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Abstract

In this work, we apply a change-point detection approach to power quality (PQ) monitoring in
smart grids. Capitalizing on change-point detection theory with unknown parameters, a sequen-
tial cumulative sum (CUSUM)-based scheme is developed with an objective to provide quick and
accurate detection of PQ event occurrence in real time. The proposed CUSUM-based scheme
evaluates the weighted likelihood ratios by exploiting both the instantaneous and the long-term
information of the power waveform. It is shown by computer simulations that the proposed
CUSUM-based scheme can achieve a significant performance gain over conventional detection
schemes.
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A Change-Point Detection Approach to Power
Quality Monitoring in Smart Grids

Xingze He, Man-On Pun, C.-C. Jay Kuo and Ye Zhao

Abstract—In this work, we apply a change-point detection
approach to power quality (PQ) monitoring in smart grids.
Capitalizing on change-point detection theory with unknown pa-
rameters, a sequential cumulative sum (CUSUM)-based scheme
is developed with an objective to provide quick and accurate
detection of PQ event occurrence in real time. The proposed
CUSUM-based scheme evaluates the weighted likelihood ratios by
exploiting both the instantaneous and the long-term information
of the power waveform. It is shown by computer simulations that
the proposed CUSUM-based scheme can achieve a significant
performance gain over conventional detection schemes.

I. INTRODUCTION

It is estimated that power outages and power quality prob-
lems could cost at least $150 billion each year in the U.S.
[1]. Being motivated by this concern, one of the defining
characteristics of the emerging smart grids is their capability
of supporting more stable and higher-quality power supply by
leveraging state-of-the-art information technology. To assess
power quality (PQ), it is a common practice to monitor the
quality of voltage and current waveforms by analyzing the
real-time information acquired by sensors installed in power
distribution networks.

In contrast with the sinusoidal power waveform generated
by electric utilities, power waveforms over transmission lines
are often distorted. Generally speaking, distortions can be
classified into two categories; namely, PQ variations and PQ
events [2], [3]. While PQ variations are characterized by small
and gradual deviations from the sinusoidal voltage/current
waveforms, PQ events incur large waveform deviations. PQ
events are more detrimental to the power distribution network
since it may potentially inflict more severe damages such as
power outages. Consequently, the occurrence of PQ events
has to be accurately and timely detected to allow appropriate
amending actions. For presentational simplicity, we concen-
trate on the voltage-based PQ events in this work while its
extension to the current-based PQ events can be done in a
straightforward manner.

In practice, PQ event monitoring consists of two steps: 1)
detection and 2) classification. In the first step, the occurrence
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of a PQ event is declared when the waveform change is
detected to exceed a pre-defined threshold. In the second step,
the distorted waveforms are fed into a classifier to identify the
cause of the PQ event before further analysis is performed. In
this work, we focus on developing novel detection schemes
in the first step. For readers interested in the classification
step of the PQ event monitoring, we refer to [3] for a very
comprehensive treatment.

In this work, we study the PQ monitoring problem in a
change-point detection theoretic framework. More specifically,
we propose a sequential detection scheme [4] by examining
the difference of statistical distributions of power waveforms
before and after the PQ event occurrence. Despite the fact that
the pre-change signal statistics can be well characterized, the
post-change signal statistics are usually unknown, depending
on the nature of the underlying PQ event(s). To circumvent
this obstacle, we propose to first transform the received signal
such that the transformed post-change signal can be modeled
as a sum of multiple statistically independent signals. After
invoking the central limit theorem, we devise a robust change-
point detection approach for PQ monitoring by exploiting
change-point detection theory with unknown parameters af-
ter change. Since the proposed scheme performs sample-by-
sample evaluation, it can achieve the detection task with the
finest time resolution.

II. REVIEW OF PREVIOUS WORK

Three conventional PQ event detection methods have been
proposed in the current literature. The first one keeps tracking
the root mean squared (rms) value of the voltage waveform
over a moving window. The likelihood of PQ event occur-
rence is evaluated based on the rms change across windows.
Despite its simplicity, the rms-based method is effective in
detecting amplitude-related distortions. The second one detects
the distortion in the frequency domain by transforming the
time waveform into the frequency waveform using either the
wavelet or the short-time Fourier transform (STFT) [3]. The
third one decomposes the waveform into a sum of damped
sinusoids using super-resolution spectral analysis techniques
such as signal estimation via a rotational invariance technique
(e.g., ESPRIT) or multiple signal classification (e.g., MUSIC)
[5]. The distorted waveform is detected by comparing the
decomposed frequency-domain components of a monitored
waveform with those of the normal one. Apparently, the latter
two are more agile to frequency distortions. Note that a
sliding window is also required in the last two methods to
segment the waveform into blocks before any transformation
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or decomposition is applied [3]. As a result, the time resolution
of all three methods is restricted by the sliding window size.
Unfortunately, the sliding window size has to be sufficiently
large to meet the detection rate and the false alarm rate
requirements. Finally, we should emphasize the difference
between [6] and our work. Unlike [6] in which the change-
point detection theory is employed for denoising purposes
in wavelet-based PQ monitoring, our work concentrates on
modeling the received signal and subsequently, applying the
change-point theory to provide quick and accurate PQ event
detection.

III. PROBLEM FORMULATION

Without loss of generality, a PQ event is assumed to take
place at time t = te. The goal is to detect the PQ event with
the minimum delay and the highest detection accuracy. Note
that the proposed technique can be straightforwardly extended
to the detection of the end of a PQ event. Here, we will focus
on the detection of the occurrence of a PQ event.

The continuous-time waveform signal before the PQ event
is measured and sampled. The k-th sample can be modeled as

y[k] = sθ0 [k] + n[k], (1)

where n[k] is the additive white Gaussian noise (AWGN) with
zero-mean and variance σ2

n, denoted by N (0, σ2
n), and

sθ0 [k] = a0 · sin (2πf0Tsk + ϕ0) , (2)

is the undistorted power waveform with Ts being the sampling
duration, θ0

def
= [a0, f0, ϕ0]

T , where a0 = 1 is the signal
amplitude gain, and f0 and ϕ0 are the fundamental frequency
and the initial phase of the power waveform, respectively.
Note that we have implicitly assumed the variance of n[k]
is independent of k.

Similarly, we can model the power waveform after the PQ
event as

y[k] = sθ1 [k] + n[k], t ≥ te, (3)

where θ1
def
=

[
a1, f1, ϕ1,φ

T
]T

and

sθ1 [k] = a1 · sin (2πf1Tsk + ϕ1) + ξφ[k], (4)

with ξφ[k] being the additive distortion parameterized by φ.
Eq. (3) represents a generalized power waveform by taking

typical PQ events into account. For instance, voltage dips can
be modeled as sudden drops in the waveform amplitude gain
with a1 < a0 while setting ξφ[k] = 0. In contrast, a transient
voltage event can be described by non-zero ξφ[k] with f0 = f1
and ϕ0 = ϕ1.

We use pθ0(y) and pθ1(y) to denote the probability density
functions (PDF) of y before and after the PQ event, respec-
tively. Clearly, pθ0(y) can be well estimated due to the fact that
{a0, f0, ϕ0} are deterministic whereas σ2

n can be accurately
measured. In contrast, pθ1(y) depends on the specific type of
PQ events under consideration. It is generally difficult to fully
characterize pθ1(y) before the occurrence of the PQ event,
which handicaps the conventional statistical hypothesis test
methods such as the Neyman-Pearson hypothesis testing.

As a result, most conventional PQ event detection methods
are designed to directly exploit the instantaneous changes in
the amplitude gain, fundamental frequency or phase without
utilizing their long-term statistics. For instance, the conven-
tional rms method concentrates on amplitude changes by
sampling and computing the rms of the voltage waveform.
Let yk be the k-th sample of the voltage waveform. The
conventional rms method keeps tracking the sample rms over
a sliding window of size N , where N usually covers one cycle
of the power-system frequency [3]. Mathematically, the q-th
rms is given by

Yrms(q) =

√√√√ 1

N

q∑
k=q−N+1

y2q . (5)

A PQ event is detected if the current rms value change is larger
than a pre-defined threshold of the nominal voltage. Besides
the time-resolution problem associated with the sliding win-
dow size, conventional methods are sub-optimal due to the
fact that they do not exploit the statistical distributions before
and after the PQ event.

IV. PROPOSED ALGORITHMS

In this section, we derive a PQ event detection scheme from
the cumulative sum (CUSUM) algorithm, which is most well-
known in the change-point detection theory. The pre-event
PDF, pθ0(y), is assumed to be known while the post-event
PDF, pθ1(y), is unknown. To circumvent the uncertainty of the
post-event PDF, the weighted CUSUM algorithm is employed
to replace the conventional log-likelihood ratio (LLR) test. In
the following, we assume prior knowledge on a0 = 1, f0 (i.e.
either 50 or 60 Hz), ϕ0 and σ2

n.

A. Pre-event PDF

Since {a0, f0, ϕ0} are known, sθ0 becomes deterministic.
We begin with transforming y[k] in (1) into z[k] as

z[k] = y[k]− sθ0 [k] = n[k], 0 ≤ t < te. (6)

Thus, the PDF of z is simply pθ0(z) = N
(
0, σ2

n

)
.

B. Post-event PDF

Next, we derive the post-event PDF using results from
change-point detection theory with unknown parameters after
change. Two solutions have been developed in change-point
detection theory [4]; namely, the weighted CUSUM method
and the generalized likelihood ratio (GLR) CUSUM method.
In this work, the weighted CUSUM method is adopted due to
its simplicity.

Similar to (6), we also transform Eq. (3) as

z[k] = y[k]− sθ0
[k] = x[k] + w[k], (7)

where

x[k] = a1 · sin (2πf1t+ ϕ1) , (8)
w[k] = ξφ[k]− sθ0 [k] + n[k]. (9)
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Since θ1 is unknown, rather than evaluating the LLR pθ1
(zi)

pθ0
(zi)

directly, we compute the logarithm of the weighted likelihood
ratio with the weighted CUSUM method as

si = ln

[∫
Θ1

pθ1(zi)

pθ0(zi)
dFΘ1 (θ1)

]
, (10)

where FR (r) is the cumulative density function (CDF) of the
enclosed random variable R.

By invoking the central limit theorem, we can approximate
the PDF of w as N

(
0, σ2

w

)
, where σ2

w = σ2
ξ + σ2

n + 1
2a

2
0.

Furthermore, recall that x[k] is approximately uniformly dis-
tributed over [− |a1| ,+ |a1|]. Thus, it is straightforward to
show that

pθ1(z) =
1

4 |a1|

[
erf

(
z + |a1|√
2 · σw

)
− erf

(
z − |a1|√
2 · σw

)]
. (11)

With the assumption that x[k] and w[k] are statistically inde-
pendent, we can express F (θ1) as

FΘ1 (θ1) = FA1 (a1) · FΣw (σw) . (12)

As a result, Eq. (10) becomes

si = ln

[∫
A1

∫
Σw

pθ1(zi)

pθ0(zi)
dFΣw (σw) dFA1 (a1)

]
. (13)

The most commonly used distribution of F (·) includes the
uniform and Gaussian distributions [4]. Unless otherwise spec-
ified, the Gaussian distribution is employed in our simulation
as described in Sec. V.

C. Summary of Weighted CUSUM-based Schemes

The proposed weighted CUSUM-based PQ-event detection
scheme is summarized below.

Algorithm 1 Weighted CUSUM-based PQ-event detection
Inputs: samples {yk} and a preset threshold h
States: Initialize te = 0
Procedure:

for k = 1, 2, · · · ,∞ do
zk = yk − sθ0(tk);
sk = ln

[∫
A1

∫
Σw

pθ1
(zk)

pθ0
(zk)

dFΣw (σw) dFA1 (a1)
]
;

Sk =
k∑

i=1

si;

mk = min
1≤j≤k

Sj ;

gk = Sk −mk;
if gk ≥ h then

t̂e = tk;
break;

end if
end for
Declare the detection of a PQ event at time t̂e if t̂e ̸= 0.

V. SIMULATION RESULTS

In this section, simulation results are provided to compare
the performance of the proposed CUSUM and several previous
detection schemes. We use ATP to simulate two types of PQ
events, i.e., voltage transients and dips generated with the
IEEE 14-bus test setup specified in [7]. For a fair comparison,
we employ the same sampling rate of Ts = 10 ms for all
detection methods under consideration without individually
optimizing Ts for each method. The PQ event is set to take
place at te = 0.06s in the simulation. Furthermore, we define
the signal-to-noise ratio (SNR) as 1

σ2
n

while fixing a0 = 1.

A. Voltage Transients
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Fig. 1. Illustration of a voltage transient event.

Fig. 1 depicts the power waveform distorted by a PQ
transient event at t = 0.06s due to switching “in” the capacitor
at bus9 at 0.06s. Figs. 2 and 3 show the temporal-frequency
plot using STFT and spectral estimates using the MUSIC over
multiple windows, respectively. As shown in Figs. 2 and 3, it
is difficult to detect the PQ event directly from these plots.

In contrast, Figs. 4 and 5 show the sample-by-sample rms
generated by the conventional rms scheme and the logarithm of
the weighted likelihood ratio by the proposed CUSUM scheme
at SNR of 20 dB. Apparently, the proposed CUSUM scheme
has much stronger indication on the PQ event occurrence at
t = 0.06s.

To compare the performance of the rms scheme and the
proposed CUSUM scheme quantitatively, we define the fol-
lowing mean squared error (MSE) of the event detection as
the performance metric:

MSE = E
{(

t̂e − 0.06
)2}

. (14)

Note that more systematic evaluation can be performed in
terms of the false alarm rate and detection delay as shown
in [8]. To optimize the threshold employed in the RMS and
the proposed CUSUM schemes, we first establish the optimal
threshold for each scheme by exhaustive search. Fig. 6 shows
an example of the MSE performance as a function of threshold
h for the CUSUM scheme at SNR = 20 dB, which suggests
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Fig. 2. The temporal-frequency plot using STFT w.r.t. a transient event.
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Fig. 3. Spectral estimates with MUSIC w.r.t. a transient event.

that the optimal threshold for the CUSUM scheme is about 10
for this SNR value.

Fig. 7 compares the MSE performance of the CUSUM and
RMS schemes as a function of SNR. As shown in this figure,
the CUSUM scheme outperforms the RMS scheme by a large
margin. We would also like to point out that the RMS scheme
shown in Fig. 7 is performed in the sample-by-sample fashion
(rather than the typical cycle-by-cycle fashion). Thus, the MSE
performance depicted in Fig. 7 is the optimal performance that
the RMS scheme can achieve.

B. Voltage Sags

Voltage sags are another type of PQ events. Fig. 8 illustrates
a voltage sag event at bus9 due to a temporary ground fault.
We can evaluate its temporal-frequency plot using STFT and
its spectral estimates using the MUSIC scheme over multiple
windows. Being similar to Figs. 2 and 3, it is difficult to detect
the event occurrence using these two schemes. Due to space
limitations, we will not show the corresponding plots here.

Figs. 9 and 10 show the sample-by-sample rms generated by
the rms scheme and the logarithm of the weighted likelihood
ratio generated by the CUSUM scheme. Being similar to
Figs. 4 and 5, the occurrence of the sag event is easier by
observing the waveforms shown in Figs. 9 and 10.
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Fig. 4. Sample-by-sample RMS of a transient event as a function of time
(SNR = 20 dB).
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Fig. 5. The logarithm of the weighted likelihood ratio of a transient event
using CUSUM (SNR = 20 dB).

Finally, Fig. 11 shows the MSE performance of the proposed
CUSUM and the conventional RMS schemes as a function of
SNR. Inspection of Fig. 11 reveals that the CUSUM scheme
outperforms the RMS scheme by a significant margin.

VI. CONCLUSION AND FUTURE WORK

A change-point detection approach to PQ event detection
in smart grids was examined in this research. The pro-
posed CUSUM-based scheme computes the logarithm of the
weighted likelihood ratio by exploiting both the instantaneous
and the long-term information of the power waveform. The
superior performance of the proposed CUSUM-based schemes
in the presence of PQ voltage transient and sag events was
shown by computer simulation.

There are several extensions of this study that can be further
explored. First of all, rather than exhaustively searching for
the optimal threshold h as shown in Fig. 6, it will be of great
practical interest to analytically derive the optimal threshold.
Second, the impact of the event duration and the presence of
multiple closely located PQ events on the performance of the
proposed approach deserves further investigation.
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