs choose the warp of the observed image that causes it to
best match any linear combination of a small number of appearance
templates, i.e., that causes the warped image to be as close as possible to the
linear subspace formed by this set of appearance templates.

occlusions (triangular facets of the 3D model are not able to
face backward, or to partially occlude other patches),
because self-occlusions are not consistent with the
2D AAM. In contrast, G-flow’s fully 3D shape model can
easily model self-occlusions.

Furthermore, since the 2Dþ 3D AAM is not a generative
model for image sequences (unlike G-flow or [7]), it is not
clear how it could be extended to learn models automati-
cally. One of the most appealing features of AAMs is their
impressive speed, which results from the efficiency of the
inverse compositional form of the Lucas-Kanade image
alignment algorithm [30], [31]. Because AAMs use a fixed
template, they can precompute the computationally de-
manding steps on the template (the gradient of the template
and the Jacobian of incremental warpings of the template)
before tracking begins. Because the G-flow texture map is
not fixed except in the template limit, we are not able to
precompute the gradient of the texture map. However, we
might be able to accelerate G-flow by precomputing the
incremental warp Jacobian.

Modeling object texture: discrete image patches versus
dense triangular mesh. The appearance models of [10], [11]
consist of the pixel intensity values in a small neighborhood
around each vertex. At each new frame, the pixel values in a
small patch surrounding the predicted position of the
vertex in the current frame are compared with the pixel
values in a small patch surrounding each vertex’s estimated
position in the previous frame. The patch motion from one
image to another is assumed to be pure translation (no
warping), and subpixel displacements are handled using
image interpolation. The texture models of [7], [9] similarly
consist of small windows (image patches) around the vertex
locations, though each patch is permitted to undergo affine
transformation. One disadvantage of these approaches is
that the models do not properly account for overlapping
patches, and are thus unable to handle self-occlusions based
on the object pose.

In contrast, the appearance model of [8] is a 2D triangular
mesh connecting the object vertices, with an associated dense
texture map. Each new image is warped in a piecewise-affine
manner (with dense triangular patches defined by the
predicted vertex locations in the image) to compare with
the appearance model. However, the triangular mesh of [8] is
not permitted to model self-occlusions (such as when the
nose obscures part of the face), so the system has difficulty in
tracking large out-of-plane rotations.

We implemented G-flow using two types of texture
model: small windows (circular patches) around each
vertex and a dense 3D triangular mesh connecting the
vertices. We analyzed results from both in Section 6.

Modeling uncertainty in the filtering distribution. The
algorithms of [8], [9], [10], [11] commit to a single solution for
pose and appearance at each time step; that is, they do not
model uncertainty. But image information can be ambig-
uous, and G-flow’s explicit modeling of that uncertainty
makes it more robust and less likely to lose track of the object.

Similarly to [8], [9], [10], [11], the system of [7] models
rigid pose as a single point estimate. However, Torresani
and Hertzmann [7] do maintain a Gaussian probability
distribution over nonrigid pose parameters, which affords
their system some ability to accommodate uncertain data.
Still, their Gaussian uncertainty model limits the system to
unimodal distributions over the pose parameters. When

tracking objects, more than one pose may fit the image
equally well at a given point in time. In such cases,
Gaussian approaches place maximum certainty on the
average of the high-probability poses. This can be dangerous
if the average location is in a region of low probability. In
contrast, G-flow’s particle-based pose distribution enables it
to accurately estimate arbitrary distributions over both rigid
and nonrigid pose parameters.

7.1.2 Relation to Jacobian Images of Texture Maps

After developing G-flow, we learned that we were not the
first to use dynamic texture maps. A similar idea was
proposed in [32] as a means for obtaining super-resolution
images of an object. Their basic approach can be seen as a
special case of G-flow inference, in which the background is
uninformative, there is only one expert, the proposal
distribution collapses to a single point (�! 0), and the
object is rigid (k ¼ 1).

7.1.3 Relation to Other Rao-Blackwellized Particle

Filters

Virtually, all particle filters suffer from a problem known as
sample impoverishment [22], [33]. In most particle filters,
the samples of the hidden variable depend only on the past
samples of that variable, that is, the samples of Ut are drawn
from the prior (pose transition) distribution pðut j ut�1Þ. The
samples that are selected may be inadequate to represent
the posterior distribution pðut j y1:tÞ because most (or all) of
the samples may be wasted in regions of ut in which
pðut j y1:tÞ is negligible. Thus, very few of the particles will
have high weight, so, at the next time step, these few
particles will each be sampled several times.

A large part of this problem stems from the fact that
standard particle filters have proposal distributions that
rely only on observations up to time t� 1, but ignore the
already available sensor information from time t. In G-flow,
not only does the filtering distribution for the new pose Ut
depend upon the past poses U1:t�1, as in conventional
particle filters, but it also depends upon the new image yt.
In order to get our tracking scheme to work, our system
obtains more informed hypotheses about the pose Ut by
looking “ahead” to the current observation, using the
observation yt to help determine the location of our samples
of Ut. That is, we use the information from time t to help
decide which of the particles at time t� 1 (our experts
u1:t�1) should be propagated forward to become estimates at
time t, thus minimizing the problem of sample impover-
ishment. Particle filters like this one that look “ahead” to the
current observation have been called as look-ahead Rao-
Blackwellized Particle Filters [33].

As explained in Section 3 , we combine the Gauss-Newton
method and Laplace’s method to look ahead to the current
image before sampling. This look-ahead results in an optic-
flow-like algorithm that distinguishes inference in G-flow
from other look-ahead Rao-Blackwellized particle filters.

Rao-Blackwellized particle filters have not previously
been applied to 3D tracking of deformable objects, though
they have been used to track 2D rigid objects, such as
honeybees [34]. In [34], the sample space over poses was
much lower dimensional than our pose space. As a result,
they did not need look ahead and could simply sample
from their prior distribution for location, a lower dimen-
sional analog to our prior distribution pðut j ut�1Þ.

MARKS ET AL.: TRACKING MOTION, DEFORMATION, AND TEXTURE USING CONDITIONALLY GAUSSIAN PROCESSES 361

7.2 Future Work

7.2.1 Varying the Kalman Gain for Different Texels

Previous tracking systems use either a flow-based approach
[9], [10], [11] or a template-based approach [7], [8] to
appearance modeling, but G-flow is the first system to
combine the advantages of both approaches in a principled
manner, encompassing a continuous range of models from
template-based to flow-based within a unified framework.
This theoretical framework makes it possible to vary the
level of template-ness or flow-ness dynamically over time
and also across space. Thus, some texels (or some particles)
can be more flow-like, whereas others can be more
template-like. Ultimately, the optimal parameters of each
texel should be inferred automatically according to the
demands of the data.

7.2.2 Improved Imaging Model

To simplify the derivations in this paper, we made the
assumption that there is a one-to-one mapping from object
texels to image pixels. In practice, to find the texture values
at image pixels that are rendered by the object, we
interpolate the texture from the nearest object texels as in
[8], [9], [10], [11], [30], [31]. In the future, however, we
would like to incorporate interpolation directly into our
imaging model (our model of how texels map to pixels),
using an approach similar to that of [32].

7.2.3 Background Tracking

In our simulations, we did not use the background terms of
the predictive distribution (17) and objective function (18).
This is essentially equivalent to assuming a white noise
background, and the mathematical analysis in this paper
has demonstrated that other tracking algorithms (e.g., optic
flow) make this assumption implicitly. Implementation of
the background model (which is fully described and
derived in this paper) will no doubt improve performance.

7.2.4 Sophisticated Texture Models

The current G-flow model uses a simple model for texture:
an expected texture map and associated variance para-
meters for each texel. More sophisticated models are
possible in which object texture is produced by a linear
combination of texture maps in the same way that
geometric deformations are modeled as a linear combina-
tion of key shapes. Subspace texture models have pre-
viously been used effectively for 3D face tracking [8], [28],
for 2D tracking with Rao-Blackwellized particle filters [34],
and for 2D tracking using a dynamic texture map [35].
Shape and texture parameters could also be permitted to be
correlated. This would, for example, allow the system to use
movements of eyebrow vertices to help detect the presence
of wrinkles in the forehead, or to use the presence of
wrinkles to help detect movements of parts of the face.

7.2.5 Learning Shape Models

The current version of G-flow assumes that the geometry of
the object of interest is already known via prior experience.
We and others (e.g., [7], [36]) have demonstrated methods
for learning such models in a principled manner, and these
could be integrated within the G-flow perspective.

7.3 Conclusion

We introduced a probabilistic formulation of the video
generation process for 3D deformable objects and derived

an equation for optimal tracking. The approach revealed an
entire space of possible algorithms to solve this problem
and helped clarify that classic computer vision algorithms
such as optic flow and template matching are optimal only
under very special circumstances. This opens up possibi-
lities for a whole spectrum of new algorithms. We
presented one such new algorithm that takes advantage of
the conditionally Gaussian structure of the problem,
resulting in significant improvements over previous meth-
ods while pointing out a rich range of possibilities for
further improvements.

Unlike previous systems, G-flow incorporates a back-
ground model that enables information in the background
to be utilized. The other systems cited above include only a
foreground model, which (as we demonstrated in this
paper) makes implicit assumptions about the background
(essentially assuming that the background is white noise).
In addition, G-flow uses Rao-Blackwellized particles (ex-
perts) to maintain an unrestricted (nonlinear, non-Gaussian)
distribution over the pose parameters. This is more flexible
than other models, which either collapse the pose distribu-
tion to a single point at every time step [8], [9], [10], [11] or
use a single point estimate of rigid pose parameters
(rotation) and restrict the distribution over nonrigid pose
parameters to be Gaussian [7].

We refer to G-flow’s Rao-Blackwellized particles as
experts because, in addition to a single pose estimate, each
expert maintains a corresponding Gaussian distribution
over texture, inferred using a Kalman filter, plus a
predictive pose distribution that “looks ahead” to the next
frame. As a result, not nearly as many experts are required
as in a standard particle filter. Indeed, existing optic-flow-
based trackers can be seen as limited implementations of
G-flow that use only a single expert. As demonstrated in
Section 6, on the order of 10 experts is enough to produce a
considerable improvement over existing tracking systems.

ACKNOWLEDGMENTS

Earlier versions of this work appeared in [16], [17], [36].
Tim K. Marks was supported by US National Science
Foundation (NSF) grants IIS-0223052 and DGE-0333451.
John R. Hershey was supported by UCDIMI grant D00-
10084. Javier R. Movellan was supported by NSF grants
ECCS-0622229 and IIS-0808767. Tim K. Marks performed this
research at the Departments of Cognitive Science and
Computer Science and Engineering at the University of
California, San Diego.

REFERENCES

[1] M. Osadchy, Y. LeCun, and M. Miller, “Synergistic Face Detection
and Pose Estimation with Energy-Based Models,” J. Machine
Learning Research, vol. 8, pp. 1197-1215, 2007.

[2] A. Torralba, K.P. Murphy, W.T. Freeman, and M. Rubin,
“Context-Based Vision System for Place and Object Recognition,”
Proc. IEEE Int’l Conf. Computer Vision, 2003.

[3] G. Hinton, S. Osindero, and K. Bao, “Learning Causally Linked
Markov Random Fields,” Proc. Int’l Workshop Artificial Intelligence
and Statistics, 2005.

[4] I. Fasel, B. Fortenberry, and J.R. Movellan, “A Generative
Framework for Real-Time Object Detection and Classification,”
Computer Vision and Image Understanding, vol. 98, pp. 182-210,
2005.

362 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 32, NO. 2, FEBRUARY 2010

[5] M. Beal, N. Jojic, and H. Attias, “A Graphical Model for Audio-
Visual Object Tracking,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 25, no. 7, pp. 828-836, July 2003.

[6] N. Jojic and B. Frey, “Learning Flexible Sprites in Video Layers,”
Proc. IEEE CS Conf. Computer Vision and Pattern Recognition,
pp. 199-206, 2001.

[7] L. Torresani and A. Hertzmann, “Automatic Non-Rigid 3D
Modeling from Video,” Proc. European Conf. Computer Vision, 2004.

[8] J. Xiao, S. Baker, I. Matthews, and T. Kanade, “Real-Time
Combined 2D+3D Active Appearance Models,” Proc. IEEE CS
Conf. Computer Vision and Pattern Recognition, 2004.

[9] L. Torresani, D. Yang, G. Alexander, and C. Bregler, “Tracking
and Modeling Non-Rigid Objects with Rank Constraints,” Proc.
IEEE CS Conf. Computer Vision and Pattern Recognition, pp. 493-500,
2001.

[10] M. Brand and R. Bhotika, “Flexible Flow for 3D Nonrigid Tracking
and Shape Recovery,” Proc. IEEE CS Conf. Computer Vision and
Pattern Recognition, 2001.

[11] M. Brand, “Morphable 3D Models from Video,” Proc. IEEE CS
Conf. Computer Vision and Pattern Recognition, 2001.

[12] H. Chen, P. Kumar, and J. van Schuppen, “On Kalman Filtering
for Conditionally Gaussian Systems with Random Matrices,”
Systems and Control Letters, vol. 13, pp. 397-404, 1989.

[13] A. Doucet, N. de Freitas, K. Murphy, and S. Russell, “Rao-
Blackwellised Particle Filtering for Dynamic Bayesian Net-
works,” Proc. 16th Conf. Uncertainty in Artificial Intelligence,
pp. 176-183, 2000.

[14] R. Chen and J. Liu, “Mixture Kalman Filters,” J. Royal Statistical
Soc.: Series B, vol. 62, pp. 493-508, 2000.

[15] A. Doucet and C. Andrieu, “Particle Filtering for Partially
Observed Gaussian State Space Models,” J. Royal Statistical Soc.:
Series B, vol. 64, pp. 827-838, 2002.

[16] T.K. Marks, J. Hershey, J.C. Roddey, and J.R. Movellan, “3D
Tracking of Morphable Objects Using Conditionally Gaussian
Nonlinear Filters,” Proc. IEEE CS Conf. Computer Vision and Pattern
Recognition, Workshop Generative Model Based Vision, 2004.

[17] T.K. Marks, J. Hershey, J.C. Roddey, and J.R. Movellan, “Joint
Tracking of Pose, Expression, and Texture Using Conditionally
Gaussian Filters,” Advances in Neural Information Processing
Systems, vol. 17, pp. 889-896, MIT Press, 2005.

[18] V. Blanz and T. Vetter, “A Morphable Model for the Synthesis of
3D Faces,” Proc. ACM SIGGRAPH ’99, pp. 187-194, 1999.

[19] R.E. Kalman, “A New Approach to Linear Filtering and Prediction
Problems,” Trans. ASME-J. Basic Eng. D, vol. 82, pp. 35-45, 1960.

[20] G.S. Fishman, Monte Carlo Sampling: Concepts Algorithms and
Applications. Springer-Verlag, 1996.

[21] C. Andrieu, N. de Freitas, A. Doucet, and M. Jordan, “An
Introduction to MCMC for Machine Learning,” Machine Learning,
vol. 50, nos. 1/2, pp. 5-43, 2003.

[22] S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A Tutorial
on Particle Filters for On-Line Non-Linear/Non-Gaussian Baye-
sian Tracking,” IEEE Trans. Signal Processing, vol. 50, no. 2,
pp. 174-188, 2002.

[23] C. Bregler, A. Hertzmann, and H. Biermann, “Recovering Non-
Rigid 3D Shape from Image Streams,” Proc. IEEE CS Conf.
Computer Vision and Pattern Recognition, 2000.

[24] L. Torresani, A. Hertzmann, and C. Bregler, “Learning Non-Rigid
3D Shape from 2D Motion,” Advances in Neural Information
Processing Systems, vol. 16, MIT Press, 2004.

[25] M. Brand, “A Direct Method for 3D Factorization of Nonrigid
Motion Observed in 2D,” Proc. IEEE CS Conf. Computer Vision and
Pattern Recognition, 2005.

[26] J. Xiao, J. Chai, and T. Kanade, “A Closed-Form Solution to Non-
Rigid Shape and Motion Recovery,” Proc. European Conf. Computer
Vision, 2004.

[27] L. Torresani, A. Hertzmann, and C. Bregler, “Nonrigid Structure-
from-Motion: Estimating Shape and Motion with Hierarchical
Priors,” IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 30, no. 5, pp. 878-892, May 2008.

[28] I. Matthews, J. Xiao, and S. Baker, “2D versus 3D Deformable Face
Models: Representational Power, Construction, and Real-Time
Fitting,” Int’l J. Computer Vision, vol. 75, no. 1, pp. 93-113, 2007.

[29] T. Cootes, G. Edwards, and C. Taylor, “Active Appearance
Models,” Proc. European Conf. Computer Vision, vol. 2, pp. 484-
498, 1998.

[30] I. Matthews and S. Baker, “Active Appearance Models Revisited,”
Int’l J. Computer Vision, vol. 60, no. 2, pp. 135-164, 2004.

[31] S. Baker and I. Matthews, “Lucas-Kanade 20 Years On: A Unifying
Framework,” Int’l J. Computer Vision, vol. 56, no. 3, pp. 221-255,
2004.

[32] F. Dellaert, S. Thrun, and C. Thorpe, “Jacobian Images of Super-
Resolved Texture Maps for Model-Based Motion Estimation and
Tracking,” Proc. IEEE Workshop Applications of Computer Vision,
pp. 2-7, 1998.

[33] N. de Freitas, R. Dearden, F. Hutter, R. Morales-Menendez, J.
Mutch, and D. Poole, “Diagnosis by a Waiter and a Mars
Explorer,” Proc. IEEE, special issue on sequential state estimation,
vol. 92, no. 3, pp. 455-468, Mar. 2004.

[34] Z. Khan, T. Balch, and F. Dellaert, “A Rao-Blackwellized Particle
Filter for Eigentracking,” Proc. IEEE CS Conf. Computer Vision and
Pattern Recognition, 2004.

[35] J. Ho, K.-C. Lee, M.-H. Yang, and D.J. Kriegman, “Visual Tracking
Using Learned Linear Subspaces,” Proc. IEEE CS Conf. Computer
Vision and Pattern Recognition, pp. 782-789, 2004.

[36] T.K. Marks, “Facing Uncertainty: 3D Face Tracking and Learning
with Generative Models,” PhD dissertation, Univ. of California
San Diego, 2006.

Tim K. Marks received the AB degree in physics
from Harvard University in 1991 and the MS and
PhD degrees in cognitive science from the
University of California, San Diego (UCSD) in
2001 and 2006, respectively. From 2006 to
2008, he was a postdoctoral researcher in
computer science and engineering at UCSD,
where he worked in collaboration with the
computer vision group at the NASA/Caltech Jet
Propulsion Laboratory (JPL). Since 2008, he has

been a research scientist at Mitsubishi Electric Research Laboratories in
Cambridge, Massachusetts. His main research interests include
applications of machine learning to computer vision. He is a member
of the IEEE.

John R. Hershey received the BS degree in
cognitive science from the University of Califor-
nia, Los Angeles, in 1992, and the PhD degree
in cognitive science in 2004 from the University
of California, San Diego (UCSD), where he was
a founding member of the Machine Perception
Laboratory. His thesis explored the use of
generative graphical models for speech en-
hancement, face tracking, and combinations of
the two. During his time at UCSD, he interned at

Mitsubishi Electric Research Laboratories in Cambridge, Massachu-
setts, in 2001, and in the Machine Learning and Applied Statistics Group
at Microsoft Research, Seattle, in 2003. In 2004, he spent a year as a
visiting researcher in the Speech Group at Microsoft Research. Since
2005, he has been at the IBM T.J. Watson Research Center in New
York, where he is a research staff member in the Speech Algorithms and
Engines Group. He is a member of the IEEE.

Javier R. Movellan received the PhD degree
from the University of California, Berkeley, in
1990. He founded the Machine Perception
Laboratory (MPLab) at the University of
California, San Diego (UCSD), where he is
currently a research professor. The mission of
the MPLab is to learn about intelligent
behavior by developing systems that operate
in the uncertain but sensory rich conditions
typically faced by the brain. His research

interests include machine learning, machine perception, automatic
analysis of human behavior, and social robots. Prior to his UCSD
position, he was a fulbright scholar at UC Berkeley and a research
associate at Carnegie Mellon University (1990-1993). He is a
member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

MARKS ET AL.: TRACKING MOTION, DEFORMATION, AND TEXTURE USING CONDITIONALLY GAUSSIAN PROCESSES 363

	Title Page
	Title Page
	page 2

	Tracking Motion, Deformation, and Texture Using Conditionally Gaussian Processes
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16

