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Abstract

This paper presents Matched Sign Pursuit (MSP), a new greedy algorithm to perform sparse sig-
nal reconstruction from signs of signal measurements, i.e., measurements quantized to 1-bit. The
algorithm combines the principle of consistent reconstruction with greedy sparse reconstruction.
The resulting MSP algorithm has several advantages, both theoretical and practical, over pre-
vious approaches. Although the problem is not convex, the experimental performance of the
algorithm is significantly better compared to reconstructing the signal by treating the quantized
measurement as values. Our results demonstrate that combining the principle of consistency with
a sparsity prior outperforms approaches that use only consistency or only sparsity priors.
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Abstract—This paper presents Matched Sign Pursuit (MSP),
a new greedy algorithm to perform sparse signal reconstruction
from signs of signal measurements, i.e., measurements quantized
to 1-bit. The algorithm combines the principle of consistent
reconstruction with greedy sparse reconstruction. The resulting
MSP algorithm has several advantages, both theoretical and
practical, over previous approaches. Although the problem is
not convex, the experimental performance of the algorithm
is significantly better compared to reconstructing the signal
by treating the quantized measurement as values. Our results
demonstrate that combining the principle of consistency with a
sparsity prior outperforms approaches that use only consistency
or only sparsity priors.

I. INTRODUCTION

Compressive Sensing (CS) is a recently emerged signal
acquisition technology for signals that are sparse or compress-
ible. Specifically, compressive sensing leverages the structure
that exists in signals of interest to enable acquisition at rates
significantly lower than the Nyquist rate. To do so, CS uses
randomized, linear, non-adaptive measurements, followed by
non-linear reconstruction [1].

The non-linear processing to recover the signal from the
measurements is a key hallmark of CS. Reducing the number
of measurements below the Nyquist rate results in signifi-
cant reconstruction ambiguity. Non-linear reconstruction is the
workhorse of CS that takes into account the signal sparsity
model and resolves this ambiguity. Until recently, however,
very little attention has been paid in leveraging the power of
non-linear reconstruction algorithms to incorporate accurate
models of the measurement system in addition to models of
the signal. Most of the literature to date assumes a simple
linear measurement system with additive noise.

Incorporating an accurate measurement model can provide
significant improvement in reconstruction performance. This
was first demonstrated in [2], [3] for quantized frame expan-
sions. Imposing a correct model of coefficient quantization
and enforcing reconstruction consistent with the model sig-
nificantly outperformed linear reconstruction, which approxi-
mately models quantization as an additive uncorrelated noise
process. In the context of CS, an explicit model of quantization
first appeared in [4]. More recent work on quantization [5]–
[7], saturation [8], and non-linear distortion [9], demonstrates
the advantages of explicitly incorporating an accurate model
of the measurement system during the reconstruction stage.

This paper revisits [4] and provides a new greedy CS recon-
struction algorithm to recover signals from heavily quantized
measurements. The present work capitalizes on a recent flurry

of research in greedy reconstruction algorithms, designed
explicitly for CS reconstruction problems, which demonstrate
fast performance and provable guarantees (e.g., [10], [11]). In
particular, we modify CoSaMP [10], one of the most recent
examples of such greedy algorithms, to produce the Matching
Sign Pursuit (MSP), an algorithm designed to reconstruct
signals from the sign of their measurements.

The MSP algorithm’s design addresses two issues specific
to reconstruction from sign measurements, namely the loss of
global amplitude information and the desire for consistent re-
construction. The former is a natural consequence of recording
only the signs of measurements; any positive scalar multiple
of the acquired signal will have measurements with the same
sign. The latter is a consequence of incorporating an accurate
acquisition and quantization system model. The new algorithm
has similar goals as the `1 minimization on the unit `2 sphere,
proposed in [4] to solve the same problem.

The MSP algorithm has several advantages over `1 mini-
mization on the unit `2 sphere. First, it is straightforward to
prove that, as the algorithm iterates and updates a signal esti-
mate, any sparse enough estimate consistent with the measure-
ments terminates the algorithm. This implies that if the signal
estimate is equal to the signal that produced the measurements,
the algorithm terminates with the correct solution. Second, the
algorithm always returns a sparse solution by construction.
Third, the MSP measures sparsity explicitly, using the number
of non-zero coefficients, and not by a relaxation using the `1
norm. Thus, in contrast to [4], it allows the use of the `1 norm
as a signal magnitude constraint instead of the `2 norm. Fourth,
although the problem is non-convex, MSP has experimentally
showed more consistent and robust performance compared to
the `1 based algorithm in [4].

The remainder of this paper is structured as follows. The
next section presents a brief background on CS, consistent
reconstruction and 1-bit quantization. The goal of this section
is to serve as a quick reference, formulate the problem and
establish the notation. Section III presents the MSP algorithm
and reviews its features. Section IV presents some experimen-
tal results that validate our approach. Section V concludes with
a brief discussion on the algorithm and the results.

II. BACKGROUND AND PROBLEM FORMULATION

A. Compressive Sensing

Compressive (or Compressed) Sensing (CS) is a recently
emerged field in signal processing that enables signal acqui-
sition using very few measurements compared to the signal



dimension, as long as the signal is sparse in some basis. Using
CS, a signal x ∈ RN with only K non-zero coefficients can
be recovered from only M = O(K log(N/K)) linear non-
adaptive measurements, compactly represented using

y = Ax,y ∈ RM , (1)

where A ∈ RM×N is the measurement matrix, modeling
the measurement system. To be able to recover all K-sparse
signals x, it is necessary that A does not map two distinct
K-sparse signals to the same measurement vector, i.e., that
for all K-sparse vectors x1 6= x2

Ax1 −Ax2 = A(x1 − x2) 6= 0. (2)

Assuming (2), we can recover x by solving

x̂ = arg min
x∈RN

‖x‖0 subject to y = Ax, (3)

where the ‖ · ‖0 counts the number of non-zero coefficients.
This is an NP-hard problem [12] in general and becomes
infeasible in high dimensions.

Computationally efficient exact signal recovery can be guar-
anteed if A obeys a restricted isometry property (RIP) of order
2K, i.e., if there exists a universal constant δ2K such that for
all 2K-sparse signals z

(1− δ2K)‖z‖22 ≤ ‖Az‖22 ≤ (1 + δ2K)‖z‖22. (4)

If A has a small RIP constant δ2k, it approximately maintains
`2 distances between K-sparse signals. In addition to efficient
exact recovery, the RIP guarantees robustness to measurement
noise and robustness to deviation from the strictly sparse signal
model. Although verifying the RIP also has combinatorial
complexity, a surprising result is that random matrices with
a sufficient number of rows can achieve small coherence and
small RIP constants with overwhelming probability [1].

There are two fundamental approaches to reconstruction
from CS measurements: convex optimization and greedy
search algorithms. If the measurement matrix obeys the RIP
with sufficiently small constant δ2K and there is no measure-
ment noise, it is possible to exactly recover signals from the
measurement vector y using the convex optimization [1]

x̂ = arg min
x∈RN

‖x‖1 subject to y = Ax. (5)

The RIP further guarantees robustness to noise and stable
recovery of compressible signals. Similarly, the RIP guarantees
that greedy sparse reconstruction algorithms—originating with
the Matching Pursuit [13]—robustly recover the signal. A re-
cently emerged body of literature provides a variety of greedy
algorithms with such guarantees, of which the Compressive
Sampling Matching Pursuit (CoSaMP) [10] and the Subspace
Pursuit [11] are the most recent examples.

B. Quantization and Consistent Reconstruction

Quantization—a necessary step for digitization—is usually
modeled as additive measurement noise, denoted using n:

y = Q(Ax) = Ax + n, (6)

where Q(·) is the quantizer and n is energy-limited to some
ε depending on the quantization accuracy:

‖n‖2 ≤ ε. (7)

For a uniform linear quantizer with quantization interval ∆,
ε =
√

M∆/2. Often, the noise is further modeled as a zero-
mean uniform independent and identically distributed random
process, with standard deviation E{‖n‖2} =

√
M∆2/12.

In the presence of norm-limited measurement noise such as
quantization, it has been shown that robust reconstruction can
be achieved by solving

x̂ = arg min
x

‖x‖1 s.t. ‖y −Ax‖2 ≤ ε, (8)

or by appropriately modifying the stopping criteria of greedy
algorithms to accommodate for the uncertainty. In this case,
the reconstruction error norm is bounded by ‖x− x̂‖2 ≤ Cε,
where the constant C depends on the properties of the mea-
surement system A and the reconstruction approach chosen,
but not on the signal [1], [10].

An alternative to treating quantization as norm-limited noise
is to enforce consistent reconstruction, which requires that
the solution is consistent with all our knowledge about the
signal and the measurement process. In the case of quantized
measurements, this implies that if the reconstructed signal is
re-measured using the measurement system A and quantized
at the same accuracy then the quantized measurements should
be exactly the same as the original measurements used to
reconstruct the signal. In [2], [3] it is shown that consistent
reconstruction significantly improves the reconstruction per-
formance in quantized frame representations.

Although in the general case of norm-limited measurement
noise the reconstruction in (8) is consistent with the measure-
ments, this is not the case if the measurement noise is due to
quantization. Specifically, in the case of uniform linear quan-
tization, all noise components have magnitude |ni| ≤ ∆/2,
which implies that consistent reconstruction should produce a
signal that satisfies

‖Ax̂− y‖∞ ≤
∆
2

, (9)

where ‖y‖∞ denotes the maximum magnitude of any element
in y. Several reconstruction approaches designed for quantized
measurements have appeared in the literature [4]–[7], enforc-
ing consistent reconstruction either explicitly [6] or implicitly
by approximating the constraint with an `p, p > 2 norm [7].

C. 1-bit Compressive Sensing

In the case of 1-bit quantization, the quantizer is most
often implemented as a comparator to zero. In particular, we
consider linear measurements of a signal x ∈ RN using inner
products with the rows of a measurement matrix A ∈ RM×N .
Each measurement is quantized to 1-bit by recording only its
sign:

y = sign (Ax) , (10)

where the function sign (yi) = yi/|yi| is applied element-
wise to the measurement vector. Since each measurement only



uses one bit, the number of measurements is the same as the
number of bits used for the signal acquisition. Without loss of
generality we assume the vector x is K-sparse in the canonical
basis, i.e., it has at most K non-zero elements.

In this case, the measurement error can be unbounded.
Reconstruction using standard CS approaches, treating the
signs of the measurements as just ±1 values, does not perform
as well as consistent reconstruction [4].

Consistent reconstruction requires that measurements of the
reconstructed signal x̂ should have the same sign as the
measurements obtained from the measurement system:

(Ax̂)i

yi=+1
≷

yi=−1
0 (11)

⇔ yi × sign (Ax̂)i ≥ 0. (12)

where yi = ±1 is the quantized measurement
If x is consistent with the measurements then so is ax

for all a ≥ 0. Since 0 is the sparsest vector possible, a
reconstruction algorithm that only requires consistency with
the measurements will drive the solution to x̂ = 0. To enforce
reconstruction at a non-trivial solution we artificially resolve
this fundamental amplitude ambiguity. Specifically, we impose
an energy constraint that the reconstructed signal lies on the
unit `2-sphere, i.e., that

‖x̂‖2 = 1. (13)

Note that this constraint significantly reduces the search space.
This reduction plays an important role in improving the
reconstruction performance.

Sparse recovery from sign measurements was first examined
in [4], combining the principle of consistent reconstruction
with `1 minimization on the unit `2 sphere to reconstruct the
signal. The present work, instead, proposes an iterative greedy
algorithm, the Matching Sign Pursuit (MSP). The MSP also
uses the principle of consistent reconstruction but instead of
an `1 minimization it performs a greedy search similar to the
Compressive Sampling Matching Pursuit (CoSaMP) [10] and
the Subspace Pursuit [11] approaches.

Consistent reconstruction from sign measurements can also
be considered as the limit of recovering from saturated mea-
surements, considered in [8]. As the signal gain increases so
does the saturation rate, until the majority of the measurements
saturate. At the limit, the only information that needs to be
encoded is whether the saturation is positive or negative. The
connections between [8] and the MSP algorithm are deferred
to a future publication.

III. GREEDY SIGNAL RECONSTRUCTION

A. The MSP Algorithm

The MSP algorithm is described in Algorithm 1. Similar to
most greedy algorithms, after each iteration l, the algorithm
produces an estimate x̂l of the measured signal and its sparse
support. Each iteration refines the estimate until the algorithm
converges. The refinement first attempts to identify which
constraints are violated and how severely. It then attempts
to identify the support of the signal that is most effective in

reducing the sign violations. Finally, it reconstructs the signal
on that support to be as consistent with the data as possible
and iterates with the new signal estimate.

The steps of MSP are very similar to CoSaMP. Specifically,
in steps 3 and 4 of each iteration the MSP computes a set
of measurements using the previous signal estimate x̂l−1 and
determines which measurements have signs inconsistent with
the data. Based on the inconsistent measurements, step 5
computes a proxy, sl, for the part of the signal not explained
by x̂l−1. Step 6 combines the support of the 2K largest
components of sl with the support of x̂l−1 to produce a
candidate support T over which step 7 performs consistent
reconstruction. The reconstructed signal bl has support at most
3K components, which is truncated down to K components in
step 8 and normalized to produce the signal estimate x̂l. The
algorithm terminates once a convergence criterion is satisfied.
In our simulations we terminate when the change of x̂l from
iteration to iteration becomes very small.

B. Normalization

As noted in [4] and Sec. II-C, the measurement process
in (10) eliminates any magnitude information and a global
amplitude constraint should be imposed. Similarly to [4], the
MSP enforces an `2 constraint. The signal is reconstructed
such that ‖x̂‖2 = 1 by re-normalizing the signal estimate after
each iteration.

Of course, alternative normalizations are possible. Depend-
ing on the application or additional information on the signal,
an `1 or an `∞ normalization might be more appropriate.
Alternatively, it might be necessary to normalize the signal
such that its projection to a specific measurement vector has
a predetermined value. These alternatives can be implemented
by appropriately modifying steps 7 and 8 of the MSP. Note that
it is not possible to modify the algorithm in [4] and enforce
an `1 amplitude constraint; the `1 norm of the reconstructed
signal is used as a proxy for the signal sparsity.

C. Enforcing Consistency

Consistency is enforced in two separate places in the algo-
rithm. First, in steps 4 and 5 the sign violations are identified
and the correction signal proxy sl is computed using the am-
plitude of those violations. Second, step 7 performs consistent
reconstruction over the candidate support, as opposed to the
standard least squares inversion performed by CoSaMP.

To enforce consistency, the MSP attempts to minimize the
norm of the sign violations in the measurement domain, i.e.,

‖ (diag (y)Ax̂)− ‖2, (14)

where diag (y) denotes a matrix with the measurement signs
in the main diagonal, and (x)− = (x−|x|)/2 is the “negative
part” function, applied element-wise to each vector element
(i.e., sets all positive elements of the vector to zero). This
is equivalent to penalizing only the sign violations using a
quadratic penalty, similar to [4], [8]. When the reconstruction
is exactly consistent, the penalty is zero. The deviation away
from zero provides a measure of inconsistency.



Algorithm 1 The Matching Sign Pursuit (MSP) Algorithm

Inputs: Measurement signs y ∈ {±1}N , Measurement matrix A, Signal sparsity K.
Initialization: Iteration count l = 0, Initial K-sparse estimate x̂0

1: while not converged do
2: Increase iteration count:

l← l + 1
3: Compute measurements estimate:

ỹl = diag (y)Ax̂l−1,
where diag (y) is a diagonal matrix with the measured signs. Consistency is achieved when ỹ has positive elements.

4: Identify sign violations:
rl =

(
ỹl

)−
,

where the function (·)− is the element-wise negative part of a vector (i.e., sets all the positive elements to 0).
5: Compute correction signal proxy:

sl = AT diag (y) rl

6: Identify correction support:
T l = supp

(
sl|2K

)
∪ supp

(
x̂l−1

)
,

where supp (·) determines the support set of a vector, and x|K selects the K components of x with the largest magnitude,
setting all others to 0.

7: Perform consistent reconstruction over chosen support:

bl|T = arg min
x

∥∥∥(diag (y)Ax)−
∥∥∥2

2
, s.t. ‖x‖2 = 1 and x|T c = 0

i.e., minimize the squared norm of the negative (inconsistent) part of the vector subject to the normalization constraint.
The optimization is only over the support T . This (also non-convex) optimization is performed by iterating a gradient
descent step followed by a normalization step until convergence, as described in Sec. III-C.

8: Truncate, normalize, and update the estimate:

x̂l =
bl|K
‖bl|K‖2

Output: x̂l

In step 7 of the algorithm we make the same choice to
enforce consistency: the cost function (14) is minimized on
the unit `2 sphere, but only over the support T . In our
implementation we perform this minimization by iterating a
simple gradient descent step on the cost function followed by
renormalization of the estimate.

Since the optimization on the unit sphere is not convex, the
initial seed is important. We seed chose this to be the estimate
x̂l−1 from the previous iteration of the MSP. Note that if the
seed is consistent with the measurements, the cost is zero and
step 7 terminates without modifying the estimate.

This choice of quadratic penalty provides a soft consis-
tency metric. The alternative is to enforce hard consistency
constraints, as in [2], [3], [6], i.e. not allow any constraint
violations and eliminate all signals that violate constraints
from the solution space. Soft consistency is preferred because
of its robustness to noise and support mis-identification. If
hard consistent reconstruction is enforced, the reconstruction
constraints can produce an infeasible set in the presence of
measurement noise. Furthermore, there is no guarantee that
all the support is correctly identified at step 7 of the MSP—
otherwise there would be no need for iteration. Thus, there
is no guarantee that hard consistency is feasible even in
the absence of noise. Using the soft consistency penalty on
infeasible problems, the MSP attempts to reduce that penalty
to be as close to zero as possible. The penalty functions chosen

in [5], [7] have similar soft-threshold properties, although the
exact form is different.

IV. EXPERIMENTAL RESULTS

To tease out the effects of only imposing consistency, only
imposing sparsity, and imposing both, our experiments com-
pare three distinct approaches: (i) consistent reconstruction on
the unit sphere, (ii) using the signs as measurement values in
CoSaMP, and (iii) sparse consistent reconstruction using the
MSP. The consistent reconstruction approach (i) attempts to
reconstruct x using:

x̂ = arg min
x

∥∥∥(diag (y)Ax)−
∥∥∥2

2
s.t. ‖x‖2 = 1.

This program is optimized using the same algorithm as in step
7 of the MSP, but without explicit support constraints.

The CoSaMP approach (ii) treats each measurement as a
value of ±1, depending on the sign of the measurement.
This has the potential to produce a signal significantly away
from ‖x‖2 = 1, depending on the measurement matrix A,
which would unfairly penalize CoSaMP. To ensure a fair
comparison, the CoSaMP output was normalized to ‖x‖2 = 1
before evaluating its performance. Not normalizing the output
significantly degraded CoSaMP’s performance.

The experimental performance of MSP compared to the
other two approaches is shown in Figure 1. Specifically, the
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Fig. 1: Experimental performance of MSP vs. Consistent Reconstruction and CoSaMP

figure plots experimental results for K = 20, N = 256, and
randomly generated M ≤ 4096 (i.e., at a rate of up to 16 bits
per original signal coefficient). Our experiments demonstrated
similar behavior for other values of K and N .

Figure 1(a) demonstrates the reconstruction performance
of the three approaches. The figure plots the reconstruction
MSE versus the number of measurements for each individual
experiment. As shown in the figure, the MSP algorithm
outperforms both consistent reconstruction without sparsity
constraints and CoSaMP. It is also evident that the effect
of sparsity is significant enough to ensure that CoSaMP
outperforms consistent reconstruction. The effect is easier to
quantify in Figure 1(b), in which the improvement of MSP
over consistent reconstruction and CoSaMP is plotted. It is
evident in the figure that at high bit rates MSP can have
a gain of 12dB over CoSaMP and 20dB over Consistent
Reconstruction.

Both the MSP and the `1 optimization on the unit `2
sphere [4] solve non-convex problems. Thus, initialization is
important. We found that initializing the MSP with a few
iterations of standard CoSaMP, treating the measurements as
values would eliminate any issue of local convergence to an
undesired optimum. Even with similar initialization on the `1
optimization, we found that the MSP has significantly better
convergence properties.

V. DISCUSSION

It is evident from the results in this paper and in the CS liter-
ature that carefully exploiting the information provided in the
acquisition system model provides significant improvements
in the reconstruction performance. In the particular case of 1-
bit quantization, this information is only about the sign of the
measurements and nothing more. Since the measurements are
unbounded, treating each quantized measurement as a value
and attempting to reconstruct causes over-fitting and distortion
in the reconstructed signal.

The MSP algorithm developed here explicitly incorpo-
rates a quantization model appropriate for 1-bit quantization.
Using that model, it significantly outperforms standard CS
approaches. The same algorithm has significant applications
beyond one-bit quantization—such as sparse signal reconstruc-
tion from non-linearly distorted measurements [9]—which we
defer to later publications. We believe the MSP is an important
tool in a system designer’s toolbox.
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