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Abstract

In this paper we show that, surprisingly, it is possible to recover sparse signals from nonlinearly
distorted measurements, even if the nonlinearity is unknown. Assuming just that the nonlinearity
is monotonic, we use the only reliable information in the distorted measurements: their ordering.
We demonstrate that this information is sufficient to recover the signal with high precision and
present two approaches to do so. The first uses order statistics to compute the minimum mean
square (MMSE) estimate of the undistorted measurements and use it with standard compressive
sensing (CS) reconstruction algorithms. The second uses the principle of consistent reconstruc-
tion to develop a deterministic nonlinear reconstruction algorithm that ensures that measurements
of the reconstructed signal have ordering consistent with the ordering of the distorted measure-
ments. Our experiments demonstrate the superior performance of both approaches compared to
standard CS methods.
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ABSTRACT

In this paper we show that, surprisingly, it is possible to recover
sparse signals from nonlinearly distorted measurements, even if
the nonlinearity is unknown. Assuming just that the nonlinearity
is monotonic, we use the only reliable information in the distorted
measurements: their ordering. We demonstrate that this information
is sufficient to recover the signal with high precision and present
two approaches to do so. The first uses order statistics to compute
the minimum mean square (MMSE) estimate of the undistorted
measurements and use it with standard compressive sensing (CS) re-
construction algorithms. The second uses the principle of consistent
reconstruction to develop a deterministic nonlinear reconstruction
algorithm that ensures that measurements of the reconstructed signal
have ordering consistent with the ordering of the distorted measure-
ments. Our experiments demonstrate the superior performance of
both approaches compared to standard CS methods.

Index Terms— Compressive Sensing, randomized sampling,
consistent reconstruction, order statistics

1. INTRODUCTION

Compressive Sensing (CS) is a recently emerged signal acqui-
sition technology that leverages the structure in most signals of
interest to enable acquisition at rates significantly lower than pre-
viously thought possible. To do so, CS combines randomized
linear measurements—which guarantee that the whole signal is
observed—with nonlinear reconstruction to incorporate the signal
structure in the recovery [1].

This paper extends the CS framework to recover signals from
measurements observed through an unknown monotonic nonlinear
distortion. We demonstrate that, surprisingly, the distortion main-
tains sufficient information to recover the signal. The key insight is
that the relative ordering of the signal values is preserved because the
distortion is monotonic. This ordering by itself preserves sufficient
information for the signal reconstruction.

We contribute two significantly different recovery frameworks.
The first is a statistical framework that estimates the undistorted
measurements using the order statistics of the distorted measure-
ments. This estimate can be used as the input to any reconstruction
algorithm to recover the signal. The second is a deterministic frame-
work that directly incorporates the ordering information in the re-
construction algorithm. In that framework, we present a new greedy
reconstruction algorithm to produce a signal estimate consistent with
the information in the measurement ordering. Both approaches out-
perform classical CS reconstruction on the distorted data.

The first CS hallmark we exploit is the randomized measurement
process which makes individual measurements normally (or approx-
imately normally) distributed i.i.d. random variables. We exploit the
randomization by combining standard estimation theory with order

statistics to compute a minimum mean squared error (MMSE) esti-
mate of the undistorted measurements. The estimate is based only on
the ordering of the distorted measurements. Our methodology does
not rely on the signal structure or the reconstruction algorithm, only
on the measurement process. Thus, although we present it in the con-
text of CS, it can recover a variety of signals from their randomized
distorted measurements using the appropriate recovery algorithm.

The second CS hallmark we exploit is nonlinear reconstruction
which allows us to incorporate the ordering of the measurements as
a constraint in the reconstruction process. Thus, in addition to prior
knowledge of the signal structure we capitalize on our knowledge of
the sampling system. The second part of this paper presents a gen-
eral framework as well as a specific greedy reconstruction algorithm
that imposes consistency with the measurement ordering. The algo-
rithm harnesses recent results on consistent reconstruction from the
sign of CS measurements [2, 3]. As in the first part, the consistent
reconstruction principle can be used in non-sparse problems.

The applications of this work are numerous. Drift and nonlinear
variations of sampling devices are very common in modern acqui-
sition systems, both due to manufacturing and run-time conditions.
For example, in optical acquisition systems such as [4], the operating
temperature and the ambient light in the scene can make the device
drift to a nonlinear acquisition region. The framework presented in
this work is highly suitable to such acquisition systems.

The next section provides some background on CS with empha-
sis on 1-bit CS and a brief overview of the order statistics results used
in this paper. Section 3 presents the measurement model and our as-
sumptions. Section 4 develops the statistical approach to substitute
the distorted measurements with their undistorted MMSE estimate.
Section 5 develops the deterministic consistent reconstruction ap-
proach. Section 6 presents experimental results comparing the two
approaches with each other and with standard practice.

2. BACKGROUND

2.1. Compressive Sensing

Compressive (or Compressed) Sensing (CS) is a recently emerged
signal processing field that enables the acquisition of sparse signals
using very few measurements compared to the signal dimension. Us-
ing CS, a signal x ∈ RN with only K non-zero coefficients can be
recovered from only M = O(K log(N/K)) linear non-adaptive
measurements, compactly represented using

y = Ax,y ∈ RM , (1)

where A ∈ RM×N models the measurement system.
Exact recovery is guaranteed if the measurement matrix A obeys

a restricted isometry property (RIP) of order 2K, i.e., if there exists
a universal constant δ2K such that for all 2K-sparse signals z

(1− δ2K)‖z‖2
2 ≤ ‖Az‖2

2 ≤ (1 + δ2K)‖z‖2
2. (2)



If δ2k is small, A approximately maintains `2 distances between K-
sparse signals. In this case, exact recovery is possible using a con-
vex optimization [1] or a greedy algorithm with provable guarantees,
such as the recently emerged Compressive Sampling Matching Pur-
suit (CoSaMP) [6] and the Subspace Pursuit [7].

An important result is that random matrices with sufficient num-
ber of rows can achieve small RIP constants with overwhelming
probability. Thus, random matrices are commonly used for CS ac-
quisition and reconstruction. The randomness of the acquisition
matrix further ensures a nice statistical distribution of the results.
Specifically, if the matrix is composed of i.i.d. random entries, then
the measurements y also follow a normal distribution asymptoti-
cally [8]. We rely on this property in the first part of the paper.

It is important to note that the randomness of the measurements
is with respect to the sample space of measurement matrices. There-
fore, any results based on this distribution, such as the results in the
first part of this paper, are for the typical case, not the worst case.
This is in contrast to a significant part of the CS literature which
considers worst case (adversarial) selection of the measured signal
given the sampling matrix A. The RIP is such an example property:
it requires that the matrix is well-conditioned even for the worst case
x to be sampled. Although this difference is often not consequential
in practice, it can be an important distinction for certain applications.

2.2. 1-bit Compressive Sensing

A significant step in the CS literature that enables the development
in this paper is 1-bit Compressive Sensing [2], in which a signal is
acquired and reconstructed using only the signs of linear measure-
ments. Specifically, a signal is sampled using

y = sign (Ax) , (3)

where sign (·) = ±1 according to the sign of the measurement, and
is applied element-wise. The signal is reconstructed to be consistent
with the signs of the measurements, i.e., such that sign (Abx) = y
and bx is sparse.

The signs of the measurements eliminate any information about
the amplitude of the signal. Thus, the constraint ‖bx‖2 = 1 is im-
posed in the reconstruction, i.e., the reconstruction is performed on
the unit sphere. Sparsity is enforced by minimizing the `1 norm on
the sphere (otherwise bx = 0 is the minimizer).

Consistency with the measurements is imposed by relaxing the
strict constraints and introducing a one-sided quadratic penalty if a
constraint is violated. This can be expressed as the squared norm of
the measurements that violate the constraint.Specifically, we let (·)−
denote the negative part of a scalar, i.e.,

(x)− = −min(x, 0) =
|x| − x

2
=


0, if x ≥ 0
−x otherwise. (4)

The penalty is then equal to

c(bx) =
‚‚(diag (y)Abx)−

‚‚2

2
, (5)

where diag (y) is a matrix with the signs of the measurements in its
diagonal. The negative part operator (·)− is applied element-wise
to identify the constraint violations and the magnitude of the viola-
tion. A signal estimate consistent with the samples will produce no
constraint violations and the penalty function c(bx) will equal zero.

Using (5) the reconstruction problem is relaxed to

bx = arg min
x, ‖x‖2=1

‖x‖1 +
λ

2

‚‚(diag (y)Abx)−
‚‚2

2
. (6)

Of course, (6) is non-convex and convergence to the global optimum
cannot be guaranteed.

Another recent approach to recover the sparse signal is the
Matching Sign Pursuit (MSP)—a greedy algorithm that computes a
sparse minimum to the penalty function (5) [3]. The MSP performs
an iterative greedy search inspired by CoSaMP [6]. Specifically, the
MSP, described extensively in [3], updates a sparse estimate of the
signal bx by iterating the following until convergence:
(i) Identify which sign constraints are violated
(ii) Identify the signal components mostly effective in minimizing
the cost function and reducing the sign violations
(iii) Minimize the cost function over those components
(iv) Truncate the signal to the desired sparsity, normalize to ‖bx‖2 =
1, and update the estimate.

It is important to highlight two distinct advantages of the MSP
over the minimization in (6). First, it is straightforward to show that
the original signal terminates the algorithm. So does any K-sparse
consistent solution, as desired. Second, even though both attempt
an optimization over a non-convex space, MSP experimentally per-
forms better in avoiding the local minima. Thus, in Section 5 we
prefer the MSP to perform consistent reconstruction.

2.3. Order Statistics

We assume a set of M random variables yi ∈ R, also denoted as
a vector y ∈ RM . These are independently drawn from some dis-
tribution f(y), with cumulative distribution function F (y). For the
remaining of this paper we use y(i) to denote the set of variables
sorted in ascending order, y(1) ≤ y(2) ≤ . . . ≤ y(M), and ki to
denote the index of the ith sorted measurement, i.e.,

y(i) = yki , i = 1, . . . , M. (7)

The sorted observations y(i) form the order statistics of the observa-
tions. We further define pi = i

M+1
and qi = 1− pi, which asymp-

totically counts the fraction of measurements less than and greater
than y(i), respectively.

The moments of order statistics generally do not have a closed
form. An asymptotically accurate unbiased approximation is [9]

E
`
y(i)

´
= Q (pi) , (8)

E
`
y(i)y(j)

´
=

piqj

M + 2
Q′(pi)Q

′(qj) (9)

where Q(x) = F−1(x) is the inverse of the CDF, often referred to
as the quantile function, and Q′(x) is its derivative evaluated at x.
This should not be confused with the Q(·) function often denoting
the tail integral of the normal distribution—not used in this paper.

3. MEASUREMENT MODEL

For the remainder of this paper we consider linear measurements of
a signal x ∈ RN using inner products with the rows ai of a mea-
surement matrix A ∈ RM×N , which is random but known at the
reconstruction. Without loss of generality, the matrix is assumed to
have random i.i.d. elements drawn from the standard normal distri-
bution N (0, 1).1 Each measurement is observed through the same
nonlinear function g(x):

y = g(Ax), (10)

1In most of the CS literature the entries of A are drawn with variance
σ2 = 1/M . This choice is inconsequential but simplifies further notation.



where g(x) is applied element-wise to each of the vector coefficients.
Although we do not assume knowledge of g(x), we do assume it is
strictly increasing, i.e., g(x1) > g(x2) ⇔ x1 > x2. We briefly
discuss relaxing this assumption at the end of Section 6. Due to lack
of space we focus on the fundamental concepts in this paper and
we assume noiseless sampling. Still, in the experimental section we
demonstrate that our methods are robust in the presence of noise.

Since the nonlinear distortion is unknown, only limited informa-
tion is conveyed through g(·). For example, the unknown distortion
g(x) eliminates any magnitude information on x: for any c > 0,
y = g(Ax) = bg(Acx), where bg(x) = g(x/c) is also monotonic.
Either of the two functions could be the nonlinearity distorting the
signal. Thus, x can only be recovered within a positive scalar factor.
Furthermore, any other monotonic distortion eg(·) of the measure-
ments may originate from the same signal since the composition of
two monotonic functions is also monotonic.

On the other hand, it is trivial to show that the nonlinearity main-
tains the sorting order of the measurements. This is a property we
exploit in our development. From (7) it follows that

sign
`
y(i) − y(j)

´
= sign (i− j) . (11)

The index sequence {k1, . . . , kN} is preserved among all monotonic
distortions g(x), including the identity. Furthermore, once the se-
quence {ki} is known, the exact values of y(i) provide no further
information and cannot be useful in the reconstruction. This is be-
cause a nonlinear monotonic distortion can always be constructed
that maps y(i) to any other y′(i) that has the same ordering {ki}.

Since A is a random matrix with i.i.d. normally distributed en-
tries, the undistorted measurements—denoted y = Ax—are also
normally distributed i.i.d. variables with respect to the sample space
of A. Asymptotically, this is true even if the matrix entries are i.i.d.
but not normally distributed, due to the central limit theorem [8].

4. MEASUREMENT SUBSTITUTION

This section uses the measurement order statistics to reconstruct the
signal. Since the nonlinearity g(·) is unknown, the ordering of the
measurements is the only reliable information we obtain from y.
Using the normality of the undistorted measurements y we develop
a robust estimator for y using its order statistics.

Specifically, instead of using the distorted measurements we re-
place them with the MMSE estimate of the undistorted values, con-
ditioned only on the measurement ordering. The estimator is a func-
tion of the measurement ordering denoted using by ({ki}). From
standard estimation theory, it is the conditional expectationby ({ki}) = E(y|{ki}) (12)

As argued in Section 3, the measurement process removes any
information on the signal amplitude. Thus, the signal can only be
identified within a positive scaling factor. As with [2], we normalize
the recovered signal to have unit `2 norm. Under this assumption
and the normality of the measurement matrix, the measurements fol-
low the standard normal distribution N (0, 1). Using the asymptotic
approximation (8) into (12), the estimator for by(i) follows

by(i) = byki = Φ−1 (pi) , (13)

where Φ(·) denotes the CDF of the standard normal distribution

Φ(x) =
1√
2π

Z x

−∞
e−u2/2du. (14)

The estimated measurements can be used as input to any reconstruc-
tion algorithm to reconstruct the signal.

5. CONSISTENT RECONSTRUCTION

In this section instead of using the measurement ordering to estimate
the undistorted measurements, we impose consistent measurement
ordering as a constraint in the reconstruction algorithm. In other
words, we use a reconstruction algorithm that ensures that the mea-
surements of the reconstructed signal have the same ordering as the
measurements of the original signal.

To impose consistency we capitalize on the the MSP algorithm
briefly described in Section 2.2. We use the MSP with the measure-
ment model in Section 3 to derive an implicit sampling matrix eA
such that ey = sign

“ eAx
”

can be derived from the ordering of the

measurements. If we let ak denote the kth row of A, then

y(i) > y(j) ⇔ yki > ykj ⇔ 〈aki ,x〉 > 〈akj ,x〉 (15)

⇔ 〈aki − akj ,x〉 > 0 (16)

⇔ sign
`
〈aki − akj ,x〉

´
= sign (i− j) , (17)

where (15) follows from the monotonicity of the nonlinear distortion
in (10), and (17) follows from (11), i.e. from the properties of the
sorting index sequence {ki}. In other words we can construct the
matrix eA using rows of the form aki − akj such that

sign
“ eAx

”
= sign

0BB@
...

i− j
...

1CCA ∆
= ey. (18)

This eA and the corresponding sign measurements ey are provided
as input to the MSP algorithm to estimate x. Eq. (18) above holds
for any choice of index pairs (ki, kj) and, therefore, for any choice
of vector pairs (aki ,akj ) chosen to construct eA. This is a design
choice in our approach. In this paper we use the (M − 1) pairs
(ki+1, ki), i = 1, . . . , M − 1 which, in principle, guarantee that the
reconstruction is consistent with every pair (ki, kj). In our experi-
ments, incorporating more pairs increased the computational cost of
the algorithm without any reconstruction benefits.

Since this approach attempts to solve a non-convex problem the
choice of initial seed is also important to facilitate convergence to
the global optimum. Even though the MSP algorithm has signifi-
cantly better convergence performance than the `1 optimization on
the sphere [2], we still observe convergence issues, especially with
a small number of measurements M . Fortunately we already have a
very good initial seed: we use measurement substitution and a few
iterations of standard CS decoding (for example CoSaMP [6]). This
provides an inexpensive way to ‘warm start’ the algorithm.

6. EXPERIMENTAL RESULTS AND DISCUSSION

To validate both approaches we performed a series of simulations,
which we report here. Our results were robust to variations in pa-
rameters, so in the interest of space we only present a small snap-
shot. The experiments use random matrices with standard normal
i.i.d. elements, of varying dimensions M and N . The sparse signals
are have K = 32 random non-zero coefficients with amplitude se-
lected from a normal distribution and normalized to have unit norm.
The signal is sampled through a tanh(·) nonlinearity to which white
Gaussian noise n is added with standard deviation σn = 0.01 and
0.001 per measurement. To summarize, the measurement process
implemented the following equation

y = tanh (Ax) + n. (19)
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Fig. 1. Reconstruction Signal-to-Error ratio, for varying signal
length N , with fixed sparsity K = 32 and undersampling ratio
M/N = 1/4. Results for two different input SNR are displayed.

The measured SNR of the measurements after the nonlinearity (i.e.
only due to the noise) was

SNR ∆
= 20 log10 (‖ tanh (Ax) ‖2/‖n‖2) ≈ 36 and 56 dB, (20)

for σn = 0.01 and 0.001 respectively, while the total measured
Signal-to-Distortion-Ratio (SDR), which includes the effect of the
nonlinearity was

SDR ∆
= 20 log10 (‖Ax‖2/‖Ax− y‖2) ≈ 7.4 dB (21)

for both σn = 0.01 and 0.001. In other words, the effect of the
nonlinearity was significant and dominated the distortion, while the
noise mostly affected the input SNR.

The reconstruction is performed using three different ap-
proaches. The first is a reference reconstruction using the standard
CoSaMP algorithm on the distorted measurements y. The second
is using the measurement substitution combined with the standard
CoSaMP, as described in the first part of the paper. The third is the
consistent reconstruction using the MSP algorithm, ‘warm started’
using a few iterations of the measurement substitution with the stan-
dard CoSaMP. For a fair comparison we normalized all outputs to
have unit `2 norm, i.e., ‖bx‖2 = 1 (without the normalization the
performance of standard CoSaMP was worse).

We performed two different sets of experiments. In the first set
the the sparsity level is constant K = 32 and we let N and M vary,
keeping their ratio fixed at M/N = 1/4. For each choice of M and
N a different set of random A, x, and n was generated.

In the second set of experiments the sparsity and the signal
length are constant K = 32 and N = 1000. The number of mea-
surements varies in the range M = 100, . . . , 1500. Of course, as M
increases the measurements are less “compressive” but we include
these results because they demonstrate clear trends. Furthermore,
as mentioned in the previous sections, the results are applicable
even when the number of measurements is not the main cost in the
system. The sparsity model and the non-linear reconstruction for
M ≥ 1000 serves more as a denoising model rather than a CS one.

Figures 1 and 2 plot the experimental reconstruction Signal-to-
Error Ratio (SER)

SERrecon
∆
= 20 log10 (‖x‖2/‖x− bx‖2) . (22)

The figures demonstrate that the consistent reconstruction approach
using the MSP outperforms the other approaches and is able to
reconstruct the signal roughly at the sampling SNR, especially as
M increases. It is also notable that at lower sampling SNRs and
larger number of measurements, measurement substitution performs
as well as consistent reconstruction. Both methods outperform stan-
dard reconstruction using CoSaMP. It is also important to point out
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Fig. 2. Reconstruction Signal-to-Error ratio, for varying number of
measurements M , with fixed sparsity K = 32 and signal length
N = 1000. Results for two different input SNR are displayed.

that with very few measurements, in the range M ≈ 100, . . . , 200,
consistent reconstruction was often not able to converge to the
global optimum and did not perform well. Failure to converge was
not encountered in any of our data points above M ≈ 200. Another
interesting observation is that as the number of measurements in-
crease, the performance gap between measurement substitution and
consistent reconstruction decreases.

We should note that noise under this distortion model can make
the tanh(·) distortion non-invertible, even when the distortion func-
tion is known and the recovery algorithm attempts to invert it. The
noise might make the measurement magnitude exceed 1, the range of
tanh(·). This is robustly handled by the two approaches described
in our paper, since neither attempts to invert the nonlinearity.

Each of the two methods has particular strengths and weak-
nesses. Incorporating nonlinearities that are not strictly monotonic,
such as quantization and saturation, is straightforward with consis-
tent reconstruction but not obvious in the measurement substitution
framework. Furthermore, deterministic matrix constructions can be
used with consistent reconstruction but not with measurement sub-
stitution. On the other hand, measurement substitution uses signifi-
cantly less computation and well-established convex reconstruction
algorithms with guaranteed performance. Both are significant addi-
tions to the system designer’s toolkit with remarkable performance.
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