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Abstract

In this paper, we present a novel framework to address
the confounding effects of illumination variation in face
recognition. By augmenting the gallery set with realisti-
cally relit images, we enhance recognition performance in
a classifier-independent way. We describe a novel method
for single-image relighting, Morphable Reflectance Fields
(MoRF), which does not require manual intervention and
provides relighting superior to that of existing automatic
methods. We test our framework through face recogni-
tion experiments using various state-of-the-art classifiers
and popular benchmark datasets: CMU PIE, Multi-PIE,
and MERL Dome. We demonstrate that our MoRF relight-
ing and gallery augmentation framework achieves improve-
ments in terms of both rank-1 recognition rates and ROC
curves. We also compare our model with other automatic
relighting methods to confirm its advantage. Finally, we
show that the recognition rates achieved using our frame-
work exceed those of state-of-the-art recognizers on the
aforementioned databases.

1. Introduction
Over the past decade, various methods have been pro-

posed to address the problem of face recognition. These
methods provide varying advantages ranging from perfor-
mance benefits such as fast classification, high accuracy,
low false acceptance rate, and fully automated processing
to usability benefits such as public domain availability and
ease of implementation. Given this landscape of techniques,
rather than introducing yet another classifier, we propose
a novel relighting model and gallery augmentation frame-
work that can be used to enhance recognition rates of exist-
ing classifiers. This strategy builds on the advantages of the
original classifier to achieve improved performance.

We will demonstrate that our method substantially im-
proves the performance of a wide variety of existing clas-
sifiers, yielding results that exceed state-of-the-art recogni-
tion performance on three face datasets: CMU PIE [13],

Multi-PIE [6], and MERL Dome [20].
Here we focus on the illumination problem for face

recognition. As many previous papers have shown, deter-
mining whether two images of a face are of the same per-
son is an especially difficult problem when the images are
taken under very different illuminations. There are three
main classes of approaches to deal with this problem. The
first is based on building classifiers that use illumination-
invariant image features. Recent examples of approaches
in this class include Local Binary Patterns [1], Local Gabor
Binary Patterns [22], and Local Ternary Patterns [15].

The second class of approaches explicitly attempt to
normalize out the effects of illumination from the images.
These methods either assume a reflectance model (e.g.,
Lambertian) and attempt to remove the effects of light or
adopt an image processing approach in which various steps
are empirically chosen to provide desired output. Popular
methods in this category include Quotient Image [12], Gen-
eralized Quotient Image [18], Total Variation Model [4],
and Tan and Triggs lighting normalization [15].

Finally, there is the category of approaches that attempt
to generate synthetic relit images that generalize from the
given gallery set so as to match all possible illumination
variations in the probe set (throughout this paper, gallery
set refers to the known, enrolled images of faces, while
probe set refers to the unknown, test images of faces). The
newly generated images are added to the gallery set in the
hope that each probe image will find a close match among
at least one of the images in the augmented gallery. The 3D
Morphable Models method [3], which involves fitting a 3D
shape model and a texture model to a given input image,
can be viewed as an online optimization-based example of
gallery augmentation. Here the relighting is achieved by
assuming Phong’s model for reflectance. Since the intro-
duction of 3D Morphable Models, various derivatives have
been proposed, including [19] and [21]. Though effective
in generating good quality relighting, these methods suf-
fer from the requirements of manual initialization and cum-
bersome optimization, which reduce their attractiveness for
recognition applications with large subject sets. In contrast,



methods such as [14] and [11] do not require explicit fitting
of 3D shape models to the input images and hence are com-
putationally more efficient and robust in practice. Note that
some of these techniques, such as [11] and [12], can be used
for both relighting and lighting normalization.

The second and third categories of approaches described
above are in a sense inverses of each other. One attempts
to remove any lighting effects while the other attempts to
synthesize all lighting conditions. In many face recogni-
tion applications, the illumination of the gallery images
can be at least roughly controlled. We argue that given a
somewhat frontally lit gallery image and more harshly lit
probe images, synthesizing harsh lighting conditions from
the gallery image is simpler than the inverse problem of
normalizing the harsh lighting conditions of the probe im-
ages. Thus, the approach we take lies in the third category.
We propose a novel relighting method, which we call Mor-
phable Reflectance Fields (MoRF), that works in the 2D do-
main, is fully automatic, and requires as few as one input
image. In fact, all of the results presented in this paper use
only a single input gallery image per person. Unlike [3], our
technique does not require manual initialization and thus is
a more attractive choice for large-scale recognition. Addi-
tionally, it is built on the recently proposed non-Lambertian
Tensor Splines Model [2], allowing it to more expressively
relight images than other automatic techniques ([11], [14]).

2. Morphable Reflectance Fields
We begin by considering the reflectance field for a face

[5]. The reflectance field is an 8-dimensional function of
the 4D incident light field arriving at the surface of the face
and the 4D radiant light field leaving the surface. Here we
consider only distant point light sources and frontal pose,
which reduces our interest to only a 4D slice of the stan-
dard reflectance field: two dimensions for the surface coor-
dinates of the radiant light and two for the angle of the inci-
dent light. Whereas previous work has defined the surface
coordinates to be a 2D parameterization of the 3D points on
the surface, our model treats the surface of a face as a 2D
plane. Thus, our surface coordinates correspond exactly to
2D image coordinates. For convenience, we define the out-
put of the reflectance field as a brightness value rather than
the standard radiance value. We use the term reflectance
field in this paper to denote this 4D slice of the standard
reflectance field. Furthermore, we use reflectance function
to refer to the 2D spherical function obtained by restricting
the reflectance field to a fixed location (pixel). Hence, in
this paper, the reflectance field is a 2D field of reflectance
functions, one for each pixel.

Our method for augmenting a gallery of face images has
three parts: building a reflectance field model, fitting this
model to the given gallery image(s), and using the fitted
model to synthesize images under a variety of lighting con-

Figure 1. Our model factorizes a reflectance field as the product of
a texture image and an illumination field. These images illustrate a
reflectance and illumination field sampled in 4 lighting directions.

ditions. The first part of our technique involves building a
reflectance field model, which captures a sufficient amount
of the variation seen in actual facial reflectance fields so
that it can be readily fit to any given input face. We call
our model a Morphable Reflectance Field (MoRF) (see Sec-
tion 2.1). Once we have a reflectance field model that is ex-
pressive enough to approximate any face image under any
illumination, we fit this model to the input face image(s),
as described in Section 2.2. After fitting, the input face is
relit by changing the lighting direction input to the fitted re-
flectance field (see Section 4.1). The relit images are added
to the gallery set to obtain an augmented gallery set.

Our method is fully automated. In practice, we currently
require that for each person in the gallery, we are given at
least one input image that is somewhat frontally lit. This re-
quirement ensures that accurate pixelwise correspondences
can be computed between the gallery image and a refer-
ence face using a 2D Morphable Model (2DMM) [7] (see
Section 2.1.3). Additional gallery input images for each
person are not required, but if provided they are assumed
to be pixelwise aligned amongst themselves. In addition
to estimating the reflectance field of the face, our method
also recovers an estimate for the lighting condition in the
given images. Our reflectance field model is different than
the models used by existing techniques ([3, 19]) in that al-
though it implicitly incorporates 3D shape information, it
is fully defined by a 2D field of spherical functions. This
allows the fitting of the model to be carried out without any
3D-to-2D projections.

2.1. Reflectance Field model
Our representation of the reflectance field breaks it down

into two parts: 1) illumination-dependent appearance vari-
ation (which we refer to as the illumination model or illu-
mination field) and 2) texture. Interestingly, the separation
of a given reflectance field into an illumination model and a
texture has not been well defined in the literature. Most of-
ten, the definition of texture and of the illumination model
are dependent on the assumed bi-directional reflectance dis-
tribution function (BRDF). For instance, in the Lambertian
model, the albedo—a constant scaling factor at each pixel—
is commonly accepted as the texture, while the cosine term
is considered to be the illumination function. The Lam-
bertian reflectance function at a pixel is the product of the
albedo and the illumination function. We use the term illu-
mination function to refer to the function at each pixel that



Algorithm 1: Building the MoRF model {t̂j , T , l̂i,L}

Input: IllumTrainSet of Nl subjects with k (≥ 9)
directionally lit images each; TexTrainSet of
Nt texture images; 2DMM with Reference
Face Fr

Output: Mean texture image T , eigen-texture images
t̂j , mean illumination field L,
eigen-illumination fields l̂i

foreach Subject s ∈ IllumTrainSet do1
Non-rigidly warp the k images to Fr (Sec. 2.1.3)2
From the warped images, compute Tensor Splines3
representation Γs = {γklm} at all pixels (Eq. 2)
using the algorithm in [2]
Compute the illumination field4
Ls = vectorize(Γs/frontally lit image of s)

foreach Image Tt ∈ TexTrainSet do5
Non-rigidly warp Tt to Fr (Sec. 2.1.3)6
Tt = vectorize (warped Tt)7

T = (1/Nt)
∑

t Tt, L = (1/Nl)
∑

s Ls8

l̂i = Eigenvectors
(
∑

s (Ls −L)(Ls −L)T /Nl

)

9

t̂j = Eigenvectors
(
∑

t (Tt − T )(Tt − T )T /Nt

)

10

takes illumination direction as input and outputs a scalar
brightness value. An illumination field is a field of such
illumination functions (one for each pixel).

We have chosen to use definitions of texture and of il-
lumination model that are independent of any particular
BRDF. We define the texture at a pixel to be the intensity
value obtained from a frontally lit image. Given this defini-
tion of texture, the illumination function at a pixel is defined
as the quotient function obtained by dividing the pixel’s re-
flectance function by the pixel’s texture. Thus,

R(x, y, θ, φ) = L(x, y, θ, φ) · T (x, y) (1)

where R(x, y, θ, φ) is the reflectance field, L(x, y, θ, φ) is
the illumination field, T (x, y) is the texture image, (x, y) is
the pixel location, and (θ, φ) is the illumination direction.

We define texture to be the frontally lit image for prag-
matic reasons: We need a large collection of texture images
to build our model (see Section 2.1.2), and it is fairly easy
to obtain frontally lit images. If such practical constraints
can be overcome, alternate definitions of texture such as the
mean of the reflectance function can be explored. Fig. 1
shows an example of one subject’s texture image along with
a few samples of her reflectance field and illumination field.

2.1.1 Illumination model

Our illumination model estimates the illumination field us-
ing 3rd-order Tensor Splines [2]. In this framework, the

illumination function at pixel (x, y) is a spherical function
that takes a lighting direction as input and outputs a scalar:

L(x, y, θ, φ) =
∑

k+l+m=3

γklm(v1)
k(v2)

l(v3)
m, (2)

where γklm are real-valued tensor coefficients, the indices
k, l, m are nonnegative integers, and the lighting direction
in Cartesian coordinates is given by v1 = sin(θ)cos(φ),
v2 = sin(θ)sin(φ), v3 = cos(θ). This illumination func-
tion has 10 tensor coefficients, Γ= {γklm | k + l + m=3}
at each pixel, and in [2], it takes 9 or more images to re-
cover these. Note that these coefficients at each pixel are
scaled down by the frontally lit image in order to remove
the texture. In practice, we found that normalizing the co-
efficient vector at each pixel to unit norm also provides a
good approximation of the illumination function.

The Tensor Spline representation enables our illumina-
tion model to capture specularities and cast and attached
shadows beyond the capabilities of the Lambertian model.
Since we do not want to fit a 3D shape model, the Tensor
Splines framework provides a seamless way to account for
photo-effects caused by global shape, such as cast shadows.

In our work, unlike [2], we do not assume that we have 9
or more input images per person in the gallery. In fact, our
method only requires a single image as input (though more
can be used). In order to estimate the illumination field for
the input image, we constrain the search space to be a linear
combination of the illumination fields computed for a set
of training faces. The training faces’ illumination fields are
learned once, off-line, using the algorithm described in [2]
that requires 9 illumination images per subject. The training
images used to compute these illumination fields, as well as
the input face image, are first warped into pixelwise cor-
respondence (see Section 2.1.3). For efficiency, we apply
principal component analysis (PCA) to the training illumi-
nation fields and use linear combinations of the first several
principal components (plus the mean illumination field) to
represent the illumination field of any person in the gallery.

The 3rd-order Tensor Splines representation for illumi-
nation fields contains 10 coefficients per pixel. For the jth
training illumination field, we string all 10 coefficients at
all of the M pixels into a single vector, Lj , of length 10M .
Letting L represent the mean of these training illumination
field vectors, PCA yields orthonormal bases l̂i for the illu-
mination model, and any illumination field L can be written

L = (
∑

αi l̂i + L). (3)

2.1.2 Texture model

We have defined texture to be the frontally lit image of a
face. To fit our MoRF model to any face image, we must



Figure 2. Overview of fitting the MoRF model to an input image and relighting

model how the textures of faces can vary across the popula-
tion. To do this, we apply PCA to a set of training face tex-
ture images (all captured under frontal illumination), which
are first put into pixelwise correspondence as described in
Section 2.1.3. Any face texture image T can then be ex-
pressed as a linear combination of basis textures (obtained
using PCA), t̂j , plus the mean training texture, T :

T = (
∑

βj t̂j + T ). (4)

By eliminating the PCA components with the smallest
eigenvalues, the number of terms in the texture and illu-
mination models can be chosen according to computational
and quality requirements. We call the set {t̂j , T , l̂i,L} our
Morphable Reflectance Field (MoRF) model. The process
for model building is summarized in Algorithm 1.

2.1.3 Pixelwise Correspondence

It is important for all of the illumination fields and textures
of the MoRF model to be in pixelwise correspondence, so
that linear combinations of illumination fields and textures
yield other valid illumination fields and textures. To achieve
this, we use a 2D morphable model (2DMM) [7]. A 2DMM
consists of a reference face, a set of warp fields (obtained
using the bootstrapping method proposed in [16]) that rep-
resent the ways 2D shapes of faces can vary, and a set of
texture images (the same set of training images used for the
texture model in Section 2.1.2) that represent the ways the
shape-free appearances of faces can vary. A 2DMM is fit to
an input image using a nonlinear optimization that finds the
best linear combination of textures, such that when warped
by the optimal linear combination of shapes, the input im-
age is reconstructed with minimal L2 error. The warp field,
W = (Wx, Wy), resulting from the optimal linear combi-
nation of shapes gives the pixelwise correspondences be-
tween the reference face of the 2DMM and the input im-
age. Wx(x, y) takes a pixel in the reference face image

Algorithm 2: Fitting the MoRF model to an input face
Input: K input images, Ik, where image Ik∗ is lit

from roughly frontal direction (θk∗ , φk∗);
MoRF Model {t̂j ,T , l̂i,L}; Reference Face Fr

Output: Reflectance field R for input subject
Non-rigidly backward-warp Ik to Fr (Sec. 2.1.3)1
Optimize Eq. 5 to obtain parameters αi, βj , θk, φk2

R̂(x, y) =
(
∑

i αi l̂i +L
)

(x, y) ·
(
∑

j βj t̂j + T
)

(x, y)3
as in Eq. 1.
Forward-warp R̂ to obtain R4
If = sample of R in (θk∗ , φk∗) direction5
R = R/If × Ik∗6

and outputs the corresponding x position in the input im-
age. Wy(x, y) outputs the corresponding y position.

Before fitting the 2DMM to an input face image, the im-
age is roughly cropped and rectified by running a face detec-
tor (we use a version of the Viola-Jones detector [17]) and
feature detectors to find at least two facial feature points.
These are used to compute a 2D similarity transform that
aligns the face to a canonical scale, rotation and position.
All of the training images for illumination fields and tex-
tures are cropped and rectified in this manner, resulting in
an initial rough alignment.

The 2DMM is used to find pixelwise correspondences
between the 2DMM reference face and each of the training
images used to build the illumination fields. Thus, the il-
lumination field eigenvectors, l̂i, are in correspondence be-
cause all of the training images were put in correspondence.
Similarly, all of the training textures images are also warped
into pixelwise correspondence with the 2DMM reference
face to yield texture eigenvectors, t̂j , all in correspondence.

2.2. Model fitting
Given K images Ik of a face (K ≥ 1) under unknown

point-light sources, the problem now is to fit the MoRF



model (from Section 2.1) to the input image(s). The un-
knowns include the non-rigid deformation W to align the
model to the input face, the lighting directions in each of
the K images, the texture model coefficients, and the il-
lumination model coefficients. We recover these unknown
parameters by minimizing the following objective function:

E1(Wx, Wy, αi, βj , θk, φk) = (5)
∑

k

∑

(x,y)

∥

∥

∥

∥

Ik

(

Wx(x, y), Wy(x, y)
)

−

D

(

(

n
∑

i=1

αi l̂i + L
)

(x, y),
(

m
∑

j=1

βj t̂j + T
)

(x, y), θk, φk

)
∥

∥

∥

∥

2

,

where Wx and Wy are the x and y components of the non-
rigid deformation that gives correspondences from the ref-
erence face to the input images, (θk, φk) is the illumina-
tion direction of the kth input image, αi are the illumina-
tion coefficients, and βj are the texture coefficients. The
function D takes the 10 coefficients of the estimated illumi-
nation function at (x, y), the estimated scalar texture value
at (x, y), and the lighting direction (θk, φk) and computes
the brightness at each pixel using the tensor splines basis:

D
(

L(x, y), T (x, y), θ, φ
)

= T (x, y) · [L(x, y)T S(θ, φ)]
(6)

where S(θ, φ) is the vector of Tensor Spline basis functions,
defined as

S(θ, φ) = (7)
[v3

1 v3
2 v3

3 v2
1v2 v2

1v3 v1v
2
2 v1v

2
3 v1v2v3 v2

2v3 v2v
2
3 ]

T

where (v1, v2, v3) are the Cartesian coordinates of the light-
ing direction (θ, φ) as defined in Section 2.1.1. The fitting
procedure described above is graphically depicted in Fig. 2.

In addition to the objective function defined above, we
constrain the search space for the illumination model further
by adding the following Tikhonov regularizer to Eq. 5:

E2(αi) = λ ·

n
∑

i

α2
i , (8)

where λ is the regularization parameter. This constraint pre-
vents the estimated illumination field from straying too far
from the training illumination fields and results in artifact-
free relighted images.

We break down the process of recovering the unknowns
into four steps. In the first step, the input images are aligned
with the MoRF model. We apply the automatic face detec-
tor and the 2DMM described in Section 2.1.3 to the input
image with somewhat frontal illumination to compute the
non-rigid deformation parameters. These deformation pa-
rameters, Wx and Wy , are used to backward-warp the in-
put image(s) into pixelwise correspondence with the eigen-
illumination fields and eigen-textures of the MoRF model.

Database Subjects Gallery Set Probe Set Total
Images per Person Images per Person

Extended Yale B [10] 38 - - -
CMU PIE [13] 67 1 20 1407
MERL Dome [20] 242 1 15 3872
Multi-PIE (Sess. 1) [6] 249 1 18 4731

Table 1. Various databases used in our experiments and the recog-
nition setup. For all the datasets, all images used are in frontal
pose with neutral expression. For each test dataset, a frontally lit
image of each subject is used as the gallery image, while all other
point-source-lit images of the subject are used as probe images.

Next, to compute the remaining unknowns we minimize

E(αi, βj , θk, φk) = E1(Wx, Wy, αi, βj , θk, φk) + E2(αi)
(9)

using a gradient-based nonlinear optimization technique.
(In practice, MATLAB’s fminunc function with 200 itera-
tions provides a good estimate of the unknown parameters.)

After recovering the unknowns, we have an estimate of
the reflectance field of the input face, but it is still backward-
warped (in pixelwise alignment with the reference face).
As the third step in our model-fitting process, we forward-
warp the estimated reflectance field using the deformation
parameters computed earlier. Since the entire process in-
volves two registration steps (warps), however, the resulting
reflectance field provides images that appear grainy.

To remove these interpolation artifacts, we have incor-
porated a final step in the fitting process that we call quo-
tient mapping. First, we generate a synthesized image from
the estimated reflectance field using the same lighting direc-
tion as the somewhat-frontally-lit input image. (The light-
ing direction for this image was computed as part of the op-
timization procedure described above.) Next, we compute
the quotient map by dividing the near-frontally lit image by
its synthesized estimate. This quotient map is then used
to scale the entire estimated reflectance field, which sup-
presses the artifacts introduced by interpolation during the
warps of the reflectance field. The process for model fitting
is summarized in Algorithm 2.

3. Experimental Setup
To test the proposed model, we used the Extended

Yale B [10] dataset to build the MoRF model, since it con-
tains a large variety of good quality point-source-lit images.
We used images from the CMU PIE [13], Multi-PIE [6] and
MERL Dome [20] face databases as test sets. Though our
method can be used with multiple input gallery images, in
all of the experiments in this paper we tackle the most diffi-
cult case: a single input gallery image. A brief description
of the subsets of databases used is presented in Table 1. We
have used only images with frontal pose, neutral expres-
sion, and illumination variation in our experiments. All of
the images used were point-source lit.

We conducted experiments with the given single-image



Figure 3. Comparison of images relighted using various methods (see Section 3.1) with ground truth images from the CMU PIE and
MERL Dome databases. The single input images used are shown in the red boxes.

gallery, as well as with a gallery that we augmented by
adding to the gallery set relit images that were synthesized
from the single input image. In every gallery augmentation
experiment described in Section 4.2, the gallery was aug-
mented with the described number of relit images, whose il-
lumination directions are sampled uniformly from the range
−60◦ to +60◦ in both the azimuth and elevation angles.

To compare a probe image to an augmented gallery set
for a single subject, the probe is compared pairwise to each
gallery image in the augmented set and the maximum simi-
larity score is returned as the overall similarity score.

Success of any scheme based on gallery set augmenta-
tion is contingent on its ability to limit the number of false
acceptances as new images are added. In our case, this de-
pends on the quality of relighting. If the relighting is not re-
alistic, it is likely that the newly added images in the gallery
set will provide more close matches to an incorrect subject’s
probe rather than aid in recognizing the correct subject. The
results, in Section 4, show that our MoRF relighting method
is successful in keeping the false acceptance rate in check
while boosting the rank-1 recognition rate.

3.1. Relighting Methods
We compare the performance of our MoRF relighting

framework with three other relighting methods. The first
is Lambertian Relighting [11], a method for single-image
relighting that boasts a simple implementation with high
performance. The method uses an average 3D head model
and the Lambertian reflectance assumption to estimate the

lighting direction and albedo of an input face image which
can then be used to render the face under any illumination
direction. The second relighting method we implemented
is Sim-Kanade Relighting [14], a learning-based method
that models non-Lambertian lighting effects using Gaussian
error functions. We used the Extended Yale B dataset to
train this method. We call the third method we implemented
Naı̈ve Relighting. This simple relighting methods darkens
(to 30% of the original grayscale values) a part of the im-
age to give the rough appearance that part of the image is in
shadow due to lighting. We simply divide the image into
rectangular segments and generate new images with pix-
els in some rectangles darkened, to determine whether the
more complicated relighting schemes proposed here (and
elsewhere) are better than naı̈vely darkening segments of
the images to simulate shadowing. We also experimented
with relighting using the Quotient Image [12] but have not
included recognition results from that method since its low
quality leads to extremely low recognition rates. Note that
we have compared results only with other relighting tech-
niques that do not require any manual intervention.

3.2. Classifiers
In order to demonstrate that our MoRF relighting and

gallery augmentation framework is helpful independent of
the particular classifier used, we chose five different classi-
fiers for our tests. The first is the L1 distance-based Nearest
Neighbor classifier, used as a baseline technique. The next
is an implementation of the Haar-like Feature (HF) Rec-



Size of Augmented Gallery
Relighting method 256 128 64 32 16 8 4 1
Naı̈ve 92.5 92.2 91.8 93.1 92.8 90.4 90.9 90.1
Lambertian [11] 92.7 92.2 92.3 91.6 90.7 90.2 91.3 90.1
MoRF 98.4 98.4 98.1 97.4 97.9 96.6 94.8 90.1

Table 2. Effect of gallery augmentation size: Face Recognition
rates for the CMU PIE dataset with the HF Recognizer.

ognizer [8]. This classifier is trained using AdaBoost to dis-
criminate same-face image pairs from different-face image
pairs. It was trained on a large set of face images collected
at our lab that did not include any of the Yale B Extended,
PIE, MERL Dome, or Multi-PIE face images. Recently,
Local Binary Patterns (LBP) [1] and Local Ternary Pat-
terns (LTP) [15] have been reported to be fairly success-
ful in illumination-invariant face recognition. These meth-
ods use local histograms of features with the χ2 distance
measure. Finally, we also include results obtained using
the Volterrafaces [9] technique, an example of subspace
transformation-based approaches to face recognition.

4. Results
In every experiment reported here, the system is given a

single gallery image per subject, which is frontally lit, and
which is used to synthesize any relit images.

4.1. Relighting
Though not the central focus of our work, here we qual-

itatively compare the quality of the relit images with the
ground truth images. Fig. 3 presents images of two sub-
jects, one from the MERL Dome database and one from
the CMU PIE database, that were relit using our MoRF
model. In both cases, the single image in the red box was
used as the input. For comparison, we also include relight-
ing results from three other methods: Lambertian Relight-
ing [11], Sim-Kanade Relighting [14], and Quotient Image
Relighting [12]. It is apparent from Fig. 3 that our relight-
ing method provides more realistic images than those gen-
erated by these other methods. To challenge our MoRF
model further, we also use it to synthesize relit images of
each face under two extreme illuminations, for which there
were no ground truth images available. To confirm that the
reflectance fields are person-specific, we verified that the
estimated coefficients are significantly different from one
person to another.

4.2. Face Recognition
An important parameter in a gallery set augmentation

scheme is the number of synthesized images to add to the
gallery. This can affect performance in three ways. As
gallery set size increases, the likelihood of a correct close
match increases, the likelihood of a false acceptance in-
creases, and the classification time increases. Assuming

that the classification time is not critical (since modern com-
mercial classifiers work quite fast), here we focus on the
impact on recognition rates and false acceptance rates.

The first set of results, presented in Table 2, shows how
face recognition rates change as the number of images used
to augment the gallery increases. Here we have used the
HF recognizer with our MoRF relighting method (as well
as two other relighting methods) on the CMU PIE dataset.
Note in Table 2 that across different relighting schemes, the
recognition rates improve as the number of synthesized im-
ages is increased. Trends similar to those shown in Table 2
were observed for other datasets and classifiers but are not
included here due to space constraints.

For the rest of the experiments, the basic recognition
setup is given in Table 1. For gallery augmentation, we
fix the number of images to 64, since it provides a reason-
able trade-off between the memory/time requirements and
recognition rates. In Table 3, we compare various combi-
nations of relighting methods and recognizers on the CMU
PIE, MERL Dome, and Multi-PIE databases. Notice that
across the databases, recognition methods, and relighting
techniques, our MoRF relighting method provides the best
results in terms of rank-1 recognition rates.

Rank-1 recognition rates are widely used in the litera-
ture, but they do not provide much insight into the impact of
gallery augmentation on False Acceptance Rates (FAR). We
explore this aspect of gallery augmentation using receiver
operating characteristic (ROC) curves, which plot False Re-
jection Rates (FRR) against FAR as the recognition thresh-
old is varied. In Fig. 4, we show ROC curves corresponding
to the best three classifiers (HF, LBP and LTP) from Table 3.
The plots have been truncated on both axes to save space.
Fig. 4 demonstrates that gallery set augmentation using our
MoRF relighting outperforms the existing methods across
almost all recognizers and databases.

Finally, we compare the best results obtained using our
MoRF framework to state-of-the-art classifier performance
on the tested databases (Table 4). We included results from
the Nearest Neighbor classifier (baseline), the HF classi-
fier, and the Enhanced Local Texture Features (ELTF) clas-
sifier [15]. ELTF takes an illumination normalization ap-
proach, then classifies the images using Local Ternary Pat-
tern features with a χ2 distance measure. (Actually, [15]
used a different distance measure, but we got better results
using χ2.) Results for all of the above methods were ob-
tained using the given single-image gallery. The last two
rows in Table 4 present the results obtained using our MoRF
relighting-based gallery augmentation with the LTP and
Volterrafaces recognizers. (The Volterrafaces classifier was
used only in the augmented-gallery experiment because it
cannot be used with a single gallery image.) Table 4 shows
that recognition rates achieved using our MoRF framework
readily exceed rates achieved by state-of-the-art classifiers.



CMU PIE MERL Dome Multi-PIE
Relighting Method NN (L1) HF [8] LBP [1] LTP [15] NN (L1) HF [8] LBP [1] LTP [15] NN (L1) HF [8] LBP [1] LTP [15]
None (single image) 59 90 93 93 43 71 66 67 18 70 63 63
Naı̈ve 70 92 94 93 54 78 66 68 31 72 63 64
Sim-Kanade [14] 74 94 94 95 66 83 68 70 65 77 69 70
Lambertian [11] 81 92 96 97 78 81 85 86 43 71 73 74
MoRF 94 98 99 99 80 83 88 90 66 77 77 78

Table 3. Face recognition rates for the CMU PIE, MERL Dome and Multi-PIE datasets. Each column heading indicates the classifier used.

Face Recognition Method CMU PIE MERL Dome Multi-PIE
Nearest Neighbor (L1) 58.8 42.8 17.8
HF Recognizer [8] 90.1 71.2 69.7
ELTF [15] 98.l 82.9 83.6
MoRF + LTP + χ2 [1] 99.1 89.6 78.3
MoRF + Volterrafaces [9] 100 99.4 99.3

Table 4. Comparison with the state of the art

Figure 4. ROC curves for the CMU PIE, MERL dome and Multi-
PIE datasets.

5. Conclusion
In this paper, we have demonstrated that realistic

relighting can be effectively used to enhance recognition
via gallery set augmentation. We have presented a novel
automatic single-image (or multiple-image) relighting tech-
nique, MoRF, that uses a Tensor Splines-based reflectance
model and PCA-based model fitting to achieve recognition
and relighting performance superior to other automatic re-
lighting methods. Our method is purely 2D-based and does
not require cumbersome 3D-to-2D projections or manual
initialization. We also show that the recognition perfor-
mance obtained using our MoRF relighting and gallery aug-
mentation framework exceeds that of various state-of-the-
art classifiers across databases. In the future, we plan to ex-
tend our work to handle variations in pose, as well as input
gallery images with more complex lighting.
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