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Abstract

As our ability to measure the world around us improves, we are quickly generating massive
quantities of high-dimensional, spatial-temporal data. In this paper, we concern ourselves with
datasets in which the spatial characteristics are relatively static but many dimensions prevail and
data is sampled over different time periods. Example applications include building energy man-
agement of HVAC unit diagnostics. We present methods employed in our Wakame visualization
system to support such tasks as discovering anomalies and comparing performance across mul-
tiple time series. Novel methods include animated transitions that relate data in spatially located
3D views with conventional 2D graphs. Additionally, several components of our prototype em-
ploy analytics to guide the user to “interesting” portions of the dataset.
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ABSTRACT

As our ability to measure the world around us imps) we are
quickly generating massive quantities of high-disienal,
spatial-temporal data. In this paper, we concerrsauves with
datasets in which the spatial characteristics elagively static but
many dimensions prevail and data is sampled ov&rent time
periods. Example applications include building eyer
management and HVAC unit diagnostics. We preserthads
employed in our Wakame visualization system to sappuch
tasks as discovering anomalies and comparing pedioce across
multiple time series. Novel methods include animatransitions
that relate data in spatially located 3D views vaitmventional 2D
graphs. Additionally, several components of outqype employ
analytics to guide the user to “interesting” pans®f the dataset.

Categories and Subject Descriptors
H5.2. Information interfaces and presentation (e.HCI):
Miscellaneous.

General Terms
Design, Human Factors

Keywords
infovis, spatial-temporal data, multi-dimensionahtal radar
graph, visual analytics.

1. INTRODUCTION

The rapidly decreasing cost of sensor networkddthso massive
quantities of high-dimensional, spatial-temporal tada The
quantity of available data pouring in is outpacimgr ability to
meaningfully display and explore this informatiokVithout
corresponding improvements in our ability to viszel this
information, the value of this improved sensing thé world
around us will be minimized. The need to displayplere, and
make sense of massive data collections is drivieg research
into interaction and visualization technologies. i\Whmachine
learning and summarization techniques complemert (aay one
day replace) human operators as they interpretethdsta
collections, for the time being people still perfothe sense-
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making portion of the program. As long as this lie tcase,
researchers will have ample challenges to addresisei field of
high-dimensional, spatial-temporal data visualati

This paper presents our initial exploration of tHissign space.
We call our basic visualization objedtéakamepronounced wa—
'’ké&—me, a Japanese word for seaweed, and illugtnateigures 2-
4). Initially developed to display a building’s eéronmental
sensor information, Wakame have the potential tovige
benefits in other visualization activities in whicimulti-
dimensional data has spatial and temporal compeneDur
proposal is to extrude 2D shapes representing dimkinsional
sensor readings into 3D in order to represent tme to locate
these objects in a representation of the spacéichwhe readings
occurred Our methods have been prototyped with sdtta
containing dozens of sensors, each with as madAQ asmensions
and over 50k samples. Our prototype also providesuser with
controls for selecting meaningful time ranges anldssts of the
available data dimensions. It also performs aradyton the
dataset (such as outlier detection and clustesiith) the goal of
supporting the user’s investigations. Finally, tigh dimension
reduction and animation, Wakame are related to lfamD
presentations. Through allowing the user to ingasé the dataset
with both 2D and 3D presentations, the benefitsaath approach
can be exploited.

The remainder of this paper is organized as follokisst, we
present related work and motivate the need for B@thand 3D
representations. Secondly, we present methodsiriking our
visualizations to locations in space, as well datirgg these 3D
visualizations to familiar 2D ones through the w$eanimation
and dimensionality reduction. We then present #opype system
that uses our technique to visualize a buildingisilenmental
sensor information. This prototype employs anadytic support
common tasks and guide the user to “interestingtigms of the
dataset. We conclude with an example datasets ale$aiption
of future work in this line of research.

2. RELATED WORK

2.1 Visualizing Multi-Dimensional, Time-

Based Data

Multi-dimensional visualization is a mature fieldithv a long

history of research [17]. Parallel Coordinates, tt®cplot

matrixes, Nightingale Rose Petals, and ChernofeEaze among
the many techniques to represent high-dimensioatal ith 2D. Of
particular interest to this paper are radar gra@fso known as



star charts, spider graphs, Kiviat diagrams, amdular parallel
coordinates). First used by Georg von Mayr [29Haragraphs
plot multiple values along radial axes (Figuréah).

With respect to time-based, multi-dimensional dasayeral
authors have proposed either animating these pedgesrs or
extruding these 2D techniques into a third dimems@represent
time. Yuhua [9] proposed a 3D Kiviat diagram in ehithe axes
themselves are rolled up and down in 3D, the restlivhich

allows the viewer to better perceive time-varyiraged Fanea et al.

[6] combine multiple 2D parallel coordinate visaaliions into a
single visualization, aligning multiple star chaatsng a time-axis
and connecting the vertices with polylines. Moshikir to our
approach is Hackstadt and Malony's Kiviat Tube [Hjd
Tominski et al.'s 3D Kiviat Tube [26], both of whiddisplay
multiple Kiviat charts along a time axis, and corctna single
surface along this profile. The result of this eston is a tube-like
solid, the shape of which illustrates the changesultiple values
over time.

2.2 Spatial-Temporal Visualization
Spatial-temporal visualization in the field of IMs has largely
concerned itself with explicitly identified eventselationships,
and/or movements in space and time. Graph-baseglidation
methods have been proposed for intelligence arsaly$6],
communication networks [2], as well as social neksd7] [11].
The visualization of human, animal, or vehicle moeat in space
and time is also important for building securitystgms [14],
environmental studies [14] and traffic managenjghtHowever,
our primary concern in this line of research is hwinulti-
dimensional sensor streams that are relativelycstathe spatial
domain. Rather than events or relationships formiing data
primitives for visualization, it is the stream afdividual sensor
readings that serve as the starting point. Theod&y of
relationships across the streams of data in spadetiame is the
task of the human user of the visualization tootarples of
application domains that share this characterinatiolude indoor
and outdoor environmental monitoring as well as iggent
condition monitoring in which space may be a lobitap (such
as a schematic diagram) rather than a physica(lmrikling floor
plan or geographical map). The generalizationeafgyaphically-
based space-time visualization to diagrams has peeviously
proposed by [16], but the focus there is still @fations and
complex events across entities in space and titeerrahan on
relatively stationary sensor data streams. Tomirtkal. [27]
describe the use of two different 3D icons thaticepulti-
dimensional data streams from fixed locations. Ashwour
system, these 3D icons are positioned on a 2D neaphat
multiple streams can be compared and related to gkegraphic
location.

2.3 Animation in Information Visualization

Previous research suggests that animation provaleletter
understanding of the relationship among visual dapis of a
dataset than do instant transitions [28]. An insteansition forces
the viewer to mentally reconstruct the effects loé tommand,
and animation shifts this cognitive task to a pptaal one, thus
freeing cognitive resources for the primary tasR][ZThere are

several overviews and guidelines governing theaisaimation
in InfoVis (e.g. [12]), and numerous examples ofhbits positive
and negative effects on the understanding of ssdtfas].

2.4 2D vs. 3D Representations

The human-perceptual system is remarkable in itdityakio
correctly recognize and interpret 3D shapes inwbdd around
us. A good overview of current and past researcthim area is
provided by [22]. The phenomenon known as “shapestemcy”
[18] ensures that we are able to recognize the I3pes of an
object (or part) from multiple points of view anbat this 3D
shape remains constant regardless of the specbicsBape
projected on the retina.

Furthermore, there is evidence from the field ofrcpptual

psychology that repeated exposure to a 3D shap&lgungrains

it in memory [13]. The converse is also true; unfemnshapes
“pop out” and demand attention. The recognitiorthafse stored
shapes occurs “unconsciously” with minimal cogratieffort [3],

which is a very desirable quality when one is deisig a system
for making sense of complex multi-dimensional déttdas been
argued that 3D shape is capable of encoding mdogniation

than other visual properties like color, weighti @cale [22].

While there are many benefits to 3D presentatidndata, there
are well-known drawbacks as well. First and foremissthe
problem of occlusion. When data is encoded in a stBne,
foreground objects necessarily block one’s viewbatkground
objects. Transparency can help, but it increasesaViclutter.
Furthermore, 3D presentations of data most oftere le lower
data/pixel ratio than 2D presentations, and thusenseverely
limit the amount of data visible to the user. Itusclear if 3D
presentations allow users to accurately read antpace multiple
values when compared to 2D. Finally, interactiod aavigation
in 3D can be more cumbersome and cognitively demagnd
especially when performed on a 2D desktop display.

Given the tradeoffs between 2D and 3D, it seemsogpiate to
employ both approaches. It is likely that a systbat allows the
user to easily switch between them while maintgjnan link
between these different views would be beneficalgtining
insight from the dataset.

3. Wakame

Figure 1 illustrates the basic technique for getiregaWakame
geometry. A traditional multi-dimensional radar th@Figure 1,

top) is draw on a ground plane in 3D (Figuretiddlg. As with

other extrusion techniques, time is mapped to thexiy, and
sequential measurements become radar-graph prafilésferent
heights off of the ground plane (Figure Hottom leff. These
profiles are used to create a hollow “tubes” [16][2he shape of
which illustrates the changes in the data over.time

While Figure 1 renders each Wakame in a single rcador

prototype system assigns a different color to esddie vertexes
that correspond to the different dimensions (FigreWith this

color, both the overall shape and the changesapeskvithin each
dimension are more easily understood.
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Figure 1. A traditional 2D radar chart (top) is drawn on a
plane in 3D (middle). Time is mapped to the y-axis. Sampled
values form the profile at different heights pottom left), and a
3D shape is formed Ifottom right).

3.1 3D Shape Perception

With our technique, correlations between the charigevalues
among multiple dimensions create recognizable 38pe$. For
example, a bulge in a Wakame that extends arousd
circumference indicates a similar change in valae®ss many
dimensions, just as a “cinch” in a Wakame indicabeslowering
of several values (Figure gght). Similarly, a “wave” indicates a
rising of the values of several dimensions thahcidies with a

lessening in others (Figure &ft). Our design leverages the idea

that events that cause predictable changes in malyes
simultaneously will result in shapes that becomiliar to the
practiced viewer [13]. To best take advantage @ firoperty,
careful attention should be paid to the orderingdhensions
around the center axis. Toward this end, we loghrévious work
on dimensional reordering in the field of multi-dinsional
visualization (e.g. [21],[29]).

3.2 Viewing and Comparing Multiple Time

Ranges and Multiple Datasets

Figure 1 illustrates how multiple overlapping Wal@arman be
rendered simultaneously in the same visualizationthis case,
the red and blue Wakame overlap, and their intiseinforms
the viewer about the relationship in values betwibese two time
series. The red and blue Wakame could come fromdatasets

recorded from different sources, or could even bevdd from
separate time ranges in the same dataset.

Figure 2. A Wakame's shape implies meaningleft) A “wave”
in the Wakame indicates that certain values are riag while
others are lowering. ¢ight) “Bulges” and “cinches” show

correlation in value changes among dimensions.

In the previously cited examples, comparisons anays made
among Wakame that contain identical data dimensifsle this

is appropriate for a homogeneous sensor networlat about
heterogeneous collections of data? Figure 3 shaws\WWakame
representing recorded data from two components Bystem.

Because these components perform different furgtitrey sense
and record data in different dimensions. As suchdim@ct

comparison is impossible; however, by renderingrtrside-by-

side, the cross correlation in shape between thesrogeneous
data dimensions can be revealed.

3.3 Relating Wakame to Spatial Locations

Figure 4 shows a screenshot of our prototype systéra main
window of the application shows the floor plan ofvarkspace,
with 11 individual offices and three HVAC (heatingentilation,
air-conditioning) zones. At each meaningful location this
ground plane, our system renders a Wakame repiegetite
multi-dimensional time-series data associated Wit point. In
this example, we have simulated sensor data redoimleach
room of the building, although any multi-dimensibtime-series
dataset with spatial locations can be viewed is thay. While

s

R .

Figure 3. Shape correlation across different Wakameavith
different dimensions of data.
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Figure 4. Prototype system overview. From each sens:
location in this floor plan, a Wakame grows verticdly over
time. The profile at every height is derived from he multi-

dimensional data collected at thamoment. Controls around
the border allow for the specification of time rangs as well a
the constraining of dsplayed dimensions and Wakam

both 3D and 2D presentations of temporal data careal
temporal patterns, trends that occur in the temgand spatial
dimensions are much more difficult to detect withadlection of
2D charts and gphs. For example, a failing HVAC compon
might cause environmental changes that cascadessacoffices
over time. This said, our 3D presentation makesurate
comparison among Wakame more difficult than conmgaaxis
aligned 2D charts — a drawback thataddressed in the ne
section.

4. Collapsingfor Traditional Views

Wakame are dé@mned to present hidimensional, time-series
data in a manner that helps the vie\‘'make sense” of complex
datasets.However, given the tradeoffs between 2D and
presentations that were discussed previothere are times when
a user is better served by B representation of the de While a
2D linegraph provides an excellent and easily accessiblg of
a handful of dimensions over time, onoses the spatial
relationship among the sensor locations when vigwiultiple
2D graphs. Previous syshs have proposed simultaneot
displaying multiple views of a data [20] along with explicit
visual linking between corresponding features ie thultiple
views [4] arguing that multiple views might help a us
understanding of the data. Following this approamie might
choose to present Wakame visualizations eside traditional 2D
views of the data. While promisinmultiple views consume more
pixels and screen spatten thei single-view counterpart.

Our compromise is to relate traditional 2D viewshe Wakames
locations in the space through the use of ca-view and
geometry animation. Our prototype system includes view
transformationsene for collapsing the spatial dimensions of
Wakame into a traditional line chart, and one follapsing the
time-axis of the Wakame into a traditional radar graThese
transitions are designed tbelp the viewer relate these :
presentations of theata to their spatial locatiol

Figure 5illustrates the transition between several Wakame
their 2D lineehart counterparts. In our system, this transitio
bi-directional--as suchrigure £ can be read left-to-right or right-
to-left. Three characteristicsf the visualization animate when
this transition occurs. First, the camera rollshe left so that th

15t = £al
Brian

46 9,] 00:10 : Jan 1,2006 through 23:50 : Jan 31,2006 100.00

15.1 31
,,,,, Brandon

46 g,.l 00:10 : Jan 1,2006 through 23:50 : Jan 31,2006 100.00

John

00:10 : Jan 1,2006 through 23:50 : Jan 31,2006

Figure 5. Collapsing spatial dimensions. When viewing the datin 2D is more advantageous, our system anires the appearance
and position of the Wakame and camera so that tratibnal 2D charts are displayed. This transition isi-directional, so the cells in
this figure can be read lef-to-right or right-to-left.
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Figure 6. When the user selects a single momenttime, the Wakame collapse along the y-axis and tleamera animates to view
them from directly above. This animation runs in bdh directions as single moments or time ranges aelected.

time-axis now runs horizontally across the screésa fnost

common orientation). Second, the points on the Weds radar
graphs orient so that they align to a single axé tuns up-and-
down in the new view plane of the camera. Findtg positions
of the Wakame on the ground plane animate so ktegt équally

spread out in the camera's new view plane. Thedtre§uhese

three animations is a collection of 2D line-chastacked in the
view plane.

Heer et al. [12] recommend that complex animatioasplit into

steps, an approach that they argue will help teever understand
the transition. As such, we implemented a variatibour system
that executes the camera, dimensional, and positarimation in

series.

Figure 6 illustrates the transition between a Wakamnd its 2D
radar graph counterpart. In this case, the radaphtgrepresents
the value of the Wakame at a single instant in tikv@en this

transition takes place, the camera animates so ithéaces

perpendicularly to the ground plane, and centeslfiton the

selected Wakame. Meanwhile, the Wakame collapsegydhe y-

axis (time) dimension. As with the previous animoati this

transition can occur in either direction as the russues

commands to display either time ranges or singitanctes in
time. When multiple Wakame are viewed in this wihgjr spatial

relationship is maintained. In a variation of owotptype, this 2D
radar graph displays the mean and variance of ecteel time

range.

5. Prototype System Overview

In order to explore and develop our Wakame visatbn
approach and to develop the analytic featureseotiier interface,
we build a prototype system capable of displayargeé amounts
of multi-dimensional time-based data. In the figuasd examples
used in this section, we simulated a large amodnsemsor
information for a fictional office space under viagy
environmental conditions.

Figure 4 shows a screenshot of this prototype. @gog the
center and largest region of the screen is thei8®.un this case,
the floor-plan of an office building is shown, witWakame
growing vertically from their corresponding sendaocations in
the workspace. On the left, a tree-view shows eahshical view
of the sensors and their corresponding zones. @©rright, our
system provides two lists for selecting among rplétdimensions
and among entire datasets (in this example, twasett are
loaded representing two separate simulations of ghace).

Finally, along the bottom of the application, adlme shows the
available data and allows the user to select onenare time
regions for display. These components each respmiput on
one another, and their appearance is designeditie gue user
toward interesting and meaningful portions of thtadet.

5.1 3D Scene

The 3D Scene contains a plane in which the spatiaiponents of
the dataset are grounded. In Figure 4, this plauties office floor-

plan of the building in which the visualized senstata was
collected, and we have experimented with cartogeafffigure 9)

and schematic planes as well. The importance sfglaine is that
it links time-series' locations with their visuajpresentations.

Interaction with the 3D Scene takes place withsyigtem mouse
or other pointing device. Clicking directly on regs of the
ground plane controls selection, and dragging thekground
rotates the camera using the ArcBall camera-oriiemaechnique
[24].

5.2 Dimension and Dataset Lists

Figure 4 shows the Dimensions Lisbf) and Datasets List
(bottom) on the right side of the application. These lets used
to hide and show individual dimensions and datassgectively.
As individual dimensions are hidden and shown,pbiats of the
Wakames' radar graphs animate to equally spacestiees out
around the y-axis. When entire datasets are hideheh shown,
they fade in and out.

5.2.1 Derived Dimensions

In addition to the recorded or simulated data disr@Ts presented
in the Dimension List, users are able to defineirthmvn
derivative dimensions using the Groovy scriptinggaage [7].
These scripts allow users to write simple functitimst take the
available data as parameters and return derivagesadllowing
the sophisticated user to author their own derigiedensions to
aid in their sense-making and exploration of thiaskat.

5.3 Timeline

The bottom of Figure 4 shows the timeline widgat $electing
time ranges. A full description of the featurestlof widget is
outside of the scope of this paper; however, twaperties of the
timeline are important for understanding its usehe prototype
system. Firstly, the timeline contains a hierarahimollection of
selectable time ranges, which allow the user taldyiselect
individual or multiple months, week, days, and so 8econdly,
the color of these time ranges indicates theiredtffice from



Figure 7. The Wakame tree shows the hierarchical
relationship among Wakame. In this example, Wakame
representing sensors placed in individuabffices are organize:
into a collection of zones. When collapsed, theseres display
the numerical averages of their sub-Wakame.

similar time ranges in the dataset, a feature ihatxplored in
more depth in the following section.

6. Analytics and the GUI

When given a large multi-dimensional dataset to kwwiith,
people turn to analytics to help sort, summarize] flter this
data so that it is more digestible to the humandm@ur prototype
uses analytics to alter the appearance of the Gbiponents with
the aim of guiding the user to interesting portiohshe dataset in
which meaningful discoveries can be made.

Our approach is simple: any change in selectigh@time range,
dimensions, datasets, or Wakame triggers an uptaté¢he
appearance of the timeline, Wakame tree, cameitiggnsand 3D
scene. In this section, we describe this use ofyics and the
guidance it provides.

6.1 Coloring the Timeline

The use of analytics to color our timeline followssh et al. [19]
who used a similar approach to highlight cells insr-defined
spreadsheet. The basic approach is to allow thepgtan to
quickly perform an exhaustive investigation of gpace, and to
use the results of this calculation to direct tiserls attention to
certain areas of the dataset. The user then, m aalects from
among these “interesting” areas and the cycle lsegrain.

As shown in Figure 4, the cells in our timeline pfiesenting
hours, days, weeks, and so on) are each drawn wasioglor

between red and green. These colors reflect tit'e taifference”

from neighboring cells for the currently selectechehsions and
Wakame. “Difference” might mean different things ftifferent

tasks, and thus should be highly tailored to speeipplications
and their tasks. In our prototype, we measure miffee from the
mean, but any number of more sophisticated measares
possible and are supported through our scriptistesy.

Figure 8. The top and bottom portions of this figue
correspond to the left and right portions of Figure7. By
collapsing items in the tree, the user can reducée visual
complexity of the 3D scene. Analytics inform the prsentation
of the 2D zones in these figures. In this examplihe Wakame
are clustered into groups as represented by theirotor.

The result of these analytic methods is that ther is drawn
towards meaningful time periods in the datasetadiwlition to
investigating these time periods themselves, lacgetes in the
dataset become visible when the timeline is vieasda whole.
For example, vacations and monthly meetings (dusigch
individuals' offices are unoccupied, but common nnso are
crowded) become visible in the timeline, as do aealsvariations
such as HVAC upticks during the hot summer months.

6.2 Wakame Tree

The Wakame Tree (Figure 7) is used both for disptayhe
hierarchical relationship among Wakame and for rgempa
selection. There is a one-to-one mapping betweelesin this
tree and Wakame in the 3D scene, with only thecssdenodes
being visible in the 3D window.

There are two types of nodes--leaves and brantleeses in the
tree represent locations in the workspace for witehe is actual
recorded or simulated time-series data to be displaln the
example shown in Figure 7, these leaves represetitoamental
sensors placed in the individual offices of thislding, and are
named after the office residents. Branches in the tepresent
conceptual groupings of the leaves. In the treevehia Figure 7,
there are three building zones (west, north, andh3chat each
contains a collection of offices. These three zoaes in turn
placed within the root “office” node, which alsontains a leaf
corresponding to the large common area in the midfithe floor
plan. Figure 8tbp and botton) show the appearance of the 3D
Scene for the two states of the Wakame Tree shawfigure 7
(left andright).

Whenever the user makes a change in the seleateehsiions,
dataset, time period, or Wakame, the selected Wakarthe tree
view and their corresponding zones in the 3D segeeolored to



reflect their similarity to one another. Again “skanity” will have
different meanings to users involved in differeaks, and for th
purpose of our prototype, we use a simple ti-dimensional
clustering to assign Wakame into groups. Figurad &show the
grouping for two different selections of WakameisTbtlustering
guides the user to focus their attention the most differer
Wakame, or to group similar Wakame for the pise of
simplifying the dataset and the task at hand.

6.3 Intelligent Camera Positioning

When working with an early version of the systembécame
obviousthat a great deal of effort was needed to corrgmikition
the camera in order to best view the selected Wekarowarc
this end, we implemented an automatic camera pogity systen
that attempts to position, orient, and zoom theeranto best viev
the selected Wakame. This approabtes an adequate job
“getting a good look atthe geometry one wants to see. W
used in combination with the ArcBall rotation arduthe point of
focus, less effort is spent positioning the canwerd, hopefully
morecognitive resources are available for interpretireydate

7. Example Dataset

The majority of figures and examples in this pageEne from oul
exploration of large datasets generated from a lation of an
office building under various environmental anduipment
conditions. We used the US Department of EnerggardyPlus
[5] building simulation program to simulate an ele-office floor
plan, and recorded 12 virtual “sensor” measuremaras interva
of 5 minutes over the course of a year.

It was encotaging that some characteristics of the office v
immediately apparent. For example, the simulatioadluides ¢
particularly cold January day, during which thelding's HVAC
system could not provide a comfortable working emwvnent.
Similarly, the codhg system conditioning the corner office tha
used for monthly meetings cannot compensate foratidtional
thermal load added by the meeting's participantss Tonthly
occurrence resulted in a predictable bump on tfiee Wakame
the first Mondg of each month. While interesting, it

worthwhile to point out that both of these findingsuld have
been made through the use of 2D data represersi

In other cases, the spatial/temporal presentatimviged by
Wakame visualization lead to morebgle findings and a deep
understanding of the building’s HVAC performanceor
example, offices on the souside of the building received mo
sunlight, which greatly affects their environmentahditions ant
required more cooling in the summer anss heating in the
winter. Similarly, a gradual failure in the coolisgstem for ons
of the offices not only led to a rise in the tengiere of tha
office, but also a cascading effect over time te teighboring
offices (Figure 9). In this case, a siadhilure lead to addition:
strain on neighboring units, which eventually letd higher
energy consumption, inefficiencies, and a reducitocomfort. It
is clear that the spatial facet of the presentatioakes the
relationship between the performarafeneighboring zones mo
clear than a collection of 2D charts, and we fhat this exampl:
lends weight to the argument for hybrid 2D/3D dasaialization.

Figure 9. The effects of a failed component cascade
neighboring zones over time

8. Conclusion

In this paper, we have presented the Wakame visialn
technique in the context of previous research into n-
dimensional, spatidemporal dataand have illustrated our
approachwith a prototype application. We have argued fer ulse
of our approach from the perspective of human percé
psychology, and have given examples in which Wak
visualization may help users make sense out ofelacgmplex
datasetsSome of the tradeoffs between 2D and 3D presents
of data having been disssed,and we presented methods for
collapsing our 3D presentations along the temparal spatia
dimensions into familiar 2D views. Finally, our potype include:
several examples of analytics in the Ul that weesighed tc
guide the user to interestimagrts of the dataseThese first steps
seem promising; however, the meth still require experimental
validation in order to draw firm conclusior
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