
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Online Coordinate Boosting

Raphael Pelossof, Michael Jones, Ilia Vovsha, Cynthia Rudin

TR2009-086 December 2009

Abstract

We present a new online boosting algorithm for adapting the weights of a boosted classifier,
which yields a closer approximation to Freund and Schapire’s AdaBoost algorithm than previous
online boosting algorithms. We also contribute a new way of deriving the online algorithm that
ties together previous online boosting work. We assume that the weak hypotheses were selected
beforehand, and only their weights are updated during online boosting. The update rule is derived
by minimizing AdaBoost’s loss when viewed in an incremental form. The equations show that
optimization is computationally expensive. However, a fast online approximation is possible. We
compare approximation error to batch Adaboost on synthetic datasets and generalization error
on face datasets and the MNIST dataset.

CVPR 2009

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part
without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include
the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of
the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or
republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All
rights reserved.

Copyright c©Mitsubishi Electric Research Laboratories, Inc., 2009
201 Broadway, Cambridge, Massachusetts 02139

MERLCoverPageSide2

Online Coordinate Boosting

Raphael Pelossof
Department of Computer Science

Columbia University
2960 Broadway, New York, NY 10027
pelossof@cs.columbia.edu

Michael Jones
Mitsubishi Electric Research Labs

201 Broadway, Cambridge, MA 02139
mjones@merl.com

Ilia Vovsha
Columbia University

2960 Broadway, New York, NY 10027
iv2121@columbia.edu

Cynthia Rudin
Columbia University

Center for Computational Learning Systems
Interchurch Center, 475 Riverside Drive MC 7717

New York, NY 10115
rudin@ccls.columbia.edu

Abstract

We present a new online boosting algorithm for adapting the weights of a boosted
classifier, which yields a closer approximation to Freund and Schapire’s AdaBoost
algorithm than previous online boosting algorithms. We also contribute a new way
of deriving the online algorithm that ties together previous online boosting work.
We assume that the weak hypotheses were selected beforehand, and only their
weights are updated during online boosting. The update rule is derived by mini-
mizing AdaBoost’s loss when viewed in an incremental form. The equations show
that optimization is computationally expensive. However, a fast online approxima-
tion is possible. We compare approximation error to batch AdaBoost on synthetic
datasets and generalization error on face datasets and the MNIST dataset.

1 Introduction

Most practical algorithms for object detection or classification require training a classifier that is
general enough to work in almost any environment. Such generality is often not needed once the
classifier is used in a real application. A face detector, for example, may be run on a fixed camera
data stream and therefore not see much variety in non-face patches. Thus, it would be desirable
to adapt a classifier in an online fashion to achieve greater accuracy for specific environments. In
addition, the target concept might shift as time progresses and we would like the classifier to adapt
to the change. Finally, the stream may be extremely large which deems batch-based algorithms to
be ineffective for training.

Our goal is to create a fast and accurate online learning algorithm that can adapt an existing boosted
classifier to a new environment and concept change. This paper looks at the core problem that must
be solved to meet this goal which is to develop a fast and accurate sequential online learning algo-
rithm. We use a traditional online learning approach, which is to assume that the feature mapping
is selected beforehand and is fixed while training. The paradigm allows us to adapt our algorithm
easily to a new environment. The algorithm is derived by looking at the minimization of AdaBoost’s
exponential loss function when training AdaBoost with N training examples, then adding a single
example to the training set, and retraining with the new set of N + 1 examples. The equations
show that an online algorithm that exactly replicates batch AdaBoost is not possible, since the up-
date requires computing the classification results of the full dataset by all the weak hypotheses. We
show that a simple and approximation that avoids this costly computation is possible, resulting in a

1

fast online algorithm. Our experiments show that by greedily minimizing the approximation error at
each coordinate we are able to approximate batch AdaBoost better than Oza and Russell’s algorithm.

The paper is organized as follows, in section 2 we discuss related work. In section 3 we present
AdaBoost in exact incremental form, then we derive a fast approximation to this form, and discuss
issues that arise when implementing the approximation as an algorithm. We also compare our algo-
rithm with Oza and Russell’s algorithm [8]. We conclude with experiments and a short discussion
in section 4.

2 Related Work

The problem of adapting the weights of existing classifiers is a topic of ongoing research in vision [3,
4, 9, 13]. Huang et al’s [3] work is most closely related to our work. They proposed an incremental
learning algorithm to update the weight of each weak hypothesis. Their final classifier is a convex
combination of an offline model and an online model. Their offline model is trained solely on offline
examples, and is based on a similar approximation to ours. Our model combines both their models
into one uniform model, which does not differentiate between offline and online examples. This
allows us to continuously adapt regardless of whether or not the examples were seen in the offline
or online part of the training. Also, by looking at the change in example weights as a single example
is added to the training set, we are able to compute an exact update to the weak hypotheses weights,
in an online manner, that does not require a line search as in Huang et al’s work.

Our online algorithm stems from an approximation to AdaBoost’s loss minimization as the training
set grows one example at a time. We use a multiplicative update rule to adapt the classifier weights.
The multiplicative update for online algorithms was first proposed by Littlestone [7] with the Win-
now algorithm. Kivinen and Warmuth [6] extended the update rule of Littlestone to achieve a wider
set of classifiers by incorporating positive and negative weights. Freund and Schapire [2] converted
the online learning paradigm to batch learning with multiplicative weight updates. Their AdaBoost
algorithm keeps two sets of weights, one on the data and one on the weak hypotheses. AdaBoost
updates the example weights at each training round to form a harder problem for the next round.
This type of sequential reweighting in an online setting, where only one example is kept at any time,
was later proposed by Oza and Russell [8]. They update the weight of each weak hypothesis se-
quentially. At each iteration, a weak hypothesis classifies a weighted example, where the example’s
weight is derived from the performance of the current combination of weak hypotheses. Like our
algorithm, Oza and Russell’s algorithm has a sequential update for the weights of the weak hypothe-
ses, however, unlike ours, theirs includes feature selection. Our algorithm is also derived from the
more recent AdaBoost formulation [11]. We show how the Online Coordinate Boosting algorithm
weight update rule can be reduced to Oza and Russell’s update rule with a few simple modifications.

Both our and Oza and Russell’s algorithms store for each classifier an approximation of the sums of
example weights that were correctly and incorrectly classified by each weak hypothesis. They can be
seen as algorithms for estimating the weighted error rate of each weak hypothesis under memory and
speed constraints. Another algorithm that can be seen this way is Bradley and Schapire’s FilterBoost
algorithm [1]. FilterBoost uses nonmonotonic adaptive sampling together with a filter to sequentially
estimate the edge, an affine transformation of the weighted error, of each weak hypothesis. When
the edge is estimated with high probability the algorithm updates its classifier and continues to select
and train the next weak hypothesis. Unlike our and Oza and Russell’s algorithm, FilterBoost cannot
adapt already selected weak hypotheses weights to drifting concepts.

3 Online Coordinate Boosting

We would like to minimize batch AdaBoost’s bound on the error using a fast update rule as exam-
ples are presented to our algorithm. Let (x1, y1), .., (xN+1, yN+1) be a stream of labeled examples
xi ∈ RM , yi ∈ {−1, 1}, and let a classifier be defined by a linear combination of weak hypothe-
ses H(x) = sign(

∑J
j=1 αjhj(x)), where the weights are real-valued αj ∈ R and each weak

hypothesis hj is preselected and is binary hj(x) ∈ {−1, 1}. We use the term coordinate as the
index of a weak hypothesis. Let mij = yihj(xi) be defined as the margin which is equal to 1
for correctly classified examples and -1 for incorrectly classified examples by weak hypothesis j.

2

Throughout training, AdaBoost maintains a weighted distribution over the examples. The weights
at each time step are set to minimize the classification error according to batch AdaBoost [10].
Adding a single example to the training set changes the weights of the examples, and the weights
of the entire classifier. AdaBoost defines the weight of example i as diJ = e−

PJ−1
j=1 αjmij , which

implies diJ = di,J−1e
−αJ−1mi,J−1 . Furthermore, the weight of a weak hypothesis J is defined as

αJ = 1
2 logW+

J /W
−
J , where the sums of correctly and incorrectly classified examples by weak

hypothesis j are defined by W+
J =

∑
i:miJ=+1 diJ and W−J =

∑
i:miJ=−1 diJ correspondingly.

We define 1[] as the indicator function.

We use superscript to indicate time, which in the batch setting is the number of examples in the
training set, and in the online setting is the index of the last example. To improve legibility, if we
drop the superscript from an equation, the time index is assumed to be N + 1. Therefore, when
adding the N + 1 example, the weights of the other examples will change from dNiJ to dN+1

iJ and the
weights of each weak hypothesis from αNJ to αN+1

J . We denote the change in a weak hypothesis
weights as ∆αNJ = αN+1

J − αNJ .

3.1 AdaBoost in exact incremental form

AdaBoost’s loss function ZJ+1 =
∑
i diJe

−αJmiJ bounds the training error. It has been shown [10,
11] that minimizing this loss tends to lower generalization error. We are motivated to minimize a fast
and accurate approximation to the same loss function, as each example is presented to our algorithm.
Similarly to AdaBoost, we fix all the coordinates up to coordinate J , and seek to minimize the
approximate loss at the J th coordinate. The optimization is done by finding the update ∆αNJ that
minimizes AdaBoost’s approximate loss with the addition of the last example. More formally, we
are given the previous weak hypotheses weights αN1 , .., α

N
J and their updates so far ∆αN1 , ..,∆α

N
J−1

and wish to compute the update ∆αNJ that minimizes ZJ+1. The resulting update rule is the change
we would get in coordinate J’s weight if we trained batch AdaBoost with N examples and then
added a new example and retrained with the larger set of N + 1 examples. Looking at the derivative
of batch AdaBoost’s loss function when adding a new example, we get the update rule for ∆αNJ :

ZJ+1 =
N+1∑
i=1

diJe
−αN+1

J miJ =
N+1∑
i=1

diJe
−(αNJ +∆αNJ)miJ (1)

∂ZJ+1

∂∆αNJ
= −

N+1∑
i=1

diJe
−(αNJ +∆αNJ)miJmiJ (2)

=
∑

i:miJ=−1

diJe
(αNJ +∆αNJ) −

∑
i:miJ=+1

di,Je
−(αNJ +∆αNJ) (3)

=
−
W

N+1
J e(αNJ +∆αNJ) −

+

W
N+1
J e−(αNJ +∆αNJ). (4)

Setting the derivative to zero and solving for ∆αNJ we get:

∆αNJ =
1
2

log
+

W
N+1
J

−
W

N+1
J

− αNJ
.= αN+1

J − αNJ . (5)

The update ∆αNJ that minimizes ZJ+1 is dependent on two quantities
+

W
N+1
J and

−
W

N+1
J . These

are the sums of weights of examples that were respectively classified correctly and incorrectly by
weak hypothesis J + 1, when training with N + 1 examples.

We rewrite these sums in an incremental form. The incremental form is derived by separating the
weight of the last example that was added to each of the sums from the rest of the sum. This will
allow us later on to compute a fast incremental approximation to them, resulting in our online algo-
rithm. We combine the analysis of both sums by incorporating the parameter σ ∈ {−1,+1}, which
represents the sign of the margin of the examples being grouped by the cumulative sum. Formally,
we will break these subsets to subsets over N weights {d1J , .., dNJ}, and the weight of the last ex-

3

ample dN+1,J which is added to the appropriate sum using the function gσJ = dN+1,J1[mN+1,J=σ]:

σ

W
N+1
J =

∑
i:miJ=σ

diJ =
∑
iσJ

diJ + gσJ =
∑
iσJ

J−1∏
j=1

e−α
N+1
j mij + gσJ (6)

=
∑
iσJ

J−1∏
j=1

e−(αNj +∆αNj)mij + gσJ =
∑
iσJ

dNiJ

J−1∏
j=1

e−∆αNj mij + gσJ . (7)

We define the subsets of examples as iσJ = {i|(miJ = σ) ∧ (i ≤ N)}. We partition the indices of
the first N examples to two subsets: a subset of correctly classified examples, where σ = +1, and
incorrectly classified examples, where σ = −1.

3.2 A fast approximation to the incremental form

Equation 7 is a sum product expression which is costly to compute and requires that the margins of
all previous examples be stored. In order to make this an online algorithm which stores only one
example in the memory, we approximate each term in the product with a term that is independent
of all of the margins mij . This type of approximation enables us to separate the sum of the weights
from the product terms, which results in a faster approximate update rule:

σ

W
N+1
J =

∑
iσJ

dNiJ

J−1∏
j=1

e−mij∆α
N
j + gσJ (8)

≈
σ

W
N
J

J−1∏
j=1

(qσjJe
−∆αNj + (1− qσjJ)e∆αNj) + gσJ (9)

where qσjJ ∈ R. The transition from equation 8 to 9 is done in two steps. The terms in the product
are approximated by new terms that are independent of i. Given this independence, the sum of
weighted examples can be grouped to the cumulative sum of previous weights. Equation 9 is very
similar to Huang et al’s offline loss function. However, by greedily solving the approximation error
equations, we show that the update to the model should take into account all the examples, and not
just the offline ones as in [3].

Since our approximation incurs errors, we would like to find for each weak hypothesis the parameters
qσjJ that minimize the approximation error. Equation 9 can be rewritten in two equivalent forms to
show two types of errors:

σ

W
N+1
J ≈

∑
iσJ

dNiJ

J−1∏
j=1

(e∆αj + qσjJ(e−∆αj − e∆αj)) + gσJ (10)

=
∑
iσJ

dNiJ

J−1∏
j=1

(e−∆αj + (1− qσjJ)(e∆αj − e−∆αj)) + gσJ . (11)

The equivalent approximation forms give us a way to compute the exact error for any choice of mij .
However, the exact error expression may have 2J terms and exactly minimizing it may be costly.
Instead, by taking a greedy approach and looking at a part of the error terms we are able to minimize
the approximation error at each coordinate. We formulate the problem as follows: nature chooses a
set of margins mij and the booster chooses qσ1J , .., q

σ
jJ to minimize the approximation error of the

boosted classifier at each coordinate. Let δj = e−∆αj − e∆αj , then for each weak hypothesis, if
nature choses the margin mij = −1, according to 10, the squared error at coordinate j is (qσjJ)2δ2

j .
If nature chooses a margin mij = +1, then according to 11, the squared error at coordinate j is
(1− qσjJ)2δ2. We look at squared error to avoid negative errors. Regardless of the choice of margin,
we can only make one type of error since the margins are binary.

Theorem 1 gives us the solution for parameters qσjJ using a greedy minimization of the weighted
squared approximation error at each coordinate.

4

Theorem 1. Let the weighted squared approximation error at coordinate j and sign σ be defined by

εσjJ =
∑
iσJ

dNiJ
(
1[i:mij=−1](qσjJ)2δ2

j + 1[i:mij=+1](1− qσjJ)2δ2
j

)
. (12)

Then, the minimizer qσjJ of the weighted approximation error at coordinate j is:

qσjJ =

∑
iσJ∧i

+
j
dNiJ∑

iσJ
dNiJ

. (13)

Proof. Using a greedy approach and looking at the weighted squared approximation error at a single
coordinate j given the weights of the examples at coordinate J , we solve for qσjJ . Since the error
function is convex, we can take derivatives and solve to find the global minimum:

∂εσjJ
∂qσjJ

= 2δ2
j

∑
iσJ

dNiJ
(
1[i:mij=−1]q

σ
jJ − 1[i:mij=+1](1− qσjJ)

)
. (14)

We solve for qσjJ by setting the derivative to zero. We can divide by δj since all the example weights
are positive and therefore δj 6= 0.

qσjJ =

∑
i:iσJ∧mij=+1 d

N
iJ∑

i:iσJ∧mij=−1 d
N
iJ +

∑
i:iσJ∧mij=+1 d

N
iJ

=

∑
iσJ∧i

+
j
dNiJ∑

iσJ
dNiJ

. (15)

Theorem 1 has a very natural interpretation. The minimizer qσjJ can be seen as the weighted proba-
bility of weak hypothesis j producing a positive margin and weak hypothesis J producing a margin
σ (either positive or negative.)

3.3 Implementing the approximation as an algorithm

Initialization: The recursive form of equation 9 requires us to define a setting for
σ

W N
0 . Let

σ

W N
0 =

|iσ1 | be the count of examples with a σ margin with the first weak hypothesis.This is equivalent to
setting the initial weight of each example to one, which gives all the examples equal weight before
being classified by the first weak hypothesis.
Weight updates: Theorem 1 shows that calculating the error minimizer requires keeping sums of
weights which involve two weak hypotheses j and J . Similarly to our approximation of the sums

of weights
σ

W
N+1
J , we need to approximate qσjJ as examples are presented the the online algorithm.

Applying the same approximation to estimate qσjJ yields the a similar optimization problem, however
the approximation error minimizers for this problem involves three margins. We avoid calculating

this new minimizer, and instead use the same correction we used for
σ

W
N+1
J (see Algorithm 1.)

Running time: Retraining AdaBoost for each new example would require O(N2J) operations,
as the classifier needs to be fully trained for each example. By using our approximation we can
train the classifier in O(NJ2), where the processing of each example takes O(J2). A tradeoff
between accuracy and speed can be established by only computing the last K terms of the product,
and assuming that the others are equal to one. This speedup results in running time complexity
O(NJK), where K will be defined as the order of the algorithm. Algorithm 1 shows the Online
Coordinate Boosting algorithm with order K.

3.4 Similarity to Oza and Russell’s Online algorithm

Let us compare Oza and Russell’s algorithm [8] to our algorithm. Excluding feature selection, there
are two steps in their algorithm. The first adds the example weight to the appropriate cumulative
sum, and the second reweights the example. Step one is identical to the addition that our algorithm
performs if we assume that all the terms in the product in equation 9 are equal to one, or equivalently

5

Algorithm 1 K-order Online Coordinate Boosting
Input: Example classifications M ∈ {−1, 1}N×J where mij = yihj(xi)

Order paramenter K
Smoothing parameter ε

Option 1: Initialize αj = 0,∆αj = 0 where j = 0, .., J .
W+
jk = ε,W−jk = ε where j, k = 0, .., J

Option 2: Initialize using AdaBoost on a small set.
for i = 1 to N do
d = 1
for j = 1 to J do
j0 = max(0, j −K)

π+
j =

∏j−1
k=j0

(
W+
jk

W+
jj

e−∆αk + (1− W+
jk

W+
jj

)e∆αk

)
π−j =

∏j−1
k=j0

(
W−
jk

W−
jj

e−∆αk + (1− W−
jk

W−
jj

)e∆αk

)
for k = 1 to j do
W+
jk ←W+

jkπ
+
j + d1[mik=+1] · 1[mij=+1]

W−jk ←W−jkπ
−
j + d1[mik=−1] · 1[mij=−1]

end for
αij = 1

2 log
W+
jj

W−
jj

∆αj = αij − α
i−1
j

d← de−α
i
jmij

end for
end for
Output: αN1 , .., αNJ

that ∆αj = 0. At step two, reweighting the example, Oza and Russell break the update rule to two
cases, one for each type of margin:

mij = +1 : d← d
W+
j +W−j

2W+
j

=
d+ d

(
W−
j

W+
j

)
2

(16)

mij = −1 : d← d
W+
j +W−j

2W−j
=
d+ d

(
W+
j

W−
j

)
2

. (17)

The two cases can be consolidated to one case when we introduce the margin into the equations.
Interestingly, this update rule smooths the examples weights by taking the average between the old
weight and the new updated weight that we would get by AdaBoost’s exponential reweighting [11]:

d←
d+ d

(
W+
j

W−
j

)−mij
2

=
d+ de−2αjmij

2
. (18)

If we do not perform corrections to the W’s, and only add the weight of the last example to them,
we reduce our algorithm to a form similar to Oza and Russell’s algorithm. Since Oza and Russell
use an older AdaBoost update rule, when put in an online framework, the weights in their algorithm
are squared and averaged compared to our weights.

4 Experiments and Discussion

We tested our algorithm against modified versions of Oza and Russell’s online algorithm.The only
modification was the removal of the weak hypothesis selection process. Instead we fixed a prede-
fined set of ordered weak hypotheses. Three experiments were conducted, the first with random

6

data, the second with the MNIST dataset, and the third with a face dataset. Throughout all our
experiments we initialized our algorithm with the cumulative weights that were produced by run-
ning AdaBoost on a small part of the training set. We needed to initialize our algorithm to avoid
divide-by-zero errors when only margins of one type have been seen for small numbers of training
examples. We similarly initialized Oza and Russell’s algorithm, however, since our training sets are
large, it had little influence on their algorithm’s performance compared to a non-initialized run.

5,000 10,000 15,000 20,000 25,000

0.005

0.01

0.015

0.02

0.025
L1 approx error with 30000 examples and 20 weak hypotheses

Number of training examples

Ap
pro

xim
ati

on
 er

ror

Oza and Russell
OCB order 1
OCB order 5
OCB order 10
OCB order 20

(a) Synthetic: Average approximation error as the
number of training examples is increased. Concept
drift every 10K examples. Averaged over 5 runs.
Accuracy improves with higher order.

1 2 3 4 5 6
0.03

0.035

0.04

0.045

0.05

0.055

Number of training examples in 104 scale

Te
st

err
or

AdaBoost
OCB order 400
Oza and Russell

(b) MNIST: Combined classifier test error as the
number of training examples is increased. OCB
and AdaBoost achieve lower test error rates than
Oza and Russell’s algorithm.

1 2 3 4 5 6 7 8 9 10
0.1

0.15

0.2

0.25

0.3

0.35

Number of training examples in 104 scale

Ap
pro

xim
ati

on
 er

ror

OCB order 400
Oza and Russell

(c) Face data: Average normalized approximation
error as the number of training examples is in-
creased. Averaged over 10 permutations of the
training set. OCB best approximates AdaBoost.

1 2 3 4 5 6 7 8 9 10
2.5

3

3.5

4

4.5

5

5.5

6

6.5
x 10−3

Number of training examples in 104 scale

1−
AU

C

AdaBoost
Oza and Russell
OCB order 400

(d) Face data: Average 1-AUC as the number of
training examples is increased. OCB and AdaBoost
have almost identical performance on 100K test set.

Figure 1: Approximation and Test error experiments

Synthetic data: The synthetic experiment was set up to test the adaptation of our algorithm to con-
cept change, and the effects of the algorithm’s order on its approximation error. We created synthetic
data by randomly generating multiple margin matrices Mt which contain margins mij . Each matrix
was created one column at a time where we draw a random number between zero and one for each
column. The random number gives us the probability of the weak hypothesis classifying an example
correctly. To simulate concept drift, each matrix Mt was generated by perturbing the probabilities
of the previous matrix by a small amount and sampling new margins accordingly. We consider the
normalized approximation error of the classifier learned by the online algorithms and the equiva-
lent boosted classifier. Let the normalized approximation error between AdaBoosts’s weight vector
and another weight vector be defined by err(αada, α) = 0.5‖ αada

‖αada‖1 −
α
‖α‖1 ‖1. We compared the

approximation error for each example that was presented to the online algorithms with the equiva-
lently trained batch classifier. The experiment was repeated 5 times with different margin generation
probabilities. Each experiment comprised of three Mt matrices of size 10, 000× 20, thereby simu-
lating concept drift every 10, 000 examples. Figure 1(a) shows the average approximation error as
the number of training examples is increased. Increasing our algorithm’s order shows improvement
in performance. However, we have witnessed that a tradeoff exists when training large classifiers,
where the approximation deteriorates as the order is increased too much. The tradeoff exists since
qσjJ is a greedy error minimizer, and might not optimally minimize the total approximation error.
Face data: We conducted a frontal face classification experiment using the features from an existing

7

0 1 2 3 4 5 6 7 8 9
AdaBoost 0.31 0.19 0.8 0.89 0.9 1.0 0.47 0.79 1.62 1.29

OCB 0.33 0.18 0.78 0.93 0.87 0.98 0.49 0.82 1.61 1.3
Oza 0.35 0.27 0.79 1.05 0.85 1.02 0.55 0.97 1.82 1.36

Table 1: MNIST test error in % for each classifier one-vs-all

0 1 2 3 4 5 6 7 8 9
OCB 0.07 0.1 0.04 0.04 0.04 0.04 0.06 0.05 0.04 0.03
Oza 0.1 0.1 0.09 0.09 0.1 0.09 0.1 0.1 0.1 0.09

Table 2: MNIST approximation error for each classifier one-vs-all

face detector. These weak hypotheses are thresholded box filter decision stumps. The trained face
detector contains 1520 weak hypotheses, which were learned using batch AdaBoost with resampling
[5, 12]. Using the existing set of weak hypotheses, we compared the different online algorithms for
approximation and generalization error on new training and test sets. Both our training and test sets
consist of 93, 000 non-face images collected from the web, and 7, 000 hand labeled frontal faces
all of size 24 × 24.We created 10 permuted training sets by reordering the examples in the original
training set 10 times. The experimental results were averaged over the 10 sets. This was done to
verify that our algorithm is robust to any ordering. Our algorithm was initialized with the cumulative
sums of weights obtained by training AdaBoost with the first 5000 examples in each training set.
Initializing Oza’s algorithm did not improve its performance. We compared the online algorithms
to AdaBoost’s while training for every 10, 000 examples. The training results in figure 1(d) show
that our online algorithm with order 400 achieves better average AUC rates than Oza and Russell’s
algorithm. We compare average AUC since there are far less positives in the test set. Figure 1(c)
shows that our average approximation of AdaBoost’s weak hypotheses weights is also better. We
found that setting an order of 400 with frontal face classifiers of size 1520 works well.
MNIST data: The MNIST dataset consists of 28 × 28 images of the digits [0, 9]. The dataset is
split into a training set which includes 60000 images, and a test set which includes 10, 000 im-
ages. All the digits are represented approximately in equal amount in each set. Similarly to the
face detector, we trained a classifier in an offline manner with sampling to find a set of weak hy-
potheses. When training we normalized the images to have zero mean and unit variance. We used
hj(x) = sign(‖xj − x‖2 − θ) as our weak hypothesis. The weak learner found for every boosting
round the vector xj and threshold θ that create a weak hypothesis which minimizes the training
error. As candidates for xj we used all the examples that were sampled from the training set at
that boosting round. We partitioned the multi-class problem into 10 one-versus-all problems, and
defined a meta-rule for deciding the digit number as the index of the classifier that produced the
highest vote. The generalization and approximation error rates for each classifier can be seen in
tables 1 and 2. The performance of the combination rule using each of the methods can be seen in
figure 1(b). Again, we found that order 400 performs well.
Concluding remarks: We showed that by deriving an online approximation to AdaBoost we were
able to create a more accurate online algorithm. Nevertheless, the relationship between proximity
of weak hypothesis weights and generalization needs to be further studied. One of the drawbacks
of the algorithm is that it usually needs to be initialized with AdaBoost on a small training set. We
are investigating adaptive weight normalization, which may allow for a better initialization scheme.
We are also trying to connect FilterBoost’s filtering framework and feature selection with OCB to
improve performance and speed.

References
[1] Joseph K Bradley and Robert E. Schapire. Filterboost: Regression and classification on large datasets. In

Neural Information Processing Systems, pages 185–192. MIT Press, 2008.

[2] Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-line learning and an
application to boosting. Journal of Computer and System Sciences, 55(1):119–139, 1997.

[3] C. Huang, H. Ai, T. Yamashita, S. Lao, and M. Kawade. Incremental learning of boosted face detector.
In Interantional Conference on Computer Vision, pages 1–8, 2007.

8

[4] Omar Javed, Saad Ali, and Mubarak Shah. Online detection and classification of moving objects using
progressively improving detectors. In Computer Vision and Pattern Recognition, pages I: 696–701, 2005.

[5] Michael Jones and Paul Viola. Face recognition using boosted local features. In MERL Technical Report
TR2003-25, 2003.

[6] Jyrki Kivinen and Manfred K. Warmuth. Exponentiated gradient versus gradient descent for linear pre-
dictors. Information and Computation, 132(1):1–63, 1997.

[7] Nick Littlestone. Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm.
Machine Learning, 2(4):285–318, 1988.

[8] N. Oza and S. Russell. Online bagging and boosting. In Artificial Intelligence and Statistics, pages
105–112. Morgan Kaufmann, 2001.

[9] Minh-Tri Pham and Tat-Jen Cham. Online learning asymmetric boosted classifiers for object detection.
In Computer Vision and Pattern Recognition. IEEE Computer Society, 2007.

[10] Robert E. Schapire, Yoav Freund, Peter Bartlett, and Wee S. Lee. Boosting the margin: a new explanation
for the effectiveness of voting methods. Annals of Statistics, 26(5):1651–1686, 1998.

[11] Robert E. Schapire and Yoram Singer. Improved boosting algorithms using confidence-rated predictions.
Machine Learning, 37(3):297–336, 1999.

[12] Paul Viola and Michael Jones. Rapid object detection using a boosted cascade of simple features. In
Computer Vision and Pattern Recognition, 2001.

[13] B. Wu and R. Nevatia. Improving part based object detection by unsupervised, online boosting. In
Computer Vision and Pattern Recognition, pages 1–8, 2007.

9

	Title Page
	Title Page
	page 2

	Online Coordinate Boosting
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9

