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based on these ideas. The first decoder is based directly on DC, while the second decoder borrows
the important ”difference-map” concept from the DC algorithm and translates it into a BP-like
decoder. We show that this ”difference-map belief propagation” (DMBP) decoder has dramati-
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Abstract�The �Divide and Concur� (DC) algorithm, recently
introduced by Gravel and Elser, can be considered a competitor
to the belief propagation (BP) algorithm, in that both algorithms
can be applied to a wide variety of constraint satisfaction,
optimization, and probabilistic inference problems. We show that
DC can be interpreted as a message-passing algorithm on a
constraint graph, which helps make the comparison with BP
more clear. The �difference-map� dynamics of the DC algorithm
enables it to avoid �traps� which may be related to the �trapping
sets� or �pseudo-codewords� that plague BP decoders of low-
density parity check (LDPC) codes in the error-�oor regime.
We investigate two decoders for low-density parity-check

(LDPC) codes based on these ideas. The �rst decoder is based
directly on DC, while the second decoder borrows the important
�difference-map� concept from the DC algorithm and translates
it into a BP-like decoder. We show that this �difference-map belief
propagation� (DMBP) decoder has dramatically improved error-
�oor performance compared to standard BP decoders, while
maintaining a similar computational complexity. We present
simulation results for LDPC codes on the additive white Gaussian
noise and binary symmetric channels, comparing DC and DMBP
decoders with other decoders based on BP, linear programming,
and mixed-integer linear programming.

Index Terms�iterative algorithms, graphical models, LDPC
decoding, projection algorithms

I. INTRODUCTION

Properly designed low-density parity-check (LDPC) codes,

decoded using ef cient message-passing belief propagation

(BP) decoders, achieve near Shannon limit performance in

the so-called �water-fall� regime where the signal-to-noise

ratio (SNR) is near the code threshold [1]. Unfortunately,

BP decoders of LDPC codes often suffer from �error !oors�

in the high SNR regime, which is a signi cant problem

for applications that have extreme reliability requirements,

including magnetic recording and  ber-optic communication

systems.

There has been considerable effort in trying to  nd LDPC

codes and decoders that have improved error !oors while

maintaining good water-fall behavior. In general, such work

can be divided into two approaches. The  rst line of attack

tries to construct codes or representations of codes that have

improved error !oors when decoded using BP. Error !oors

in LDPC codes using BP decoders are usually attributed

to closely related phenomena that go under the names of

�pseudocodewords,� �near-codewords,� �trapping sets,� �in-

stantons,� and �absorbing sets� [2][3][4][5][6][7]. The number
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of these trapping sets (to choose one of these terms), and

therefore the error !oor performance, can be improved by

removing short cycles in the code graph [8][9][10]. One

can also consider special classes of LDPC codes with fewer

trapping sets, such as EG-LDPC codes [11], or generalized

LDPC codes [12][13].

The second approach, taken herein, is to try to improve

upon the sub-optimal BP decoder. This approach is logical

because already when he introduced regular LDPC codes,

Gallager showed that they have excellent distance properties

and therefore will not have error !oors if decoded using

optimal maximum-likelihood (ML) decoding [14]. Building on

the theory of trapping sets, Han and Ryan propose a �bi-mode

syndrome-erasure decoder.� This decoder can improve error

!oor performance given the knowledge of dominant trapping

sets [15]. However, determining the dominant trapping sets of

a particular code can be a challenging task. Another recently

introduced improved decoder is the mixed-integer linear pro-

gramming (MILP) decoder [16], which requires no informa-

tion about trapping sets and approaches ML performance, but

with a large decoding complexity. To deal with the complexity

of the MILP decoder, a multi-stage decoder is proposed in

[17], where very fast but poor-performing decoders are com-

bined with the more powerful but much slower MILP decoder.

The result is a decoder that performs as well as the MILP

decoder and with a high average throughput. This multi-stage

decoder nevertheless poses considerable practical dif culties

for certain applications in that it requires implementation of

multiple decoders, and the worst-case throughput will be as

slow as the MILP decoder. Our goal in this paper is to develop

decoders that perform much better in the error !oor regime

than BP, but with comparable complexity, and no signi cant

disadvantages.

Our starting point is the iterative �Divide and Concur�

(DC) algorithm recently proposed by Gravel and Elser [18]

for constraint satisfaction problems. When using DC, one  rst

describes a problem as a set of variables and local constraints

on those variables. One then introduces �replicas� of the

variables; one replica for each constraint a variable is involved

in.1 The DC algorithm then iteratively performs �divide�

projections which move the replicas to the values closest to

their current values that also satisfy the local constraints, and

�concur� projections which equalize the values of the different

replicas of the same variable. A key idea in the DC algorithm

is to avoid local traps in the dynamics by using the so-

1The use of the term �replica� in the current context should not be confused
with the �replica method� for averaging over disorder in statistical physics,
for a review of which we refer the reader to [19].
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called �Difference-Map� (DM) combination of �divide� and

�concur� projections at each iteration.

LDPC codes have a structure that make them a good  t for

the DC algorithm. In fact, Gravel reported on a DC decoder for

LDPC codes in his Ph.D. thesis, although his simulations were

very limited in scope [20]. We were curious about whether a

DC decoder could be competitive with�or better than�more

standard BP decoders. We were particularly motivated by the

idea that the �traps� that the DC algorithm�s �Difference-Map�

dynamics promises to avoid might be related to the �trapping

sets� that plague BP decoders of LDPC codes.

To construct a DC decoder, we need to add an important

�energy� constraint, in addition to the more obvious parity

check constraints. The energy constraint enforces that the

correlation between the channel observations and the desired

codeword should be at least some minimum amount. The

effect of this constraint is to ensure that during the decoding

process the candidate solution does not wander too far from

the channel observation.

We found that the DC decoder can be competitive with

BP decoders, but only if many iterations are allowed. Unfor-

tunately, DC errors are often �undetected errors� in that the

decoder returns a codeword that is not the most likely one.

Failures of BP decoding, in contrast, almost always correspond

to failures to converge or convergence to a non-codeword, and

therefore are detectable.

We show how the DC decoder can be described as a

message-passing algorithm. Using this formulation, we can see

how to import the difference-map idea into a BP setting. We

thus also constructed a novel decoder called the �difference-

map belief propagation� (DMBP) decoder. Essentially, DMBP

is a min-sum BP decoder with modi ed dynamics motivated

by the DC decoder. Our simulations show that the DMBP

decoder improves performance in the error !oor regime quite

signi cantly when compared with standard sum-product belief

propagation (BP) decoders. We present results for both the

additive white Gaussian noise (AWGN) channel and the binary

symmetric channel (BSC).

The rest of the paper is organized as follows. In Section

II, the DC algorithm is presented, and re-formulated as a

message-passing algorithm. The DC decoder for LDPC codes

is described in Section III. The DMBP algorithm is introduced

in Section IV. In Section V we present simulation results.

Conclusions are given in Section VI.

II. DIVIDE AND CONCUR

In this section, we review Gravel and Elser�s �Divide and

Concur� (DC) algorithm. Gravel and Elser did not formulate

DC as a message-passing algorithm, or otherwise compare

DC to BP, but the comparison is illuminating, and helped us

design the DMBP decoder. Thus we present DC in a way

that is consistent with Gravel and Elser�s presentation, but

makes comparisons to BP easier. We start by introducing

the idea of �replicas� in Section II-A in the context of

the familiar alternating projection approach to constrained

satisfaction problems. In Section II-B we introduce and discuss

the difference-map dynamics of DC. Then, in Section II-C

we reformulate DC as a message-passing algorithm directly

comparable to BP.

A. Replicas and alternating projections

Consider a system with N variables and M constraints on

those variables. We seek a con guration of the N variables

such that all M constraints are satis ed. For each constraint

that a variable is involved in, we create one �replica� of

the variable. The idea behind DC is that by constructing a

dynamics of replicas rather than of variables, each constraint

can be locally satis ed (the �divide� step), and then later the

possibly different values of replicas of the same variable can

be forced to equal each other (the �concur� step).

Denote using r(a) the vector containing the values of all

the replicas associated with the ath constraint and let r[i] be

the vector of all the values of replicas associated with the

ith variable. Let r be the vector containing all the values of

replicas of all the variables. Now r(a) for a = 1, 2, · · · ,M and

r[i] for i = 1, 2, · · · , N are two different ways to partition r

into mutually exclusive sets.

There are two projection operations, the �divide� projec-

tion and the �concur� projection, denoted by PD and PC ,

respectively. Both projections act on r and output a new r that

satis es certain requirements. Since r can be partitioned into

mutually exclusive sets, the projections are actually applied

to each set independently. The divide projection is a product

of local divide projections P a
D(r(a)) that operate on each

r(a) for a = 1, 2, · · · ,M . If r(a) satis es the ath constraint,

P a
D(r(a)) = r(a); otherwise, P

a
D(r(a)) = r̃(a) such that r̃(a) is

the closest vector to r(a) that satis es the ath constraint. The

metric used is normally ordinary Euclidean distance.

The divide projection forces all constraints to be satis ed,

but has the effect that replicas of the same variable do not

necessarily agree with one another. The concur projection is

a product of local concur projections P i
C(r[i]) that act on r[i]

for i = 1, 2, · · · , N . Let r̄[i] be the average of all the elements
in r[i] and construct a vector r̄[i] with each element equal to

r̄[i], with dimensionality the same as r[i]. Then P i
C(r[i]) = r̄[i].

While the concur projection equalizes the values of the replicas

of the same variable, the new values of the replicas may violate

some constraints.

The overall projection PD(r) [alternately PC(r)] is de ned
as applying P a

D(·) [P i
C(·)] to r(a) for a = 1, 2, . . . ,M

[r[i] for i = 1, 2, . . . , N ]. The M [N ] output vectors are

then reassembled into the updated r vector through appropriate

ordering.

A strategy is needed to combine these two projections to

 nd a set of replica values such that all constraints are satis ed

and all replicas of the same variable are equal. The simplest ap-

proach is to alternate two projections, i.e., rt+1 = PC(PD(rt)),
where rt is the vector of replica values at the tth iteration. This
scheme works well for convex constraints, but it is prone to

getting stuck in short cycles (�traps�) that do not correspond

to solutions.

To illustrate this point, consider the situation shown in Fig.

1, where we imagine that the space of replicas of a particular

variable is only two-dimensional, i.e., the variable in question
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Fig. 1. A simple example of a trap in an iterated projection strategy. If one
iteratively projects to the nearest point that satis es the constraints (A or B),
and then the nearest point where the replica values are equal (the diagonal
line) one may be trapped in a short cycle (B to C to B and so on) and never
 nd the true solution at point A.

participates in two constraints. The diagonal line represents the

requirement that all replicas are equal, since they are replicas

of the same variable. The points A and B are the two pairs of

replica values that satisfy the variable�s constraints. The only

common value that the replicas can take that satis es both

constraints is zero, i.e. point A. However, if one initializes

replica values near point B, say at D, and applies the divide

projection, then one will move to B, the nearest point that

satis es the constraints. Next, the concur projection will move

to point C, the nearest point (along the diagonal) where the

replica values are equal. Continued application of divide and

concur projections, in sequence, moves the system to B,
then back to C, then back to B, and so forth. Alternating

projections cause the system to be stuck in a simple trap. Of

course, this is only a toy two-dimensional example, but in non-

convex high-dimensional spaces it is plausible that an iterated

projection strategy is prone to falling into such traps.

B. Difference Map

The difference map (DM) is a strategy that improves al-

ternating projections by turning traps in the dynamics into

repellers. It is de ned by Gravel and Elser as follows:

rt+1 = rt + β [PC(fD(rt))− PD(fC(rt))] (1)

where fs(rt) = (1 + γs)Ps(rt) − γsrt for s = C or D with

γC = −1/β and γD = 1/β. The parameter β can be chosen

to optimize performance.

We focus here exclusively on the case β = 1, which is usu-
ally an excellent choice and corresponds to what Fienup called

the �hybrid input-output� algorithm, originally developed in

the context of image reconstruction [21][22]. See [23] for a

review of Fienup�s algorithm and other projection algorithms

for image reconstruction, and their relationship with earlier

convex optimization methods.

For β = 1, the dynamics (1) simplify to

rt+1 = PC

(

rt + 2[PD(rt)− rt]
)

− [PD(rt)− rt]. (2)

It can be proved that if a  xed point in the dynamics r∗ is

reached, i.e., rt+1 = rt = r∗, then that  xed point must

correspond to a solution of the problem. It is important to

note that the  xed point itself is not necessarily a solution. The

solution rsol corresponding to a  xed point r
∗ can be obtained

using rsol = PD(r∗) or rsol = PC(r
∗ + 2[PD(r∗)− r∗]).

We have found it very useful to think of the difference-

map dynamics for a single iteration as breaking down into

a three-step process. The expression [PD(rt) − rt] represents
the change to the current values of the replicas resulting

from the divide projection. In the  rst step, the values of the

replicas move twice the desired amount indicated by the divide

projection. We refer to these new values of the replicas as

the �overshoot� values rovert = rt + 2[PD(rt) − rt]. Next the
concur projection is applied to the overshoot values to obtain

the �concurred� values of the replicas rconct = PC(r
over
t ).

Finally the overshoot, i.e., the extra motion in the  rst step,

is subtracted from the concur projection result to obtain the

replica value for the next iteration rt+1 = rconct −[PD(rt)−rt].
In Fig. 2 we return to our previous example and see that the

DM dynamics do not get stuck in a trap. Suppose, as before,

that point A is at (0, 0), point B is at (3, 1), and and that we
now start initially at point r1 = (2, 2). The divide projection
would take us to point B, but the overshoot takes us twice

as far to rover1 = (4, 0). The concur projection takes us back

to rconc1 = (2, 2). Finally, the overshoot is corrected so that

r2 = (1, 3). The next full iteration takes us to r3 = (0, 4) (sub-
steps are tabulated in Fig. 2). Now however, we are closer to

A then to B. Therefore, the next overshoot take us to rover3 =
(0,−4), from which we would move to rconc3 = (−2,−2), and
r4 = r∗ = (−2, 2). Finally, at r4 we have reached a  xed point
in the dynamics that corresponds to the solution at A (which

can be obtained from the  nal value of PD(rt) or r
conc
t ).

We can generalize from this example to understand how

the DM dynamics turns a trap into a �repeller,� where at each

iteration, one moves away from the repeller by an amount

equal to the distance between the constraint involved and the

nearest point that satis es the requirement that the replicas

be equal. Of course, DM dynamics are not a panacea; it is

possible that DC can get caught in more complicated cycles

or �strange attractors� and never  nd an existing solution; but

least it will does not get caught in simple traps.

C. DC as a message-passing algorithm

We now turn to developing an alternative interpretation

of DC, as a message-passing algorithm on a graph. �Mes-

sages� and �beliefs� are similar to those in BP, but message-

update and belief-update rules are different. To begin with,

we construct a bi-partite �constraint graph� of variable nodes

and constraint nodes, where each variable is connected to

the constraints it is involved in. A constraint graph can be

thought of as a special case of a factor graph [24], where each

allowed con guration is given the same weight, and disallowed

con gurations are given zero weight.

We identify the DC �replicas� with the edges of the graph.

We denote by r[i]a(t) the value of the replica on the edge

joining variable i to constraint a at the beginning of iteration t,
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5 (−2, 2)

Fig. 2. An example showing how DM dynamics avoids traps. If we start
at the point r1, an iterated projections dynamics would be trapped between
point B and r1, and never  nd the solution at A. DM dynamics will instead
be repelled from the trap and move to r2 (via the three sub-steps denoted
with dashed lines rover

1
, rconc

1
= r1, and r2), then move to r3, and then

end at the  xed point r4 = r∗, which corresponds to the solution at A.

i.e., the appropriate element of r[i](t). We similarly denote by

rover[i]a (t) and rconc[i]a (t) the �overshoot� and �concurred� values

of the same replica. We note that these are all scalars.

We can alternatively think of the initial value of a replica

r[i]a(t) as a �message� from the variable node i to the con-

straint node a that we denote as mi→a(t). The set of incoming
messages to constraint node a, m→a(t) ≡ {mi→a(t) : i ∈
N (a)} where N (a) is the set of variable indexes involved in
constraint a, can therefore be expressed as m→a(t) = r(a)(t).
In the three-step interpretation of the DM dynamics de-

scribed above, these replica values are next transformed into

overshoot values by moving by twice the amount indicated

by the divide projection. Because the overshoot values are

computed locally at a constraint node using the messages

into to the constraint node, we can think of the overshoot

values rover[i]a (t) as messages from the constraint node a to

their neighboring variable nodes i, denoted by ma→i(t). The
set of outgoing messages from constraint node a is ma→(t) ≡
{ma→i(t) : i ∈ N (a)}. This set can thus be calculated as

ma→(t) = rovera (t) = r(a)(t) + 2[P a
D(r(a)(t)) − r(a)(t)] =

m→a(t) + 2[P a
D(m→a(t)) −m→a(t)].

The next step of the DC algorithm takes the overshoot

replica values rover[i]a (t) and computes concurred values rconc[i]a (t)
using the concur projection. Note that the concurred values for

replicas that are connected to the same variable node i are all

equal to each other. We can think of these concurred values

as �beliefs,� denoted by bi(t). Just as in BP, the beliefs at a

variable node i are computed using all the messages coming

into that variable node. However, while the BP belief is a sum

of incoming messages, the DC belief is an average:

bi(t) = P i
C(r[i](t)) =

1

|M(i)|
∑

a∈M(i)

ma→i(t) (3)

where M(i) is the set of constraint indexes in which variable
i participates.
Finally, the DC rule for computing the new replica values

at the next iteration is to take the concurred values and

subtract a correction for the amount we overshot when we

computed the overshot values. In terms of our belief and

message formulation, we compute the outgoing messages from

a variable node at the next iteration using the rule

mi→a(t+ 1) = bi(t)−
1

2
[ma→i(t)−mi→a(t)] . (4)

Comparing with the ordinary BP rule

mi→a(t+ 1) = bi(t)−ma→i(t), (5)

we note that the message out of a variable node in DC also

depends on the value of the same message at the previous

iteration, which is not the case in BP.

To summarize, the overall structure of BP and DC as

message-passing algorithms is similar. In both one iteratively

updates beliefs at variable nodes and messages between vari-

able nodes and constraint nodes. Furthermore, messages out of

a constraint node are computed based on the messages into the

constraint node, beliefs are computed based on the messages

into a variable node, and the messages out of the variable node

depend on the beliefs and the messages into a variable node.

The differences are in the speci c forms of the message-update

and belief-update rules, and the fact that a message-update rule

for a message out of a variable node in DC also depends on

the value of the same message in the previous iteration.

III. DC DECODER FOR LDPC CODES

Decoding of LDPC codes can be described as a constraint

satisfaction problem. We restrict ourselves here to binary

LDPC codes, although generalizations to q-ary codes are

straightforward. Searching for a codeword is equivalent to

seeking a binary sequence which satis es all the single-parity

check (SPC) constraints simultaneously. We also add one

important additional constraint, which is that the likelihood

of a binary sequence must be greater than some minimum

amount. Then the decoding problem can be divided into many

simple sub-problems which can be solved independently using

the DC approach.

Let M and N be the number of SPC constraints and

bits of a binary LDPC code, respectively. Let H be the

parity check matrix which de nes the code. Assume BPSK

signaling with unit energy, which maps a binary codeword

c = (c1, c2, . . . , cN ) into a sequence x = (x1, x2, . . . , xN ),
according to xi = 1 − 2ci, for i = 1, 2, . . . , N . The

sequence x is transmitted through a channel and the received
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channel observations are denoted y = (y1, y2, . . . , yN ). Let
the log-likelihood ratios (LLR�s) corresponding to the received

channel observations be L = (L1, L2, . . . , LN), where

Li = log

(

Pr[yi|xi = 1]

Pr[yi|xi = −1]

)

.

Our goal is to recover the transmitted sequence of variables

x. To do this, we will search for a sequence of ±1�s that

satis es all the SPC constraints and has the highest likelihood

or, equivalently, the lowest �energy,� where the energy is

de ned as E = −∑N
i=1 Lixi. Note that although our desired

sequence consists only of ±1 variables, the �replica� values,

or equivalently �messages� and �beliefs,� are real-valued.

In all, we have N variables xk, and M + 1 constraints,

of which M are SPC constraints, with one additional energy

constraint. We will write the energy constraint as−∑

i Lixi ≤
Emax, where different choices of Emax result in different

decoders. It is not obvious how to choose Emax; we performed

preliminary experiments to search for an Emax that optimizes

decoding performance. Somewhat surprisingly, the best choice

for Emax is one that for which the energy constraint can never

actually be satis ed: we found that Emax = −(1+ ǫ)
∑

i |Li|,
with 0 < ǫ ≪ 1 was an excellent choice. The fact that the

energy constraint is never satis ed is not a problem because the

decoder terminates if it  nds a codeword that satis es all the

SPC constraints. Until then, the effect of the energy constraint

is to keep the replica values near the transmitted sequence.

We will describe the DC decoder as an iterative message-

update algorithm on a constraint graph, following the formula-

tion in section II-C. We useN variable indexes i = 1, 2, · · · , N
and M + 1 constraint indexes a = 0, 1, 2, · · · ,M , where the

0th constraint is the energy constraint. SPC constraints involve

a small number of variables, but the energy constraint involves

every variable. To lay the groundwork for the overall DC

decoder, we now explain how to perform the divide and concur

projections.

A. Divide and concur projections for LDPC decoding

The divide projection PD can be partitioned into a collection

of M + 1 projections P a
D, where each projection operates

independently on a vector of messages m→a(t) ≡ {mi→a(t) :
i ∈ N (a)} and outputs a vector (of the same dimensionality)

of projected messages P a
D(m→a(t)). The output vector is as

close as possible to the original valuesm→a(t) while satisfying
the ath constraint.

The SPC constraints require that the variables involved in

a constraint are all ±1, with an even number of −1�s. For
these constraints we ef ciently perform the divide projection

as follows:

• Make a hard decision hia on each of mi→a(t) such that

hia = 1 if mi→a(t) > 0, hia = −1 if mi→a(t) < 0, and
hia is chosen to be 1 or −1 randomly if mi→a(t) = 0.

• Check if ha contains an even number of −1�s. If it does,
set P a

D(m→a(t)) = ha and return.

• Otherwise, let ν = argmini |mi→a(t)|. Especially for the
BSC, it is possible that several messages have equally

minimal |mi→a(t)|. In this case, we randomly pick one

of them and use its index as ν.

• Flip hνa, i.e., if hνa = −1, set it to 1 and if hνa = 1,
set it to −1. Then set P a

D(m→a(t)) = ha and return.

Recall that the energy constraint is −∑N
i=1 xiLi ≤ Emax.

This implies a divide projection on the vector of messages

m→0(t), performed as follows:

• If the energy constraint is already satis ed by the

messages m→0(t), return the current messages, i.e.,

P 0
D(m→0(t)) = m→0(t). (Recall however that the en-

ergy constraint will never be satis ed for the choice of

Emax = −(1+ǫ)
∑

i |Li| that we use in our simulations.)
• Otherwise,  nd h0 which is the closest vector to m→0(t)
and satis es the energy constraint. An easy application

of vector calculus can be used to derive that the ith
component hi0 is given by the formula

hi0 = mi→0(t)−
Li(

∑

i Limi→0(t) + Emax)
∑

i L
2
i

(6)

Set P 0
D(m→0(t)) = h0 and return.

Finally, the concur projection PC can be partitioned into a

set of N projection operators P i
C , where each P i

C operates

independently on the vector of messages m→i ≡ {ma→i(t) :
a ∈ M(i)} and outputs the belief bi(t), the average over the
components of the vector m→i.

B. DC algorithm for LDPC decoding

The overall DC decoder proceeds as follows.

0. Initialization: Set the maximum number of iterations to

Tmax and the current iteration to t = 1. Initialize the

messages out of variable nodes mi→a(t = 1) for all i
and a ∈ M(i) to equal 2pi − 1, where pi is the a priori
probability that the ith transmitted symbol xi was a 1,
given by pi ≡ exp(Li)/(1 + exp(Li)).

1. Update messages from checks to variables: Given the

messages m→a(t) ≡ {mi→a(t) : i ∈ N (a)} into each

constraint a, compute the messages out of each constraint
ma→(t) ≡ {ma→i(t) : i ∈ N (a)} using the overshoot

formula

ma→(t) = m→a(t) + 2[P a
D(m→a(t))−m→a(t)] (7)

where P a
D(m→a(t)) is the divide projection operation for

constraint a.
2. Update beliefs: Compute the beliefs at each variable node

i using the concur projections

bi(t) = P i
C(m→i(t)) =

1

|M(i)|
∑

a∈M(i)

ma→i(t). (8)

3. Check if codeword has been found: Create ĉ = {ĉi}
such that ĉi = 1 if bi(t) < 0, ĉi = 0 if bi(t) > 0 and !ip
a coin to decide ĉi if bi(t) = 0. If Hĉ = 0 output ĉ as

the decoded codeword and stop.

4. Update messages from variables to checks: Increment

t := t + 1. If t > Tmax stop and return FAILURE.

Otherwise, update each message out of the variable nodes

using the �overshoot correction� rule given in equation

(4) and go back to Step 1.
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As already mentioned in the introduction, the DC decoder

performs reasonably well, but with some problems. We de-

fer a detailed discussion of the DC simulation results until

section V. First we describe a second and novel decoder, the

difference-map belief propagation (DMBP) decoder.

IV. DMBP DECODER

Our motivation in creating the DMBP decoder was that

BP decoders generally perform well, but they seem to use

something like an iterated projection strategy, and perhaps

the trapping sets that plague the error-!oor regime are related

to the �traps� that the difference-map dynamics is supposed

to ameliorate. Since we can also describe DC decoders as

message-passing decoders, we could try to create a new BP

decoder that was a mixture of BP and difference-map ideas.

For simplicity, we work with a min-sum BP decoder us-

ing messages and beliefs that correspond to log-likelihood

ratios. Note that the min-sum message update rule is much

simpler to implement in hardware than the standard sum-

product rule. Normally, sum-product (or some approximation

to sum-product) BP decoders are favored over min-sum BP

decoders because they perform better, but we found that the

straightforward min-sum DMBP decoder will out-perform the

more complicated sum-product BP decoder. Our preliminary

simulations also show, somewhat surprisingly, that the min-

sum DMBP decoder slightly out-performs a sum-product

DMBP decoder. (We don�t further discuss the sum-product

DMBP decoder herein.)

We use the same notation for messages and beliefs that

were used in the discussion of the DC decoder in Section III.

We compare, on an intuitive level, the min-sum BP decoder

with the DC decoder in terms of belief updates and message-

updates at both the variable and check nodes.

Beginning with the message-updates at a check node, the

standard min-sum BP update rules are to take incoming

messages mi→a(t) and compute outgoing messages according
to the rule that

ma→i(t) =

(

min
j∈N (a)\i

|mj→a(t)|
)

∏

j∈N (a)\i

sgn(mj→a(t)),

(9)

where sgn(z) = z/|z| if z 6= 0, and sgn(z) = 0 if z = 0. Com-
paring with the DC �overshoot� message-update rule, we note

that the min-sum updates, in some sense, also �overshoot�.

For example, at a check node that has three incoming positive

messages and one incoming negative message, we obtain

three outgoing negative messages and one outgoing positive

message. This overshoots the �correct� solution of having an

even number of negative messages (since the parity check must

ultimately be connected to an even number of variables with

value −1). Because the min-sum rule for messages outgoing

towards a particular variable ignore the incoming message

from that variable, all the outgoing messages move beyond

what is necessary (at least in terms of sign) to satisfy the

constraint. Since we want an overshoot, we decided to leave

this rule unmodi ed.

Turning to the belief update rule, the standard BP rule is to

compute the belief as the sum of incoming messages (including

the message from the observation), while the DC rule is that

the belief is the average of incoming messages. We decided

to use the compromise rule

bi(t) = Z



Li +
∑

a∈M(i)

ma→i(t)



 (10)

where Z is a parameter chosen by optimizing decoder perfor-

mance.

Finally, for the message-update rule for messages at the

variable nodes, we directly copy the �correction� rule from

DC. Our intuitive idea is that perhaps standard BP is missing

the correction that is important in repelling DM dynamics from

traps.

To summarize, the DMBP decoder works as follows:

0. Initialization: Set the maximum number of iterations to

Tmax and the current iteration to t = 1. Initialize the the
messages out of variable nodes mi→a(t = 1) for all i
and a ∈ M(i) to equal Li.

1. Update messages from checks to variables: Given

the messages mi→a(t) coming into the constraint node

a, compute the outgoing messages using the min-sum

message update rule given in equation (9).

2. Update beliefs: Compute the beliefs at each variable node

i using the belief update rule given in equation (10).

3. Check if codeword has been found: Create ĉ = {ĉi}
such that ĉi = 1 if bi(t) < 0, ĉi = 0 if bi(t) > 0 and !ip
a coin to decide ĉi if bi(t) = 0. If Hĉ = 0 output ĉ as

the decoded codeword and stop.

4. Update messages from variables to checks: Increment

t := t + 1. If t > Tmax stop and return FAILURE.

Otherwise, update each message out of the variable nodes

using the �overshoot correction� rule given in equation

(4) and go back to Step 1.

V. SIMULATION RESULTS

In this section, we compare simulation results of the DC and

DMBP decoders to those of a variety of other decoders. The

decoding algorithms are applied to two kinds of LDPC codes

and simulated over both the BSC and the AWGN channel. One

code is a random regular LDPC code with length 1057 and

rate 0.77, obtained from [25]. The other code is a quasi-cyclic

(QC) �array� LDPC code [26][6] with length 2209 and rate

0.916.

The  rst point of comparison of our proposed decoders is

to sum-product BP decoding. When simulating transmission

over the BSC, in order better to probe the error !oor region,

we implement the multistage decoder introduced in [17].

Multistage decoders pre-append simpler decoders (in our case

Richardson & Urbanke�s Algorithm-E [27] and/or regular sum-

product BP) to the more complex decoders of interest (e.g.,

DC). The simpler decoders either decode or fail to decode in a

detectable way (e.g., by not converging in BP�s case). Failures

to decode trigger the use of the more complex decoders. In this

way one can often achieve the WER performance of the most

complex decoder at an expected complexity close to that of the

most simple decoder. Our  rst use of the multistage approach
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in this paper is to calculate the performance of sum-product

BP decoding for the BSC. We implement a multistage decoder

that combines a  rst-stage Algorithm-E to a second-stage sum-

product BP. We term the combination E-BP. For the sum-

product BP simulations of the AWGN channel simulations

we implement a standard sum-product BP decoder (and not

a multistage decoder) as we have found Algorithm-E has very

poor performance on the AWGN channel and thus does not

appreciably reduce simulation time.

For DC and DMBP we provide results for standard (single-

stage) implementations of both algorithms as well as for multi-

stage implementations. As per the discussion above, we use

E-BP as the initial stages for simulations over the BSC and BP

by itself as a  rst stage for simulations of the AWGN channel.

We denote the resulting multi-stage decoders by E-BP-DMBP,

E-BP-DC, BP-DMBP and BP-DC.

Our  nal points of comparison are to linear programming

(LP) decoding and mixed-integer LP (MILP) decoding. Our

LP decoders were accelerated using Taghavi and Siegel�s

�adaptive� methods [28], and ultimately relied on the simplex

algorithm as implemented in the GLPK linear programming

library [29]. For the BSC, we implement the multistage

decoders E-BP-LP and E-BP-MILP(l) for l = 10, where l
is the maximum number of integer (in fact binary) constraints

the MILP decoder is allowed. Further details of these decoders

and results can be found in [17].

Regarding the decoding parameters of our new algorithms,

for the random LDPC code, we use Z = 0.35 for the DMBP

decoder over both BSC and the AWGN channel. For the array

code, we use Z = 0.405 over the BSC and Z = 0.445 over

the AWGN channel.

Finally, we are often able to estimate a lower bound on the

word error rate (WER) of ML decoding. When our decoders

return a codeword that is different from the transmitted code-

word, but has a higher probability, we know that an optimal

ML decoder would also have made a decoding �error.� The

proportion of such events provides an estimated lower bound

on ML performance. (The true ML WER could be above the

lower bound because an ML decoder may also make errors

on blocks for which our decoder fails to converge, events that

our estimate assumes ML would decode correctly.)

Figure 3 plots the word error rates of the various algorithms

for the length-1057 random LDPC code when transmitted

over the BSC. We plot WER versus SNR, assuming that

the BSC results from hard-decision demodulation of a BPSK

±1 sequence transmitted over an AWGN channel. The re-

sulting relation between the crossover probability p of the

equivalent BSC-p and the SNR of the AWGN channel is

p = Q
(√

2R · 10SNR/10
)

, where R is the rate of the code

and Q(·) is the Q-function. In Figure 3(a) we plot results when
all iterative algorithms are limited to Tmax = 50 iterations, and
in Figure 3(b) to Tmax = 300 iterations. We observe that E-

BP-DMBP improves the error !oor performance dramatically

compared with E-BP (E-BP-DC also improves signi cantly

compared with E-BP if one allows for 300 iterations) and

in the high SNR region E-BP-DMBP with 50 iterations is

very close to the estimated lower bound of the maximum
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Fig. 3. Error performance comparisons for a length-1057, rate-0.77 random
LDPC code over the BSC.

likelihood (ML) decoder. Note also that a pure DMBP decoder

has almost the same performance as E-BP-DMBP for both

50 and 300 iterations, so the E-BP-DMBP performance in the

very high SNR regime should be indicative of the pure DMBP

performance.

From Figure 3, we also observe that the pure DC de-

coder needs many more iterations to obtain good performance

compared with both BP and DMBP. For 300 iterations, DC

performs better than E-BP at lower SNR, but exhibits an

apparent error  oor as the SNR increases. This high error  oor

is mostly the result of the DC decoder returning a codeword

with lower probability than the transmitted codeword. For

example, for an SNR of 6.60 dB, 80% of DC errors are of

this type, while for an SNR of 7.31 dB, the percentage rises

to 98%. In contrast, the BP and DMBP decoders essentially

never make this kind of error.

Notice that E-BP-LP has a very similar performance to
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Fig. 4. Error performance comparisons for a length-2209, rate-0.916 array
LDPC code over the BSC.

DMBP, and also that E-BP-MILP with 10 !xed bits performs

the best among all the decoders and almost approaches the

estimated ML lower bound. However, DMBP decoders should

be signi!cantly more practical to construct in hardware, be-

cause they are message-passing decoders similar to existing

BP decoders, while LP and MILP decoders do not currently

have ef!cient and hardware-friendly message-passing imple-

mentations.

Figure 4 depicts the WER performance comparison of the

length-2209 array LDPC code over the BSC. For this QC-

LDPC code, we observe broadly similar performance to the

random LDPC code.

Figure 5 shows the WER performance comparison of the

length-1057 random LDPC code over the AWGN channel. We

observe that the BP decoder for this code exhibits an error

 oor. DMBP improves the error  oor performance compared

with BP and does not have an apparent error  oor. When 200
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Fig. 5. Error performance comparisons for a length-1057, rate-0.77 random
LDPC code over the AWGN channel.

iterations are used, the DC decoder has a similar performance

to BP. In the high SNR region, the DC decoder does not

converge to an incorrect codeword as frequently as it does

over the BSC. Note also that on the AWGN channel, while

the DMBP decoder outperforms BP in the error- oor regime,

it actually starts out worse in the low SNR regime.

Figure 6 depicts the WER performance comparison of

the length-2209 array LDPC code over the AWGN channel.

For this QC-LDPC code, we observe similar performance to

the random LDPC code. Note again that while all decoders

bene!t from additional allowed iterations, the DC decoder in

particular becomes increasingly competitive as the number of

allowed iterations increases.

Our basic motivation for the DC and DMBP decoders

was that the difference-map dynamics may help a decoder

avoid dynamical �traps� that could be related to the trapping

sets that are believed to cause error  oors. The very good

performance of the DMBP decoder in the error  oor regime
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Fig. 6. Error performance comparisons for a length-2209 and rate-0.916
array LDPC code over the AWGN channel.

indicates that there may in fact be a reduction in the number of

trapping sets, but on the other hand, some trapping sets clearly

continue to exist, even for the DMBP decoder. In particular, we

followed the approach of [6] and performed some preliminary

investigations of individual �absorbing sets� in the array code

that they studied, and found that although the DMBP decoder

performed better on average than the BP decoder, it still would

not escape if started suf!ciently close to particular dif!cult

absorbing sets.

VI. CONCLUSION

In this paper, we investigate two decoders for LDPC codes:

a DC decoder that directly applies the divide and concur

approach to decoding LDPC codes, and a DMBP decoder

that imports the difference-map idea into a min-sum BP-type

decoder. The DMBP decoder shows particularly promising im-

provements in error- oor performance compared with the stan-

dard sum-product BP decoder, with comparable computational

complexity, and is amenable to hardware implementation.

The DMBP decoder can be criticized for lacking a solid

theoretical basis: it was constructed using intuitive ideas and

is mostly interesting because of its excellent performance. The

fact that its performance closely parallels that of linear pro-

gramming decoders suggests that it might be related to them.

In fact, our work was partially motivated by our earlier results

which showed that LP decoders can signi!cantly improve upon

BP performance in the error  oor regime [17]; we aimed to

develop a message-passing decoder that could reproduce LP

performance with complexity similar to BP.

Work in the direction of creating an ef!cient message-

passing linear programming decoder that could replace LP

solvers that relied on simplex or interior point methods was

begun by Vontobel and Koetter [30], and message-passing

algorithms that converge to an LP solution for some problems

were suggested by Globerson and Jaakkola [31]. Our DMBP

update equations are quite similar to those in the GEMPLP

algorithm suggested by Globerson and Jaakkola, but our

limited experiments with a GEMPLP decoder show that it does

not reproduce LP decoding performance. For that matter, we

have been unable to devise any other message-passing decoder

with complexity similar to BP that exactly reproduces linear

programming decoding. Elucidating the precise relationship

between DMBP and LP decoders remains an outstanding

theoretical problem, but from the practical point of view, our

results show that the DMBP decoder already serves as an

ef!cient message-passing decoder that signi!cantly improves

error  oor performance compared with standard BP.
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