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Abstract

We propose an algorithm to find a low-dimensional decomposition of a spectrogram by formulat-
ing this as a regularized non-negative matrix factorization (NMF) problem with a regularization
term chosen to encourage independence. This algorithm provides a better decomposition than
standard NMF when the underlying sources are independent. It makes better use of additional
observation streams than previous nonnegative ICA algorithms.

ICASSP 2010

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part
without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include
the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of
the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or
republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All
rights reserved.

Copyright c©Mitsubishi Electric Research Laboratories, Inc., 2010
201 Broadway, Cambridge, Massachusetts 02139



MERLCoverPageSide2



SPECTROGRAM DIMENSIONALITY REDUCTION WITH INDEPENDENCE
CONSTRAINTS

Kevin W. Wilson

Mitsubishi Electric Research Lab
Cambridge, MA, USA

wilson@merl.com

Bhiksha Raj

Carnegie Mellon University
Language Technologies Institute

Pittsburgh, PA, USA
bhiksha@cs.cmu.edu

ABSTRACT

We present an algorithm to find a low-dimensional decomposition
of a spectrogram by formulating this as a regularized non-negative
matrix factorization (NMF) problem with a regularization term cho-
sen to encourage independence. This algorithm provides a better
decomposition than standard NMF when the underlying sources are
independent. It makes better use of additional observation streams
than previous nonnegative ICA algorithms.

Index Terms— matrix decomposition

1. INTRODUCTION

This paper presents a new algorithm for finding a low-dimensional
decomposition of a spectrogram in which each of the low-
dimensional components evolves (nearly) independently. Such a
representation can be useful when the spectrogram of interest was
generated as a sum of independent sources. Because power- and
magnitude-spectrograms are strictly nonnegative, this can be for-
mulated as a problem of independent component analysis (ICA) of
non-negative mixtures or alternatively as a problem of non-negative
matrix factorization (NMF) with an appropriate independence con-
straint. This paper elucidates these relationships and presents a new
method based on the NMF formulation of the problem.

Independent Component Analysis (ICA) aims to extract statis-
tically independent components from observations through linear
transformations. Given a collection of (column) vectors{v}, which
we can represent jointly as a matrixV , ICA attempts to estimate
an “unmixing” matrixM such that the the rows ofH = MV , i.e.
the components of the vectorsh that form the columns ofH are
statistically independent. If the vectorsv were themselves obtained
through a linear operation on independent sources,i.e. if V = WX,
whereX is a matrix composed of vectorsx with statistically inde-
pendent components, thenM will be a scaling and permutation of
the inverse of the original matrixW , i.e. M ≈ RW−1, whereR is
a scaling and permutation matrix, andH ≈ RX. Alternately stated,
the components of the observed vectorsv are said to bemixtures of
the original independent random variables represented inx, where
W is themixing matrix that mixes the components ofx. ICA as it is
normally performed [1, 2] aims to estimate anunmixing matrix M
that can recover the original independent components (to within a
permutation and scaling) from the mixed data in the observations.

The usual algorithms for ICA are agnostic to the polarity of the
data. In other words, ifM is a valid unmixing matrix, thenZM is
also a solution, whereZ = diag(1, 1, . . . ,−1, · · · , ) is a diagonal
matrix where some diagonal terms are1 and the rest are−1. When

both the original dataX and their mixed observationsV are known
a priori to be strictly non-negative then the solutions obtained may
not be satisfactory, sinceH is not guaranteed to be non-negative.

In [3] Plumbley presents a “non-negative ICA” algorithm that re-
covers non-negative independent components from mixtures of non-
negative sources. The algorithm is based on a theorem that states
that for any non-negative vectorx with independent components
drawn from well-grounded distributions (i.e. PDFs that extend to0),
multiplication by an orthogonal matrixQ results in a non-negative
resultv iff Q is a permutation matrix. This means that to derive
the unmixing matrixM it is sufficient to derive an orthogonal ma-
trix that decorrelates the rows ofV while subject to the constraint
that all components ofMV are nonnegative. Plumbley’s algorithm
therefore proceeds accordingly: the observation matrixV is pre-
whitened, followed by estimation of̄Q that results in non-negative
H, the components of which are provably now independent.

In this paper we utilize a similar observation that actually leads
to a reverse approach. We note that if a mixed non-negative matrix
can be expressed as the product of two non-negative matrices such
that the rows of the one of them are decorrelated, then the rows of
that matrix are also independent. In other words, if we were to simul-
taneously estimate a non-negativemixing matrix W and a matrix of
non-negative uncorrelated vectorsH such thatV = WH the rows
of H will also be independent. Additionally, there is no requirement
for distributions to be grounded.

Note thatV = WH is identical to the decomposition used in
non-negative matrix factorization (NMF). NMF [4] decomposes a
non-negative matrix into the product of two non-negative matrices
through a set of simple multiplicative rules that optimize one of sev-
eral objective functions. NMF by itself does not guarantee any sta-
tistical relationships between the terms it computes; however such
relationships can be imposed through regularization terms [5].

We recast the problem of deriving independent non-negative
components from their non-negative mixtures as a soft-constrained
NMF problem, where the constraint is the requirement that the rows
of H be maximally uncorrelated. This constraint, applied using a
decorrelating update mechanism proposed by Parra et. al. [6] as a
regularization term within NMF yields a set of simple multiplicative
update rules. We refer to our algorithm asNMFICA.

Simulations show that NMFICA is able to estimate mixing ma-
trices accurately, and results in estimates of unmixed independent
components that are comparable (in terms of SNR) to or better than
those obtained by other ICA algorithms, particularly in the presence
of noise. In particular, when the mixing matrixW is not square (and
has more rows than the number of independent sources) we achieve
superior results to other ICA techniques.



2. THE NMFICA ALGORITHM

We wish to solve the following problem. Given a nonnegative ma-
trix V , we wish to factorize it asWH, where bothW andH are
nonnegative matrices. Further, we seekH such that its rows are in-
dependent. More formally, we seekW andH such that

V = WH

Wab ≥ 0 ∀ a, b

Hbc ≥ 0 ∀ b, c

Vac ≥ 0 ∀ a, c

P (HicHjc) = P (Hic)P (Hjc) ∀ i, j, c (1)

whereWab andHbc are components ofW andH respectively. The
fifth condition in Equation 1 expresses independence of the rows
of H. (We will show below that it is sufficient to decorrelate the
columns ofH to achieve this independence.) Since all terms here
are non-negative, we recognize the above as a problem of regularized
non-negative matrix factorization.

Theorem 1 from Oja and Plumbley [7] states that independent,
nonnegative basis functions can be recovered by decorrelating ob-
servations and then finding an orthogonal transformation that leaves
them nonnegative. [7] does not constrain the mixing matrix to be
nonnegative, so they must require that probability distributions of
the sources be “well-grounded,” i.e. have support down to zero, in
order to recover independent components. In our formulation, we
require that the mixing matrix is nonnegative, and as a result we do
not require any “well-groundedness” of the source distributions. We
outline our argument below.
Lemma 1: Let U be a non-negative random variable whose com-
ponents are independent. LetY be a non-negative matrix such that
H = Y U is also non-negative. The rows ofH will be uncorre-
lated if and only if they are also independent, in which caseY will
a permutation-and-scaling matrix. The intuition behind this lemma
is that the mixing matrices that maintain uncorrelatedness can be
expressed as compositions of isometric transformations and single-
coordinate scalings; however, the only isometries that can be ex-
pressed with a nonnegative mixing matrixY are permutations. (For
example, rotations that do not result in complete permutations re-
quire negative values inY .)
Lemma 2: If a non-negative matrixV has been obtained from a non-
negative matrixU with independent rows asV = ZU , it can also
be expressed asV = WH, whereZ andW are also non-negative
and the columns ofH have the same dimensionality as those ofU ,
then the rows ofH can be expressed as the permutation of the rows
of U and are also independent. This follows as a consequence of
non-negativity and Lemma 1.

It follows from the above that a non-negative random variableV
that has been obtained through a linear combination of independent
variables can be expressed as the product of a non-negative matrix
W and a nonnegative vectorH such that the components ofH are
uncorrelated,H will be a permutation (and scaling) of the original
independent variables that composeV . Any linear transformation
that is uncorrelated but not independent will necessarily take on neg-
ative values inW and/orH.

The consequence of the above fact is that in order to derive the
independent components from a non-negative matrixV , it is suf-
ficient to decompose it asV = WH, where bothW andH are
non-negative, and the components ofH are uncorrelated.

Following the approach suggested in [5] we seek a solution to
Equation 1 using the following regularized NMF objective function

that must be minimized with respect toW andH:

D(W, H) =
1

2
||V −WH||2F + αJ(H) (2)

Here||V −WH||2F measures the reconstruction error, the Frobenius
norm of the difference between the mixed matrixV and its decompo-
sitionWH. For perfect decomposition this term would be0. J(H)
represents a regularization term that expresses some property that we
require fromH. α is a scalar weight given to this regularization term
in the optimization process.

J(H) must be chosen to express some function ofH that, when
minimized, will also minimize the correlation between the rows of
H. We choose the Frobenius norm of the empirical correlation ma-
trix of H.

J(H) = ||C(H)||2F (3)

C(H) = P
−1/2

H HHTP
−1/2

H (4)

whereC(H) is the energy-normalized correlation matrix ofH [6].
PH is a diagonal matrix of the energies (sums of squares) of the rows
of H. The diagonal elements of theC(H) are always equal to 1; as
a result minimizing its Frobenius norm will force the off-diagonal
elements toward zero.

We use the general form of the NMF update with regularization
onH from [5]:

Wab ← Wab
[V HT]ab

[WHHT]ab

Hbc ← Hbc

ˆ

[WTV ]bc − αϕ(Hbc)
˜

ε

[WTWH]bc + ε
(5)

whereε is a small positive constant and[ ]ε indicates that any values
within the brackets less thanε should be replaced withε to prevent
violations of the nonnegativity constraint.ϕ(H) is the gradient of
J(H) with respect toH.

ϕ(Hbc) =
∂J(H)

∂Hbc
(6)

=
X

i

X

j

Cij
∂Cij

∂Hbc
(7)

It is the straightforward to show that∂Cij/∂Hbc has the form:

∂Cij

∂Hbc
=

Bij(∂Aij/∂Hbc)−Aij(∂Bij/∂Hbc)

B2

ij

(8)

where we define intermediate variablesA andB as follows for no-
tational convenience:

A = HHT (9)

B = NNT (10)

Nb = ||Hb|| (11)

∂Aij/∂Hbc = 1bH
T

c + Hc1
T

b (12)

∂Bij/∂Hbc = Hbc(U1b1
T

b + 1b1
T

b UT) (13)

U = N(N−1)T (14)

where1b is an indicator vector that is zero everywhere except for
having thebth element equal to one.N is a vector whose elements
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Fig. 1. Spectrogram of a single-channel signal in which three differ-
ent instruments (piano, electric guitar, and accordion) play the same
note (440 Hz) at random times.
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Fig. 2. Top: true average spectra of the three instruments from Fig-
ure 1. Middle: spectral basis functions found by NMFICA. Bottom:
spectral basis functions found by standard NMF.

are the norms of the rows ofH, andU is an outer product ofN with
its element-wise inverse.

Equation 5, withϕ(H) as defined by Equations 6-14, forms the
substance of the update rule for NMFICA.

Figures 1 and 2 show the unmixing achieved by NMFICA for
a simple audio example. The spectrogram in Figure 1 shows a seg-
ment of the input signal, in which a synthesized piano, electric gui-
tar, and accordion each play the same note (440 Hz) repeatedly and
at random times. (The actual input to NMF and NMFICA in this
example is ten seconds long; only one second is shown.) As shown
in Figure 2, NMFICA finds three spectral basis functions that each
almost perfectly match the average spectra of an individual instru-
ment. Standard NMF finds three basis functions that roughly repre-
sent the fundamental and first two harmonics. These basis functions
can be combined to represent each instrument, but individual basis
functions do not capture individual instruments.

3. RELATION TO OTHER METHODS

In contrast to NMFICA, NMF by itself is not guaranteed to recover
independent signals; any such recovery is purely incidental. The

decorrelating regularization term is critical for independence.
Decorrelation in itself does not work as an independence cri-

terion for ICA, and most ICA algorithms actually attempt to ma-
nipulate higher-order moments of the data either directly or indi-
rectly to achieve independence in the unmixed outcome. Under some
conditions, however, decorrelation can directly result in indepen-
dence. Fancourt and Parra [6] have previously employed decorre-
lation as an independence criterion for nonstationary (although not
non-negative) signals where they seek a solution that decorrelates
the reconstructed sources at multiple points in time. In fact, we
have drawn the principle of minimization of the Frobenius norm of
the correlation matrix as an objective for decorrelation from their
work. Oja and Plumbley [7] also use decorrelation (without enforc-
ing higher order independence) as part of their nonnegative ICA al-
gorithm. They prove that this decorrelation criterion is sufficient
for use as an independence criterion for nonnegative ICA as long
as the source PDFs are “well-grounded”. The key contrast between
our work and these prior approaches is that we aim to estimate the
mixing matrix, whereas prior methods have invariably attempted to
estimate the unmixing matrix. We will show in our results that our
approach yields better results in the noisy, overdetermined case.

Additional distinctions exist with respect to prior algorithms for
ICA of non-negative data. In contrast to Plumbley’s approach which
only ensures thatH is non-negative, and requires it to be “well-
grounded”, our approach ensures that bothW andH are nonneg-
ative and does not requireH to be grounded. For some applications,
this may be an important distinction. On the other hand, Plumbley’s
approach leads to a convex problem, whereas our algorithm, like
all NMF formulations, is guaranteed only to find a local minimum.
The two constraints of decorrelation and nonnegativity will only be
achieved when a perfect decompositionV = WH is found. For lo-
cally optimal solutions the decorrelation may not be complete, from
which it follows thatH will not be truly independent.

Nevertheless, we believe that our algorithm is useful because
it can deal with non-square mixing matrices. We are not aware of
an extension to Plumbley’s approach to non-square matrices. We
will show in the following section that in noisy conditions with
non-square mixing matrices, our algorithm can outperform other ap-
proaches.

4. RESULTS

We test our algorithm on a simple synthetic problem against three
related algorithms.

We generate synthetic observationsY by Y = [MX + Z]ε,
where the elements ofM andX are independently chosen from a
uniform distribution on[0, 1] and whereZ is IID Gaussian noise.
We take as a baseline a problem with 500 samples of a 3-dimensional
source, i.e.X is3×500, and we vary the observation dimensionality
and noise level. For NMFICA and for standard NMF, we initialize
the entries ofW andH with uniform random values from [0, 1].

We compare against three other methods: unregularized NMF,
i.e. Equation 5 withα = 0, FastICA [1], a popular ICA implemen-
tation (that does not include a nonnegativity constraint), and Oja and
Plumbley’s nonnegative ICA algorithm from [7].

Figure 3 shows results for a square (3 × 3) mixing matrix, and
Figure 4 shows results for a6×3 mixing matrix, resulting in twice as
many observations as sources. Both figures show output SIR as input
SNR is varied. We define “input SNR” to be the power ratio between
MX andZ, the ratio of the mixed source power to the additive noise
power. “Output SIR” refers to the signal-to-interferer ratio (SIR),
the ratio between the recovered source power and the residual power
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Fig. 3. Output SIR vs. input SNR for a square mixing matrix. (no =
ns = 3). Solid lines show average performance. Dashed lines show
the worst SNR out of the three recovered sources.
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Fig. 4. Output SIR vs. input SNR for a mixing matrix with twice as
many observations as sources. (no = 6, ns = 3). Solid lines show
average performance. Dashed lines show the worst SNR out of the
three recovered sources.

from other source channels remaining in the reconstruction. In each
figure, solid lines represent mean SIR and dashed lines represent the
minimum (worst) SIR of the three recovered sources. This minimum
SIR is important because we often want reasonable reconstructions
of all sources rather than very good reconstructions of some sources
and very poor reconstructions of others. Each point in the figures is
an average value over 100 realizations of the problem.

In general, we do not expect unregularized NMF (“NMF” in the
results tables) to perform particularly well because it incorporates
no independence constraint. It can be expected to achieve low recon-
struction error, i.e.WH ≈ Y , but the rows ofH will not necessarily
be a permutation of the rows ofY . Our results in general show that
source reconstruction by NMF is poor.

Figure 3 shows that for the square mixing matrix and infinite
SNR (no noise), FastICA and nonnegative ICA do much better than
NMFICA. However, when even a small amount of noise is added, the
performance of FastICA and nonnegative ICA become comparable
to that of NMFICA.

For the non-square (extra observations) case in Figure 4, NM-
FICA performs best in all but the no-noise case. We are unaware of
an extension of Oja and Plumbley’s nonnegative ICA algorithm to
handle non-square matrices, so instead we use only the first 3 ob-
servations as a square mixing problem. For this reason, nonnegative

ICA performance is nearly the same in the two figures. Other than
the fact that the number of sources was specified, FastICA was used
with its default parameters. In this non-square case, the finding of
the independent components is a form of dimensionality reduction.

We believe this scenario in which there are many noisy mea-
surements of a relatively small number of independent sources is
an important one, for example when a spectrogram with hundreds
of frequency bins can be described using a relatively small number
of basis functions. In our previous work, we have encountered this
scenario while applying NMF-based techniques to speech denoising
[8, 9]. In future work, we hope to combine NMFICA with the reg-
ularization techniques in [8, 9] and apply it to denoising and source
separation of speech and other nonstationary signals.

5. CONCLUSION

We have presented an NMF-based algorithm for independent com-
ponent analysis of non-negative data such as power- or magnitude-
spectrograms. In contrast to previous methods, we estimate a mixing
matrix, rather than an unmixing matrix. Experiments show that we
are able to achieve unmixing comparable to other methods of ICA
for square mixing matrices, and significantly better when the mixing
matrix is not square, particularly in noise.
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