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ABSTRACT 
As our ability to measure the world around us improves, we are 
quickly generating massive quantities of high-dimensional, 
spatial-temporal data. In this paper, we concern ourselves with 
datasets in which the spatial characteristics are relatively static but 
many dimensions prevail and data is sampled over different time 
periods. Example applications include building energy 
management and HVAC unit diagnostics. We present methods 
employed in our Wakame visualization system to support such 
tasks as discovering anomalies and comparing performance across 
multiple time series. Novel methods include animated transitions 
that relate data in spatially located 3D views with conventional 2D 
graphs. Additionally, several components of our prototype employ 
analytics to guide the user to “interesting” portions of the dataset. 

Categories and Subject Descriptors 
H5.2. Information interfaces and presentation (e.g., HCI): 
Miscellaneous.      

General Terms 
Design, Human Factors 

Keywords 
infovis, spatial-temporal data, multi-dimensional data, radar 
graph, visual analytics. 

1. INTRODUCTION 
The rapidly decreasing cost of sensor networks has led to massive 
quantities of high-dimensional, spatial-temporal data. The 
quantity of available data pouring in is outpacing our ability to 
meaningfully display and explore this information. Without 
corresponding improvements in our ability to visualize this 
information, the value of this improved sensing of the world 
around us will be minimized. The need to display, explore, and 
make sense of massive data collections is driving new research 
into interaction and visualization technologies. While machine 
learning and summarization techniques complement (and may one 
day replace) human operators as they interpret these data 
collections, for the time being people still perform the sense-

making portion of the program. As long as this is the case, 
researchers will have ample challenges to address in the field of 
high-dimensional, spatial-temporal data visualization. 

This paper presents our initial exploration of this design space. 
We call our basic visualization objects Wakame (pronounced wä–
’kä–me, a Japanese word for seaweed, and illustrated in Figures 2-
4). Initially developed to display a building’s environmental 
sensor information, Wakame have the potential to provide 
benefits in other visualization activities in which multi-
dimensional data has spatial and temporal components. Our 
proposal is to extrude 2D shapes representing multidimensional 
sensor readings into 3D in order to represent time and to locate 
these objects in a representation of the space in which the readings 
occurred Our methods have been prototyped with datasets 
containing dozens of sensors, each with as many as 40 dimensions 
and over 50k samples. Our prototype also provides the user with 
controls for selecting meaningful time ranges and subsets of the 
available data dimensions. It also performs analytics on the 
dataset (such as outlier detection and clustering) with the goal of 
supporting the user’s investigations. Finally, through dimension 
reduction and animation, Wakame are related to familiar 2D  
presentations. Through allowing the user to investigate the dataset 
with both 2D and 3D presentations, the benefits of each approach 
can be exploited. 

The remainder of this paper is organized as follows. First, we 
present related work and motivate the need for both 2D and 3D 
representations. Secondly, we present methods for linking our 
visualizations to locations in space, as well as relating these 3D 
visualizations to familiar 2D ones through the use of animation 
and dimensionality reduction. We then present a prototype system 
that uses our technique to visualize a building’s environmental 
sensor information. This prototype employs analytics to support 
common tasks and guide the user to “interesting” portions of the 
dataset. We conclude with an example datasets and a description 
of future work in this line of research. 

2. RELATED WORK 
2.1 Visualizing Multi-Dimensional, Time-
Based Data 
Multi-dimensional visualization is a mature field with a long 
history of research [17]. Parallel Coordinates, Scatterplot 
matrixes, Nightingale Rose Petals, and Chernoff Faces are among 
the many techniques to represent high-dimensional data in 2D. Of 
particular interest to this paper are radar graphs (also known as 
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star charts, spider graphs, Kiviat diagrams, and circular parallel 
coordinates). First used by Georg von Mayr [29], radar graphs 
plot multiple values along radial axes (Figure 1, top).  

With respect to time-based, multi-dimensional data, several 
authors have proposed either animating these presentations or 
extruding these 2D techniques into a third dimension to represent 
time. Yuhua [9] proposed a 3D Kiviat diagram in which the axes 
themselves are rolled up and down in 3D, the result of which 
allows the viewer to better perceive time-varying data. Fanea et al. 
[6] combine multiple 2D parallel coordinate visualizations into a 
single visualization, aligning multiple star charts along a time-axis 
and connecting the vertices with polylines. Most similar to our 
approach is Hackstadt and Malony's Kiviat Tube [10] and 
Tominski et al.'s 3D Kiviat Tube [26], both of which display 
multiple Kiviat charts along a time axis, and connect a single 
surface along this profile. The result of this extrusion is a tube-like 
solid, the shape of which illustrates the changes in multiple values 
over time. 

2.2 Spatial-Temporal Visualization 
Spatial-temporal visualization in the field of InfoVis has largely 
concerned itself with explicitly identified events, relationships, 
and/or movements in space and time. Graph-based visualization 
methods have been proposed for intelligence analysis [16], 
communication networks [2], as well as social networks [7] [11]. 
The visualization of human, animal, or vehicle movement in space 
and time is also important for building security systems [14], 
environmental  studies [14] and traffic management [1]. However, 
our primary concern in this line of research is with multi-
dimensional sensor streams that are relatively static in the spatial 
domain. Rather than events or relationships forming the data 
primitives for visualization, it is the stream of individual sensor 
readings that serve as the starting point. The discovery of 
relationships across the streams of data in space and time is the 
task of the human user of the visualization tool. Examples of 
application domains that share this characterization include indoor 
and outdoor environmental monitoring as well as equipment 
condition monitoring in which space may be a logical map (such 
as a schematic diagram) rather than a physical one (building floor 
plan or geographical map).  The generalization of geographically-
based space-time visualization to diagrams has been previously 
proposed by [16], but the focus there is still on relations and 
complex events across entities in space and time rather than on 
relatively stationary sensor data streams. Tominski et al. [27] 
describe the use of two different 3D icons that depict multi-
dimensional data streams from fixed locations. As with our 
system, these 3D icons are positioned on a 2D map so that 
multiple streams can be compared and related to their geographic 
location.  

2.3 Animation in Information Visualization 
Previous research suggests that animation provides a better 
understanding of the relationship among visual depictions of a 
dataset than do instant transitions [28]. An instant transition forces 
the viewer to mentally reconstruct the effects of the command, 
and animation shifts this cognitive task to a perceptual one, thus 
freeing cognitive resources for the primary task [23]. There are 

several overviews and guidelines governing the use of animation 
in InfoVis (e.g. [12]), and numerous examples of both its positive 
and negative effects on the understanding of a dataset [28]. 

2.4 2D vs. 3D Representations 
The human-perceptual system is remarkable in its ability to 
correctly recognize and interpret 3D shapes in the world around 
us. A good overview of current and past research in this area is 
provided by [22]. The phenomenon known as “shape constancy” 
[18] ensures that we are able to recognize the 3D shape of an 
object (or part) from multiple points of view and that this 3D 
shape remains constant regardless of the specific 2D shape 
projected on the retina.  

Furthermore, there is evidence from the field of perceptual 
psychology that repeated exposure to a 3D shape quickly ingrains 
it in memory [13]. The converse is also true; unfamiliar shapes 
“pop out” and demand attention. The recognition of these stored 
shapes occurs “unconsciously” with minimal cognitive effort [3], 
which is a very desirable quality when one is designing a system 
for making sense of complex multi-dimensional data. It has been 
argued that 3D shape is capable of encoding more information 
than other visual properties like color, weight, and scale [22]. 

While there are many benefits to 3D presentations of data, there 
are well-known drawbacks as well. First and foremost is the 
problem of occlusion. When data is encoded in a 3D scene, 
foreground objects necessarily block one’s view of background 
objects. Transparency can help, but it increases visual clutter. 
Furthermore, 3D presentations of data most often have a lower 
data/pixel ratio than 2D presentations, and thus more severely 
limit the amount of data visible to the user. It is unclear if 3D 
presentations allow users to accurately read and compare multiple 
values when compared to 2D. Finally, interaction and navigation 
in 3D can be more cumbersome and cognitively demanding, 
especially when performed on a 2D desktop display. 

Given the tradeoffs between 2D and 3D, it seems appropriate to 
employ both approaches. It is likely that a system that allows the 
user to easily switch between them while maintaining a link 
between these different views would be beneficial to gaining 
insight from the dataset. 

3. Wakame 
Figure 1 illustrates the basic technique for generating Wakame 
geometry. A traditional multi-dimensional radar chart (Figure 1, 
top) is draw on a ground plane in 3D (Figure 1, middle). As with 
other extrusion techniques, time is mapped to the y-axis, and 
sequential measurements become radar-graph profiles at different 
heights off of the ground plane (Figure 1, bottom left). These 
profiles are used to create a hollow “tubes” [10][26], the shape of 
which illustrates the changes in the data over time. 

While Figure 1 renders each Wakame in a single color, our 
prototype system assigns a different color to each of the vertexes 
that correspond to the different dimensions (Figure 2). With this 
color, both the overall shape and the changes in shape within each 
dimension are more easily understood. 



 

Figure 1. A traditional 2D radar chart ( top) is drawn on a 
plane in 3D (middle). Time is mapped to the y-axis. Sampled 

values form the profile at different heights (bottom left), and a 
3D shape is formed (bottom right). 

3.1 3D Shape Perception 
With our technique, correlations between the changes in values 
among multiple dimensions create recognizable 3D shapes. For 
example, a bulge in a Wakame that extends around its 
circumference indicates a similar change in values across many 
dimensions, just as a “cinch” in a Wakame indicates the lowering 
of several values (Figure 2, right). Similarly, a “wave” indicates a 
rising of the values of several dimensions that coincides with a 
lessening in others (Figure 2, left). Our design leverages the idea 
that events that cause predictable changes in many values 
simultaneously will result in shapes that become familiar to the 
practiced viewer [13]. To best take advantage of this property, 
careful attention should be paid to the ordering of dimensions 
around the center axis. Toward this end, we look to previous work 
on dimensional reordering in the field of multi-dimensional 
visualization (e.g. [21],[29]). 

3.2 Viewing and Comparing Multiple Time 
Ranges and Multiple Datasets 
Figure 1 illustrates how multiple overlapping Wakame can be 
rendered simultaneously in the same visualization. In this case, 
the red and blue Wakame overlap, and their intersection informs 
the viewer about the relationship in values between these two time 
series. The red and blue Wakame could come from two datasets 

recorded from different sources, or could even be derived from 
separate time ranges in the same dataset. 

 

Figure 2. A Wakame's shape implies meaning. (left) A “wave” 
in the Wakame indicates that certain values are rising while 

others are lowering. (right) “Bulges” and “cinches” show 
correlation in value changes among dimensions.  

In the previously cited examples, comparisons are always made 
among Wakame that contain identical data dimensions. While this 
is appropriate for a homogeneous sensor network, what about 
heterogeneous collections of data? Figure 3 shows two Wakame 
representing recorded data from two components in a system. 
Because these components perform different functions, they sense 
and record data in different dimensions. As such, a direct 
comparison is impossible; however, by rendering them side-by-
side, the cross correlation in shape between these heterogeneous 
data dimensions can be revealed.  

3.3 Relating Wakame to Spatial Locations 
Figure 4 shows a screenshot of our prototype system. The main 
window of the application shows the floor plan of a workspace, 
with 11 individual offices and three HVAC (heating, ventilation, 
air-conditioning) zones. At each meaningful location on this 
ground plane, our system renders a Wakame representing the 
multi-dimensional time-series data associated with that point. In 
this example, we have simulated sensor data recorded in each 
room of the building, although any multi-dimensional time-series 
dataset with spatial locations can be viewed in this way. While 

 
Figure 3. Shape correlation across different Wakame with 

different dimensions of data. 



both 3D and 2D presentations of temporal data can reveal 
temporal patterns, trends that occur in the temporal 
dimensions are much more difficult to detect with a collection of 
2D charts and graphs. For example, a failing HVAC component 
might cause environmental changes that cascade across offices 
over time. This said, our 3D presentation makes accurate 
comparison among Wakame more difficult than comparing axis 
aligned 2D charts – a drawback that is addressed in the next 
section.  

 

 

Figure 5. Collapsing spatial dimensions. When viewing the data in 2D is more advantageous, our system animat
and position of the Wakame and camera so that traditional 2D charts are displayed. This transition is bi

this figure can be read left

Figure 4. Prototype system overview. From each sensor 
location in this floor plan, a Wakame grows vertically over 
time. The profile at every height is derived from the multi

dimensional data collected at that moment. Controls around 
the border allow for the specification of time ranges as well as 

the constraining of displayed dimensions and Wakame.

both 3D and 2D presentations of temporal data can reveal 
temporal patterns, trends that occur in the temporal and spatial 
dimensions are much more difficult to detect with a collection of 

phs. For example, a failing HVAC component 
might cause environmental changes that cascade across offices 
over time. This said, our 3D presentation makes accurate 
comparison among Wakame more difficult than comparing axis 

is addressed in the next 

4. Collapsing for Traditional Views
Wakame are designed to present high
data in a manner that helps the viewer 
datasets. However, given the tradeoffs between 2D and 3D 
presentations that were discussed previously, 
a user is better served by a 2D representation of the data.
2D line-graph provides an excellent and easily accessible view of 
a handful of dimensions over time, one l
relationship among the sensor locations when viewing multiple 
2D graphs. Previous systems have proposed simultaneously 
displaying multiple views of a dataset
visual linking between corresponding features in the multiple 
views [4], arguing that multiple views might help a user's 
understanding of the data. Following this approach, one might 
choose to present Wakame visualizations along
views of the data. While promising, 
pixels and screen space than their

Our compromise is to relate traditional 2D views to the Wakames' 
locations in the space through the use of camera
geometry animation. Our prototype system includes two view 
transformations--one for collapsing the spatial dimensions of the 
Wakame into a traditional line chart, and one for collapsing the 
time-axis of the Wakame into a traditional radar graph. 
transitions are designed to help the viewer relate these 2D 
presentations of the data to their spatial locations.

Figure 5 illustrates the transition between several Wakame and 
their 2D line-chart counterparts. In our system, this transition is 
bi-directional--as such, Figure 5
to-left. Three characteristics o
this transition occurs. First, the camera rolls to the left so that the 

Collapsing spatial dimensions. When viewing the data in 2D is more advantageous, our system animat
and position of the Wakame and camera so that traditional 2D charts are displayed. This transition is bi

this figure can be read left-to-right or right-to-left. 

rototype system overview. From each sensor 
location in this floor plan, a Wakame grows vertically over 
time. The profile at every height is derived from the multi-

moment. Controls around 
the border allow for the specification of time ranges as well as 

isplayed dimensions and Wakame. 

for Traditional Views  
igned to present high-dimensional, time-series 

data in a manner that helps the viewer “make sense” of complex 
However, given the tradeoffs between 2D and 3D 

presentations that were discussed previously, there are times when 
2D representation of the data. While a 

graph provides an excellent and easily accessible view of 
a handful of dimensions over time, one loses the spatial 
relationship among the sensor locations when viewing multiple 

ems have proposed simultaneously 
displaying multiple views of a dataset [20] along with explicit 
visual linking between corresponding features in the multiple 

, arguing that multiple views might help a user's 
understanding of the data. Following this approach, one might 
choose to present Wakame visualizations alongside traditional 2D 
views of the data. While promising, multiple views consume more 

than their single-view counterpart. 

Our compromise is to relate traditional 2D views to the Wakames' 
locations in the space through the use of camera-view and 
geometry animation. Our prototype system includes two view 

one for collapsing the spatial dimensions of the 
Wakame into a traditional line chart, and one for collapsing the 

axis of the Wakame into a traditional radar graph. These 
help the viewer relate these 2D 

data to their spatial locations. 

illustrates the transition between several Wakame and 
chart counterparts. In our system, this transition is 

Figure 5 can be read left-to-right or right-
left. Three characteristics of the visualization animate when 

this transition occurs. First, the camera rolls to the left so that the 

 

Collapsing spatial dimensions. When viewing the data in 2D is more advantageous, our system animates the appearance 
and position of the Wakame and camera so that traditional 2D charts are displayed. This transition is bi-directional, so the cells in 



time-axis now runs horizontally across the screen (its most 
common orientation). Second, the points on the Wakame's radar 
graphs orient so that they align to a single axis that runs up-and-
down in the new view plane of the camera. Finally, the positions 
of the Wakame on the ground plane animate so that they equally 
spread out in the camera's new view plane. The result of these 
three animations is a collection of 2D line-charts stacked in the 
view plane. 

Heer et al. [12] recommend that complex animations be split into 
steps, an approach that they argue will help the viewer understand 
the transition. As such, we implemented a variation of our system 
that executes the camera, dimensional, and positional animation in 
series. 

Figure 6 illustrates the transition between a Wakame and its 2D 
radar graph counterpart. In this case, the radar graph represents 
the value of the Wakame at a single instant in time. When this 
transition takes place, the camera animates so that it faces 
perpendicularly to the ground plane, and centers itself on the 
selected Wakame. Meanwhile, the Wakame collapses along the y-
axis (time) dimension. As with the previous animation, this 
transition can occur in either direction as the user issues 
commands to display either time ranges or single instances in 
time. When multiple Wakame are viewed in this way, their spatial 
relationship is maintained. In a variation of our prototype, this 2D 
radar graph displays the mean and variance of a selected time 
range. 

5. Prototype System Overview 
In order to explore and develop our Wakame visualization 
approach and to develop the analytic features of the user interface, 
we build a prototype system capable of displaying large amounts 
of multi-dimensional time-based data. In the figures and examples 
used in this section, we simulated a large amount of sensor 
information for a fictional office space under varying 
environmental conditions. 

Figure 4 shows a screenshot of this prototype. Occupying the 
center and largest region of the screen is the 3D view. In this case, 
the floor-plan of an office building is shown, with Wakame 
growing vertically from their corresponding sensor locations in 
the workspace. On the left, a tree-view shows a hierarchical view 
of the sensors and their corresponding zones. On the right, our 
system provides two lists for selecting among multiple dimensions 
and among entire datasets (in this example, two datasets are 
loaded representing two separate simulations of the space). 

Finally, along the bottom of the application, a timeline shows the 
available data and allows the user to select one or more time 
regions for display. These components each respond to input on 
one another, and their appearance is designed to guide the user 
toward interesting and meaningful portions of the dataset.  

5.1 3D Scene 
The 3D Scene contains a plane in which the spatial components of 
the dataset are grounded. In Figure 4, this plane is the office floor-
plan of the building in which the visualized sensor data was 
collected, and we have experimented with cartographic (Figure 9) 
and schematic planes as well. The importance of this plane is that 
it links time-series' locations with their visual representations.  

Interaction with the 3D Scene takes place with the system mouse 
or other pointing device. Clicking directly on regions of the 
ground plane controls selection, and dragging the background 
rotates the camera using the ArcBall camera-orientation technique 
[24].  

5.2 Dimension and Dataset Lists 
Figure 4 shows the Dimensions List (top) and Datasets List 
(bottom) on the right side of the application. These lists are used 
to hide and show individual dimensions and datasets respectively. 
As individual dimensions are hidden and shown, the points of the 
Wakames' radar graphs animate to equally space themselves out 
around the y-axis. When entire datasets are hidden and shown, 
they fade in and out. 

5.2.1 Derived Dimensions 
In addition to the recorded or simulated data dimensions presented 
in the Dimension List, users are able to define their own 
derivative dimensions using the Groovy scripting language [7]. 
These scripts allow users to write simple functions that take the 
available data as parameters and return derived values allowing 
the sophisticated user to author their own derived dimensions to 
aid in their sense-making and exploration of the dataset.  

5.3 Timeline 
The bottom of Figure 4 shows the timeline widget for selecting 
time ranges. A full description of the features of this widget is 
outside of the scope of this paper; however, two properties of the 
timeline are important for understanding its use in the prototype 
system. Firstly, the timeline contains a hierarchical collection of 
selectable time ranges, which allow the user to quickly select 
individual or multiple months, week, days, and so on. Secondly, 
the color of these time ranges indicates their difference from 

Figure 6. When the user selects a single moment in time, the Wakame collapse along the y-axis and the camera animates to view 
them from directly above. This animation runs in both directions as single moments or time ranges are selected. 

 



similar time ranges in the dataset, a feature that is explored in 
more depth in the following section. 

6. Analytics and the GUI 
When given a large multi-dimensional dataset to work with, 
people turn to analytics to help sort, summarize, and filter this 
data so that it is more digestible to the human mind. Our prototype 
uses analytics to alter the appearance of the GUI components with 
the aim of guiding the user to interesting portions of the dataset in 
which meaningful discoveries can be made. 

Our approach is simple: any change in selection of the time range, 
dimensions, datasets, or Wakame triggers an update to the 
appearance of the timeline, Wakame tree, camera position, and 3D 
scene. In this section, we describe this use of analytics and the 
guidance it provides. 

6.1 Coloring the Timeline 
The use of analytics to color our timeline follows Lesh et al. [19] 
who used a similar approach to highlight cells in a user-defined 
spreadsheet. The basic approach is to allow the computer to 
quickly perform an exhaustive investigation of the space, and to 
use the results of this calculation to direct the user's attention to 
certain areas of the dataset. The user then, in turn, selects from 
among these “interesting” areas and the cycle begins again. 

As shown in Figure 4, the cells in our timeline (representing 
hours, days, weeks, and so on) are each drawn using a color 
between red and green. These colors reflect the cell's “difference” 
from neighboring cells for the currently selected dimensions and 
Wakame. “Difference” might mean different things for different 
tasks, and thus should be highly tailored to specific applications 
and their tasks. In our prototype, we measure difference from the 
mean, but any number of more sophisticated measures are 
possible and are supported through our scripting system. 

The result of these analytic methods is that the user is drawn 
towards meaningful time periods in the dataset. In addition to 
investigating these time periods themselves, larger cycles in the 
dataset become visible when the timeline is viewed as a whole. 
For example, vacations and monthly meetings (during which 
individuals' offices are unoccupied, but common rooms are 
crowded) become visible in the timeline, as do seasonal variations 
such as HVAC upticks during the hot summer months. 

6.2 Wakame Tree 
The Wakame Tree (Figure 7) is used both for displaying the 
hierarchical relationship among Wakame and for managing 
selection. There is a one-to-one mapping between nodes in this 
tree and Wakame in the 3D scene, with only the selected nodes 
being visible in the 3D window.  

There are two types of nodes--leaves and branches. Leaves in the 
tree represent locations in the workspace for which there is actual 
recorded or simulated time-series data to be displayed. In the 
example shown in Figure 7, these leaves represent environmental 
sensors placed in the individual offices of this building, and are 
named after the office residents. Branches in the tree represent 
conceptual groupings of the leaves. In the tree shown in Figure 7, 
there are three building zones (west, north, and south) that each 
contains a collection of offices. These three zones are in turn 
placed within the root “office” node, which also contains a leaf 
corresponding to the large common area in the middle of the floor 
plan. Figure 8 (top and bottom) show the appearance of the 3D 
Scene for the two states of the Wakame Tree shown in Figure 7 
(left and right). 

Whenever the user makes a change in the selected dimensions, 
dataset, time period, or Wakame, the selected Wakame in the tree 
view and their corresponding zones in the 3D scene are colored to 

 

Figure 7. The Wakame tree shows the hierarchical 
relationship among Wakame. In this example, Wakame 

representing sensors placed in individual offices are organized 
into a collection of zones. When collapsed, these zones display 

the numerical averages of their sub-Wakame.  

 

 

Figure 8. The top and bottom portions of this figure 
correspond to the left and right portions of Figure 7. By 

collapsing items in the tree, the user can reduce the visual 
complexity of the 3D scene. Analytics inform the presentation 
of the 2D zones in these figures. In this example, the Wakame 

are clustered into groups as represented by their color. 

 



reflect their similarity to one another. Again “similarity” will have 
different meanings to users involved in different tasks, and for the 
purpose of our prototype, we use a simple mul
clustering to assign Wakame into groups. Figure 7 and 8 show the 
grouping for two different selections of Wakame. This clustering 
guides the user to focus their attention on the most different 
Wakame, or to group similar Wakame for the purpo
simplifying the dataset and the task at hand. 

6.3 Intelligent Camera Positioning
When working with an early version of the system, it became 
obvious that a great deal of effort was needed to correctly position 
the camera in order to best view the selected Wakame. Toward 
this end, we implemented an automatic camera positioning system 
that attempts to position, orient, and zoom the camera to best view 
the selected Wakame. This approach does an adequate job of 
“getting a good look at” the geometry one wants to see. When 
used in combination with the ArcBall rotation around the point of 
focus, less effort is spent positioning the camera and, hopefully, 
more cognitive resources are available for interpreting the data.

7. Example Dataset 
The majority of figures and examples in this paper come from our 
exploration of large datasets generated from a simulation of an 
office building under various environmental and eq
conditions. We used the US Department of Energy's EnergyPlus 
[5] building simulation program to simulate an eleven
plan, and recorded 12 virtual “sensor” measurements at an interval 
of 5 minutes over the course of a year.  

It was encouraging that some characteristics of the office were 
immediately apparent. For example, the simulation includes a 
particularly cold January day, during which the building's HVAC 
system could not provide a comfortable working environment. 
Similarly, the cooling system conditioning the corner office that is 
used for monthly meetings cannot compensate for the additional 
thermal load added by the meeting's participants. This monthly 
occurrence resulted in a predictable bump on the office's Wakame 
the first Monday of each month. While interesting, it is 
worthwhile to point out that both of these findings could have 
been made through the use of 2D data representations.

In other cases, the spatial/temporal presentation provided by 
Wakame visualization lead to more subtle findings and a deeper 
understanding of the building’s HVAC performance. For 
example, offices on the south-side of the building received more 
sunlight, which greatly affects their environmental conditions and 
required more cooling in the summer and le
winter. Similarly, a gradual failure in the cooling system for one 
of the offices not only led to a rise in the temperature of that 
office, but also a cascading effect over time to the neighboring 
offices (Figure 9). In this case, a single failure lead to additional 
strain on neighboring units, which eventually lead to higher 
energy consumption, inefficiencies, and a reduction in comfort. It 
is clear that the spatial facet of the presentation makes the 
relationship between the performance of neighboring zones more 
clear than a collection of 2D charts, and we feel that this example 
lends weight to the argument for hybrid 2D/3D data visualization.  

reflect their similarity to one another. Again “similarity” will have 
different meanings to users involved in different tasks, and for the 
purpose of our prototype, we use a simple multi-dimensional 
clustering to assign Wakame into groups. Figure 7 and 8 show the 
grouping for two different selections of Wakame. This clustering 

on the most different 
Wakame, or to group similar Wakame for the purpose of 

 

Intelligent Camera Positioning 
When working with an early version of the system, it became 

that a great deal of effort was needed to correctly position 
the camera in order to best view the selected Wakame. Toward 
this end, we implemented an automatic camera positioning system 
that attempts to position, orient, and zoom the camera to best view 

does an adequate job of 
the geometry one wants to see. When 

used in combination with the ArcBall rotation around the point of 
focus, less effort is spent positioning the camera and, hopefully, 

cognitive resources are available for interpreting the data. 

The majority of figures and examples in this paper come from our 
exploration of large datasets generated from a simulation of an 
office building under various environmental and equipment 
conditions. We used the US Department of Energy's EnergyPlus 
[5] building simulation program to simulate an eleven-office floor 
plan, and recorded 12 virtual “sensor” measurements at an interval 

raging that some characteristics of the office were 
immediately apparent. For example, the simulation includes a 
particularly cold January day, during which the building's HVAC 
system could not provide a comfortable working environment. 

ing system conditioning the corner office that is 
used for monthly meetings cannot compensate for the additional 
thermal load added by the meeting's participants. This monthly 
occurrence resulted in a predictable bump on the office's Wakame 

y of each month. While interesting, it is 
worthwhile to point out that both of these findings could have 
been made through the use of 2D data representations. 

In other cases, the spatial/temporal presentation provided by 
ubtle findings and a deeper 

understanding of the building’s HVAC performance. For 
side of the building received more 

sunlight, which greatly affects their environmental conditions and 
required more cooling in the summer and less heating in the 
winter. Similarly, a gradual failure in the cooling system for one 
of the offices not only led to a rise in the temperature of that 
office, but also a cascading effect over time to the neighboring 

e failure lead to additional 
strain on neighboring units, which eventually lead to higher 
energy consumption, inefficiencies, and a reduction in comfort. It 
is clear that the spatial facet of the presentation makes the 

of neighboring zones more 
clear than a collection of 2D charts, and we feel that this example 
lends weight to the argument for hybrid 2D/3D data visualization.   

Figure 9. The effects of a failed component cascade to 
neighboring zones over time.

8. Conclusion 
In this paper, we have presented the Wakame visualization 
technique in the context of previous research into multi
dimensional, spatial-temporal data 
approach with a prototype application. We have argued for the use 
of our approach from the perspective of human perceptual 
psychology, and have given examples in which Wakame 
visualization may help users make sense out of large, complex 
datasets. Some of the tradeoffs between 2D and 3D presentations 
of data having been discussed, 
collapsing our 3D presentations along the temporal and spatial 
dimensions into familiar 2D views. Finally, our prototype includes 
several examples of analytics in the UI that were designed to 
guide the user to interesting parts of the dataset. 
seem promising; however, the methods
validation in order to draw firm conclusions. 
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