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Abstract In this paper we discuss theoretical founda-
tions and a practical realization of a real-time traffic
sign detection, tracking and recognition system operat-
ing on board of a vehicle. In the proposed framework a
generic detector refinement procedure based on a mean
shift clustering is introduced. This technique is shown
to improve the detection accuracy and reduce the num-
ber of false positives for a broad class of object detectors
for which a soft response’s confidence can be sensibly
measured. Track of an already established candidate is
maintained over time using an instance-specific track-
ing function that encodes the relationship between a
unique feature representation of the target object and
the affine distortions it is subject to. We show that this
function can be learned on-the-fly via regression from
random transformations applied to the image of the ob-
ject in known pose. Secondly, we demonstrate its capa-
bility of reconstructing the full-face view of a sign from
substantial viewangles. In the classification stage a con-
cept of a similarity measure learned from image pairs
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is discussed and its realization using SimBoost, a novel
version of AdaBoost algorithm, is analyzed. Suitability
of the proposed method for solving multi-class traffic
sign classification problems is shown experimentally for
different image representations. Overall performance of
the entire system is evaluated based on a prototype
C++ implementation. Illustrative output generated by
this demo application is provided as a supplementary
material attached to this paper.
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weighted mean shift · regression tracking · SimBoost

1 Introduction

Road signs are an inherent part of the traffic environ-
ment. They are designed to regulate flow of the vehicles,
give specific information to the traffic participants, or
warn against unexpected road circumstances. Percep-
tion and fast interpretation of road signs is crucial for
the driver’s safety. Public services responsible for the
traffic infrastructure maintenance mount the signs on
poles on the road sides, over highway lanes, and in other
places in a way ensuring that they are easy to spot with-
out distracting the driver’s attention from manoeuvring
the vehicle. Also the sign pictograms are designed and
standarized in accordance with a rule of maximizing
simplicity and distinctiveness. However, certain circum-
stances like high visual clutter, adverse illumination, or
bad weather conditions can significantly hamper per-
ception of traffic signs. Purely physiological factors like
excitement, irritation or fatigue are known to further
reduce the visual concentration of a human and can
hence put the the driver’s life at risk, while driving at
high speeds in particular. For the above reasons, au-
tomation of the road sign detection and recognition
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process was found a natural direction to follow as soon
as video processing became attainable on a computer
machine. Today, it is considered a critical task in the
contemporary driver support systems, but their relia-
bility remains still beyond our expectations and a large
space for improvement is left.

1.1 Related Work

Different approaches were used in the past for detect-
ing road signs. In the older studies, e.g. [3,4], as well as
in many recent ones, e.g. [10,12,19], it was common to
employ a heuristic that utilized available prior knowl-
edge about the traffic signs to 1) define how to pre-
segment the scene in order to find the interest regions,
and 2) define the acceptable geometrical relationships
between the sign parts with respect to color and shape.
The major deficiency of these methods were a lack of
solid theoretical foundations and high parametrization.
A more convincing, parameter-free method for detect-
ing road signs was proposed by Bahlmann et al. [13]
who utilized a trainable cascade of boosted classifiers
to learn the most discriminative local image descriptors
for building a sign detector. Their system demonstrated
a good detection rate and was reported to yield very few
false alarms at an average processing speed of 10 fps.
In several studies, e.g. [3,7,10], the problem of track-
ing of the observed road signs over time was addressed.
However, the proposed frameworks, with the exception
of the two-camera system in [7], never went beyond a
relatively simple scheme based on a predefined motion
model and some sort of geometrical Kalman filtering.

For sign classification, a baseline approach involves
a cross-correlation template matching. It was used for
example in [3]. This technique is known to be useful
only on condition that the object in the tested image
can be well aligned with the templates. Other, feature-
based methods involved neural networks [10,21] or ker-
nel density estimation [8] and were shown to offer rel-
atively good classification accuracy. Gao et al. [15] em-
ployed the biologically-inspired vision models to repre-
sent both color and shape features of the traffic signs.
They achieved a promising recognition rate for static
images of signs affected by substantial noise and per-
spective transformations. An interesting concept of a
trainable, class-specific similarity measure was intro-
duced recently by Pacĺık et al. [16] who demonstrated
a usefulness of this method in solving relatively simple
road sign classification problems. A similar approach
was further presented by Ruta et al. [19] who adapted
it to infer the discriminative sign representations using
a single template image per class.

In this paper we present a unified framework for de-
tection, tracking and recognition of traffic signs which
alleviates the shortcomings of many previous approaches.
At the detection stage we focus on the problem of high
sensitivity of the existing object detection techniques. A
generic refinement procedure based on a modified mean
shift clustering of the detector responses is proposed
and evaluated with two different approaches. The best-
performing refined detector is selected for the proto-
type system implementation. For tracking od the exist-
ing road sign candidates we employ a trainable regres-
sion function that compensates the affine distortions
of the target, making our detector pose-invariant and
hence more accurate. Ability of the proposed tracker
to reconstruct the full-face view of a sign under affine
distortions is shown experimentally using synthetic im-
age sequences. Finally, we build a traffic sign classifier
based on the concept of a trainable similarity. A novel
AdaBoost-like algorithm, called SimBoost, is utilized to
learn a robust sign similarity measure from image pairs
labeled either “same” or “different”. This measure is
further directly used within the winner-takes-all clas-
sification framework to discriminate between multiple
road sign classes. The discriminative power of the clas-
sifiers trained using SimBoost is demonstrated for dif-
ferent feature representations of the image. Apart from
testing the proposed detection, tracking and recogni-
tion approaches as standalone algorithms, we also build
a demo implementation of a real-time system incorpo-
rating all three components. This system is evaluated
using real-life video captured from a moving vehicle in
urban traffic scenes.

The rest of this paper is divided into five parts. In
section 2 our road sign detection method is discussed.
In section 3 we develop a pose-invariant sign tracker.
Section 4 explains how the concept of trainable similar-
ity is used to construct a robust road sign classifier. In
section 5 an extensive experimental evaluation of our al-
gorithms is presented. Finally, in section 6 we conclude
our work.

2 Sign Detection

Traffic sign detection is a difficult problem as it in-
volves discriminating a large gamut of diverse objects
from a generally unknown background. Taking this di-
versity into account, we focus in this work on a sub-
set of circular signs that are well-constrained in terms
of the size, shape, and contained ideogram. In section
2.1 a fast, application-specific quad-tree focus opera-
tor is introduced. We use it to quickly discard the ir-
relevant fragments of the scene and locate the sparse
regions that might contain traffic signs. In section 2.2
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we briefly discuss two practically useful sign detection
methods. Common limitations of these methods are also
analyzed. In section 2.3 a detection refinement scheme
is proposed in order to improve the selectivity and ac-
curacy of the over-sensitive detector.

2.1 Quad-tree Focus of Attention

In order to detect the new road sign candidates emerg-
ing in the scene, it is first necessary to reduce the search
area. Dense scanning of the entire image wastes proces-
sor time and is unlikely to work in real time, even using
a detector based on the well-known Haar wavelets [11],
probably computationally the simplest available image
descriptors. One generic method for quick elimination
of the irrelevant regions of an image is a rejection clas-
sifier cascade introduced by Viola and Jones [11]. Not
denying the potential of this technique, we should yet
note that it still involves a sequential, pixel-by-pixel
processing of the input image and requires complex
and time-consuming training. Below we briefly outline
a much simpler generic search reduction technique that
is tuned to our specific application, and which can be
used solely or in chain with other methods.

The proposed quad-tree attention operator associates
a scalar feature value v(x, y) with each pixel of the im-
age I: V(I) = {v(x, y) : x = 1, . . . , W, y = 1, . . . , H},
where W×H is the image size. A region R(x1, y1, x2, y2)
is considered relevant if the sum of the contained pixels’
feature values is greater that a predefined threshold t.
If an integral feature image is available:

Σ(I) = {υ(x, y) : υ(x, y) =
∑

i≤x,j≤y v(i, j),
x = 1, . . . ,W, y = 1, . . . ,H} , (1)

then this sum can be computed using only 4 array ref-
erencing operations and 4 additions/subtractions:

v(R(x1, y1, x2, y2)) = υ(x2, y2)− υ(x1, y2)−
υ(x2, y1) + υ(x1, y1)

. (2)

If the threshold t is set to an appropriately low value
that can be used to reliably discriminate between the
relevant and irrelevant fragments of the scene at the
highest considered resolution, then the RoI-s can be
rapidly identified using the following recursive algorithm:

Algorithm 1 is illustrated in Fig. 1. We tailor it to
our needs by associating the relevance of a given im-
age region with the amount of contained contrast mea-
sured with respect to the appropriate color channels.
The traffic signs we focus on always have a distinctive
color rim. Therefore, the input image is first filtered
using the appropriate set of filters intended to amplify

Algorithm 1 Quad-tree RoI selection.
input: image IW×H , minimum “amount” of feature contained

in a RoI, t, minimum region size s
output: set of RoI-s, S
1: build a feature map V(I)
2: build an integral feature map Σ(I)
3: initialize an empty set of relevant smallest-scale regions C = ∅
4: call ProcessRegion(R(1, 1, W, H), t, s,C)
5: cluster regions in C
6: populate S with bounding rectangles of found clusters

Algorithm 2 Procedure ProcessRegion.
input: region Rw×h, minimum “amount” of feature contained

in a RoI, t, minimum region size s, a set of relevant smallest-
scale regions C

1: compute the amount of feature in R
2: if min{w, h} ≥ s then
3: if v(R) > t then
4: set w = w/2, h = h/2
5: for each quarter Qj of R do
6: call ProcessRegion(Qj , t, s,C)
7: end for
8: end if
9: else

10: add R to C
11: end if

Fig. 1 Quad-tree interest region finding algorithm. The consecu-
tive numbers correspond to the order of quarters being processed.

a certain color and suppress any other. Suitable filters
used in this work are:

fR(x) = max(0,min(xR−xG

s , xR−xB

s ))
fB(x) = max(0,min(xB−xR

s , xB−xG)
s ))

, (3)

where xR, xG, xB denote the red, green and blue com-
ponents of an input pixel and s = xR + xG + xB . The
above filters effectively extract the red and blue frag-
ments of the image, which is shown in Fig. 2.

The RoI selection algorithm starts with applying fil-
ters (3) to the input image. Then, two feature images
VR(I) and VB(I) are constructed as gradient magni-
tude maps for each color. Similarly, two integral images
ΣR(I) and ΣB(I) are build from VR(I) and VB(I) re-
spectively. A region corresponding to the entire image is
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Fig. 2 The effect of applying the color filters (3) to the example
RGB images (top row): red color filter (bottom-left), blue color
filter (bottom-right). This figure is best viewed in color.

now checked against the total color gradient contained
using a maximum of the values picked from both inte-
gral images. As it is typically far above the predefined
threshold, the image is subdivided into four quarters
and each quarter is recursively processed in the same
way. The process is stopped either when the current
input region contains less gradient than the threshold
or upon reaching the minimum region size. The above-
threshold lowest-level regions are further clustered and
the ultimate RoI-s are constructed as bounding rectan-
gles of the found clusters. This way we can very quickly
discard the irrelevant fragments of the scene, e.g. sky
or asphalt, which either do not contain the interest col-
ors and/or are too low-contrasting. Note that the to-
tal amount of color-specific gradient constitutes a much
stronger filter than simply the total amount of charac-
teristic color, which fails in presence or uniform reddish
or blueish regions, e.g. sky or large color billboards.

Further processing is done only in the found interest
regions. Below, the two useful techniques for traffic sign
detection are presented.

2.2 Sign Detectors

Traffic sign detector must be both sufficiently discrim-
inative and computationally inexpensive so that it is
able to work in real time even in the worst-case sce-
nario, when a large part of the scene has to be scanned.
We evaluate here two detection techniques which seem
particularly useful for road sign detection: Haar rejec-
tion cascade and the Hough transform.

Haar cascade of boosted classifiers for object detec-
tion has been thoroughly discussed in [11]. This tech-
nique revolves around an idea of building a multi-stage
classifier in which at each new layer the layer-specific

binary classifier is trained in a supervised way using
all available true positive images and only these nega-
tive, i.e. background images that were misclassified in
the previous layer. This way the cascade is arranged
in such a way that in runtime the most top-level classi-
fier can quickly reject most of the irrelevant parts of the
scene, leaving the more ambiguous regions to process by
the classifier in the next layer. This recursive process is
further continued for the increasingly hard regions and
only the regions successfully passing the last layer are
retained. AdaBoost algorithm [5] is used to train the
classifier in each layer and the expected performance
specifications are given as the training parameters. For
example, the boosted classifier in each layer might be
set to grow until it can correctly classify 99% of the true
positives form the previous layer and not less than 50%
of the previous layer’s false positives. The third para-
meter, maximum overall false positive rate of the cas-
cade is provided to determine when to stop the training
process. Robustness of the cascade setup in combina-
tion with using simple Haar wavelet filters underlying
each weak classifier make the cascade relatively inex-
pensive in terms of the computation involved.

Although there is a common agreement on the use-
fulness of the rejection cascade for general object detec-
tion, this approach has also many disadvantages. First
and foremost, it may be insufficiently discriminative if
the intra-class variability is too high. Secondly, it in-
volves a very expensive training and requires large vol-
umes of data. In addition, many implementation details
are technically demanding. For example, it is unclear
how to generate negative images to populate the train-
ing pool of the classifiers located deep in the cascade,
say, at the n-th level. An overall false positive rate of the
cascade up to the level n−1 might already be very low.
This implies that random selection of the background
regions from the images not containing the target ob-
ject might be extremely time-consuming.

The second detection technique we evaluate is based
on the Hough transform (HT) [2]. The purpose of this
method is to find the imperfect instances of objects
within a certain class of shapes by a voting procedure
carried out in a parameter space. The simpler the para-
metric description of a shape, the more suitable this
approach is in real-time vision. In our case, most of
the popular road signs are either circles or equiangu-
lar polygons: equilateral triangles, squares, or octagons
(STOP sign), depending on the country. To detect cir-
cular structures in an image, a well-known circular Hough
transform can be used which involves voting in a three-
parameter space. For regular polygons a generalized
method has been proposed by Loy et al. [12]. A de-
sirable property of these HT variants is their accuracy



5

and tolerance to noise and partial occlusions. Among
major disadvantages is their sensitivity to the quality
of the input edge map, which in turn depends on the
external factors, like scene illumination.

Both techniques are known to suffer from the prob-
lem of producing multiple, mostly redundant, positive
hypotheses around the true target object candidates.
As processing of each such hypothesis separately is im-
practical, the output of an over-sensitive detector is typ-
ically subject to some sort of postprocessing intended
to produce a single accurately fit shape per object in-
stance. Below we propose such a postprocessing tech-
nique.

2.3 Confidence-Weighted Mean Shift Refinement

Accuracy of an over-sensitive detector that produces
redundant positive hypotheses around the true object
candidates must necessarily be improved to make it use-
ful for real-time operation. One possible way of doing
that is to consider the detector’s response space a prob-
ability distribution with modes to be found. Mean shift
algorithm [9] is a well-established kernel density esti-
mation technique that can be used to find the modes of
the underlying distribution. However, the original mean
shift formulation does not account for the possibly vary-
ing relevance of the input points. Below we propose a
simple modification, called Confidence-Weighted Mean
Shift, which alleviates this shortcoming by incorporat-
ing the confidence of the detector’s responses into the
mode finding procedure. It is shown that such a refine-
ment procedure can be applied to the output of any
detector that yields a soft decision or can be modified
to do so.

We first characterize each positive hypothesis of the
detector with a vector, xj = [xj , yj , sj ], encoding the
object’s centroid position and its scale. In addition, xj

is assigned a confidence value, qj which is related to
the soft response of the detector. In the case of a sin-
gle boosted classifier in each layer of the Haar cascade,
such a confidence measure can naturally be related to
the distance of the response from the linear decision
boundary:

qj = q(xj) =
T∑

t=1

αtht(xj) , (4)

where ht(xj) denote the weak classifier responses, αt =
log( 1−et

et
), and et are the error rates of the weak clas-

sifiers. In the case of a cascade, the confidence formula
can no longer be treated as a distance from the decision
boundary, which is now non-linear. However, it can be
approximated by a sum of q

(k)
j terms over all K cascade

layers, taking the modified thresholds tk in each layer
into account:

qj =
K∑

k=1

q
(k)
j =

K∑

k=1

Tk∑
t=1

(αtht(xj)− tk) . (5)

In the case of a Hough detector, the confidence of each
above-threshold circle picked from the accumulator ar-
ray can simply be measured with the normalized num-
ber of votes cast for this circle. In general, confidence
qj can be expressed with any quantity that evaluates to
a numerical, comparable value, and is indicative of the
likelihood of the response.

Assuming that f(x) is the underlying distribution
of x, the mean shift algorithm iteratively finds the sta-
tionary points of the estimated density via alternate
computation of the mean-shift vector, and translation
of the current kernel window by this vector, until con-
vergence (for details, refer to [9]). Our modified mean-
shift vector is made sensitive to the confidence of the
input points in the following way:

mh,G =

∑n
j=1 xjqjg

∥∥∥x−xj

h

∥∥∥
2

∑n
j=1 qjg

∥∥∥x−xj

h

∥∥∥
2 − x , (6)

where g(·) is the underlying gradient density estimator
and h is the bandwidth parameter determining the scale
of the estimated density. Incorporating the confidence
terms qj in (6) is equivalent to amplifying the density
gradients pointing towards the more reliably detected
circle locations. The found modes of x correspond to
the new road sign candidates which we need to track in
the consecutive frames of the input video.

3 Tracking

To recognize traffic signs from a moving vehicle, it is
crucial to have a view-independent object detector. Train-
ing such a detector directly exhibits serious difficulties
as it requires feature descriptors to be both: highly dis-
criminative and pose-invariant. Our method of solving
such a detection problem follows a different strategy
and has been shown successful in several studies, e.g.
[18,20]. Instead of devising a pose-independent feature
representation of the target, we learn an application-
specific motion model from the random affine transfor-
mations applied to the full-face view of a detected sign.
This model is learned via regression using the Lie alge-
bra of the motion group, and encodes the correlations
between a unique feature representation of a sign and
the affine transformations it is subject to while being
approached by a camera. In section 3.1 we provide the
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Fig. 3 Affine transformation matrix and its inverse.

theoretical foundations of our regression tracking algo-
rithm. Section 3.2 describes a concrete realization of
this method.

3.1 Tracking as a Regression Problem

Let M be an affine matrix that transforms a unit square
at the origin in the object coordinates to the affine re-
gion enclosing the target object in the image coordi-
nates:

M =
(

A t
0 1

)
, (7)

where A is a 2 × 2 nonsingular matrix and t ∈ R2.
Let M−1 be an inverse transform, that maps the ob-
ject region from image coordinates back to the object
coordinates, as shown in Fig. 3. Our goal is to estimate
the transformation matrix Mt at time t, given the ob-
served images up to that point, I0,...,t, and the initial
transformation M0. Mt is modeled recursively:

Mt = Mt−1∆Mt , (8)

which means that it is sufficient to estimate only the in-
crement ∆Mt corresponding to the motion of the target
from time t − 1 to t in object coordinates. It is deter-
mined by the regression function:

∆Mt = f
(
ot(M−1

t−1)
)

, (9)

where ot(M−1
t−1) denotes an image descriptor applied to

the previously observed image, after mapping it to the
unit rectangle.

The regression function f : Rm 7−→ A(2) is an
affine matrix-valued function. To learn its parameters,
it is necessary to know the initial pose of an object,
M0, and the image I0 at time t0. Training examples
are generated as pairs (oi

0,∆Mi), where ∆Mi are ran-
dom deformation matrices around identity and oi

0 =
o0(∆M−1

i M−1
0 ). The optimal parameters of f are de-

rived on the grounds of the Lie group theory by min-
imizing the sum of the squared geodesic distances be-
tween the pairs of motion matrices: estimated f(oi

0),
and known ∆Mi. Details of this method can be found
in [20].

Fig. 4 Operation of a road sign tracker over time. The period be-
tween the initial candidate detection and the first tracker update
is depicted.

3.2 Tracker Architecture

The regression tracker introduced in section 3.1 is uti-
lized in our traffic sign recognition system as shown in
Fig. 4. Once a candidate sign has been detected for the
first time, a new tracker is initialized with the region
corresponding to the bounding rectangle of the found
circle instance, assuming no distortion 1. At this point
a small number of random deformations are generated
from the observed image and used for instant train-
ing. A map of 6 × 6 regularly spaced 6-bin gradient
orientation histograms is used as an object descriptor.
The trained tracker is employed to detect the sign in
n subsequent frames, each being used to generate and
enqueue m new random deformations.

In a realistic traffic scenario the scene is often dif-
ficult and changes fast. Therefore, the accuracy of the
tracker is likely to deteriorate very quickly as a result of
the cumulated reconstruction errors caused by: 1) con-
taminating the training examples with the unwanted
background fragments, and 2) changing appearance of
the target. To deal with this problem, we update the
tracking function after each n frames by re-training it
on the collected portion of n ·m random training trans-
formations. The updated function f is trained in a sim-
ilar way as is done after the initial sign detection, i.e. by
minimizing the sum of the squared geodesic distances
between the estimated and the known motion matrices,
but another constraint is introduced on the difference
between the current and the previous regression coef-
ficients (refer to [20] for more details). The updated
tracker is used to re-estimate the pose of the observed
sign and the space is allocated for a new portion. Such
a periodic update scheme allows us to recover from the
misalignments likely to occur during the sign tracking.

1 This assumption is valid as the road signs are detected for
the first time at a considerable distance from the camera, where
this distance if much greater than the distance of the sign from
its optical axis.
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Finally, the track is assumed to be lost when the sign
either gets out of the field of view or when the normal-
ized cross-correlation between its current warped image
and the warped image recorded at the last update drops
below a predefined threshold. The latter condition pre-
vents the track from running out of control due to the
cumulated errors of the tracker.

4 Recognition

Recognition of traffic signs is a hard multi-class problem
with an additional difficulty caused by the fact of cer-
tain signs being very similar to one another, e.g. speed
limits. The approach we have adopted in this work is
centered around the concept of trainable similarity that
can be inferred from the pairs of examples. Once the
similarity between any two images has been estimated,
any multi-class classification problem can be solved by
comparing the similarities between the unknown exam-
ple and each class’s prototype. A tested example be-
longs to the class to which it is the most similar. For
robust similarity assessment we use a novel variant of
AdaBoost algorithm, called SimBoost. It is derived in
section 4.1. In section 4.2 we outline how the classifier
trained via SimBoost is used to recognize objects in
image sequences.

4.1 SimBoost Algorithm

Formally, our classifier, F (x), is designed to recognize
only two classes: “same” and “different”, and is trained
using pairs of images, i.e. x = (i1, i2). The pairs repre-
senting the same class of sign are labeled y = 1 (pos-
itive), and the pairs representing two different classes
are labeled y = −1 (negative). Real-valued discrimi-
nant function F is learned using a modified AdaBoost
algorithm [5] which we call SimBoost. We define F as
a sum of image features fj :

F (i1, i2) =
N∑

j=1

fj(i1, i2) . (10)

Each feature evaluates to:

fj(i1, i2) =
{

α if d(φj(i1), φj(i2)) < tj
β otherwise

, (11)

where φj is a filter defined over a chosen class of image
descriptors, d is a generic distance metric that makes
sense for such descriptors, and tj is a feature threshold.
In other words, each feature quantifies a local similar-
ity between the input images and responds to this sim-
ilarity depending on whether or not it is sufficient to
consider the images as representing the same class.

Let hj(i1, i2) = d(φj(i1), φj(i2)). Let us also denote
by W+

+ the total weight of these positive examples that
are labeled positive by this weak classifier (true posi-
tives), and by W−

+ the total weight of those that are
labeled negative (false negatives). By analogy, let W−

−
and W+

− be the total weight of true negatives and false
positives respectively. In other words:

W+
+ =

∑
k:yk=1

∧ h(xk)<t

wi W−
+ =

∑
k:yk=1

∧ h(xk)≥t

wi

W+
− =

∑
k:yk=−1

∧ h(xk)<t

wi W−
− =

∑
k:yk=−1

∧ h(xk)≥t

wi

. (12)

In each boosting round the filter φj and the threshold
tj are selected so as to minimize the weighted error of
the training examples:

ej =
∑

k:yk=1

∧ h(xk)≥t

wi +
∑

k:yk=−1

∧ h(xk)<t

wi = W−
+ + W+

− . (13)

Secondly, the optimal values of α and β are found based
on the Schapire and Singer’s criterion [6] of minimizing:

Z =
M∑

k=1

wke−ykf(xk) , (14)

where M is the total number of training examples.
First, the sum is split as follows:

Z =
∑

k:yk=1

wke−f(xk) +
∑

k:yk=−1

wkef(xk) =

=
∑

k:yk=1

∧ h(xk)<t

wie
−α +

∑
k:yk=1

∧ h(xk)≥t

wie
−β+

+
∑

k:yk=−1

∧ h(xk)<t

wie
α +

∑
k:yk=−1

∧ h(xk)≥t

wie
β =

= W+
+ e−α + W−

+ e−β + W+
− eα + W−

− eβ

. (15)

Taking partial derivatives of Z with respect to α and β

and setting each to zero determines the optimal values
of each parameter to be set in a given boosting round:

α = 1
2 log

(
W+

+

W+
−

)
β = 1

2 log
(

W−
+

W−
−

)
. (16)

A classifier trained using SimBoost algorithm yields
a decision which is a linear combination the weak clas-
sifiers’ responses:

l(i1, i2) = signF (i1, i2) = sign




N∑

j=1

ft(i1, i2)


 . (17)
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4.2 Temporal Classification

In order to be able to use the binary classifier discussed
in section 4.1 for solving a multi-class problem, the clas-
sifier’s response must be made soft. This can be done
in a straightforward way by omitting the sign in the
right-hand-side expression of equation (17), i.e. consid-
ering the bare value of function F . This value can be
treated as a degree of similarity of the two input images.
Let p1, . . . , pK be the prototype images of K targeted
classes. If one of the images passed on input of our road
sign classifier, say i1, is a prototype of known class k

(i1 = pk), the classifier assigns such a label to the other,
unknown image, that satisfies:

l(i) = arg max
k

F (pk, i) . (18)

In other words, l(i) is determined from the prototype
to which the tested image is the most similar.

To classify a sequence of images, i1,...,T , the max-
imum rule in (18) is applied to the sum of F (pk, it)
terms over all images it, t = 1, . . . , T . Each it denotes
a warped image of a sign obtained by applying the in-
verse of the transformation matrix Mt to the frame at
time t. Additionally, the contribution of the most recent
observations is emphasized to reflect the fact that the
image of a sign becomes generally clearer as the vehicle
approaches the target. The ultimate classifier’s decision
at time T is determined from:

l(i1,...,T ) = arg max
k=1

T∑
t=1

q(t)F (pk, it) , (19)

where q(t) = bT−t, b ∈ (0, 1], is a relevance of the ob-
servation it.

5 Experimental Results

In this section we present the experimental evaluation
of the road sign detection, tracking and recognition al-
gorithms proposed in our study. Each of the three core
modules of the intended system are first tested as stand-
alone components. The two considered detection meth-
ods and the detection refinement algorithm are evalu-
ated on the static road sign images in section 5.1. The
better-performing refined detector is chosen to be incor-
porated into the prototype system and the justification
of this choice is provided. In section 5.2 we concen-
trate on the proposed regression tracker and measure
its capability of modeling the affine distortions that the
traffic signs are subject to while being approached by
a car-mounted camera. A small set of synthetic image
sequences are generated to facilitate this experiment.

Performance of a classifier trained via SimBoost is mea-
sured in section 5.3, again using the static images of
traffic signs. The feature representation guaranteeing
the most reliable assessment of the similarity between
the two images is determined based on the obtained
experimental results. Finally, in section 6 we assemble
the entire sign detection, tracking, and recognition sys-
tem and test it on a number of real-life video sequences
captured from a moving vehicle. Computational aspects
are also discussed.

5.1 Evaluation of Road Sign Detectors

In order to make a right choice of a sign detector to
be used in our system, we first tested the Haar cascade
and the Hough circle detector discussed in 2.2 with-
out considering the video context. The test image se-
quences we possess were acquired in the urban areas
in Japan, where most of the traffic signs captured were
circular. We have therefore evaluated the capacity of
both abovementioned techniques for detecting 14 types
of circular signs. We ran each detector in the small re-
gions of the input images around the known ground
truth sign locations. Specifically, the size of each analy-
sis region was set to 1.5 diameter of a sign located in
the region center. A few example images used are shown
in Fig. 5. The experiment was performed using a total
of 8175 challenging images and repeated for 1) vary-
ing threshold of the classifier in the last cascade layer,
and 2) varying threshold in the Hough vote space. To
increase the discriminative power of both detectors, we
transformed each input image using the color filters (3).
In the case of Hough transform, the color-specific edge
maps were computed and the HT was run on each of
them, pixel by pixel. When evaluating the Haar cas-
cade, filters (3), along with a gray-scale transforma-
tion, were used to parametrize the Haar wavelets, as
proposed by Bahlmann et al. [13]. In order to train
the classifier, a set of another 4218 images was first
clustered to reduce the intra-class variability. Then, a
separate cascade was trained for each cluster. The test
images were scanned by the cascaded classifier with a
2-pixel step to reduce computation.

For each image a ground truth center position and
the radius of a sign was given, (xc, yc, r). Quantities
measured were: 1) the mean number of candidates per
image detected, 2) mean distance between a detected
circle and the ground truth circle expressed with a Euclid-
ean metric over the abovementioned triples, and 3) miss
rate, i.e. the percentage of images where no sign was de-
tected. Relationship between the miss rate and the two
other quantities are illustrated in Fig. 6. The experi-
ment showed that the Haar cascade is a slightly more
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Fig. 5 Example images used in the experimental evaluation of the traffic sign detectors.

accurate road sign detector than the circular Hough
transform in the entire range of practically useful oper-
ating points. However, this advantage was achieved at
the cost of higher sensitivity, and hence more computa-
tion. While the average processing time of a single im-
age was approximately 10ms for a Hough detector, this
time increased to over 20ms for a Haar cascade 2. The
difference in the accuracy of both detectors can partly
be attributed to the nature of the voting in Hough
space. As it is generally unknown whether the road sign
is darker or lighter than the background, the votes com-
ing from the contour pixels are cast on both sides of the
circle. At times, the number of votes cumulated outside
the true signs can be sufficiently high to produce false
candidates that are adjacent to the true one. Besides,
the circular Hough transform is relatively insensitive
to scale when the input image contains thick edges. In
that case it often yields above-threshold responses for
a whole range of circle radii. Regardless of the results
of this comparison, both techniques appeared to be im-
practical when used alone, i.e. without an appropriate
postprocessing of the detector responses.

We have repeated the above experiment, but ap-
plying the proposed Confidence-Weighted Mean Shift
refinement algorithm to the output generated by each
detector. Obtained results are shown in Fig. 7. It can
easily be noticed that in the case of the circular Hough
detector, the mean number of detected candidates per
image roughly corresponds to the percentage of the im-
ages where any candidate was detected. This implies
that the proposed detection refinement scheme most
likely collapses the multiple positive responses of the de-
tector into a single candidate, which is an intended out-
come. The same effect is achieved by a refined cascade of
classifiers only for a relatively high threshold of the last
layer, when the miss rate of the detector is considerable.
The mean error of both detectors appears to be lower
with the refinement procedure enabled, with the Haar
cascade being by 25-50% more accurate. Interestingly,
the improvement in the accuracy of the Hough detec-
tor is dramatic, while the refined Haar cascade merely
eliminates redundancies, but does not reduce the error
significantly. Moreover, the difference between the aver-
age processing time of a single image became even more
apparent as it stayed at the 10ms level for the Hough

2 For a pixel-by-pixel scanning, the cascaded classifier was ap-
proximately 7 times slower than the Hough detector.

detector, but increased to 50-100ms for a cascade. The
latter observation suggests that the cascade of boosted
classifiers does not seem to be an adequate method for
detecting many types of signs at once. Decomposition
of the problem via clustering of the training data makes
this method more discriminative, but also unnecessar-
ily expensive. No or little advantage over the much sim-
pler Hough-based detector, which requires no training,
makes us adopt the latter method for further experi-
ments presented in this paper. Figure 8 illustrates ex-
ample output of the Hough circle detector before and
after applying the Confidence-Weighted Mean Shift re-
finement algorithm.

5.2 Evaluation of the Regressor Tracker

We have conducted a separate experiment aimed at
evaluating the ability of our road sign tracker to re-
trieve the full-face view of a sign under affine trans-
formations. This experiment was done in the following
way. Five synthetic image sequences were prepared us-
ing the OpenGL framework [22]. In each sequence a
template image of one sign is shown in an empty 3D
scene. The consecutive images depict the sign getting
closer to the camera and hence increasingly distorted.
This simulates a realistic scenario of a car approaching
a road sign mounted on the side of the road or above
the road lane. The rendered scenes were deliberately
constructed without any background and with constant
illumination to minimize the effects of possible contam-
ination of the image regions enclosing the target object
and to ensure its consistent appearance. For each image
sequence the refined circular Hough detector was set to
capture the circle instances of radius 12-24 pixels. The
tracker was triggered at the time of initial detection of
a sign by the HT and updated every 15 frames. Upon
the initial detection, the nearly undistorted image of a
sign in gray-scale was recorded to serve as a reference
image.

Robustness of the on-line learned tracking function
to the affine distortions was measured by recording a
normalized cross-correlation (NCC) between the recon-
structed full-face view of a sign in each frame and the
reference image. The changes of this correlation over
time for all five sequences are shown in Fig. 9 3. In each

3 The sequences used in this experiment are provided in the
supplementary material accompanying this paper.
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Fig. 6 Relationship between the mean number of candidates per image detected and the miss rate (left), and between the mean
distance of the detected candidates from the ground truth circles and the miss rate (right). Black lines and axes correspond to the
Haar cascade and the red lines and axes correspond to the circular Hough detector. This figure is best viewed in color.
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Fig. 7 Relationship between the mean number of candidates per image detected and the miss rate (left), and between the mean
distance of the detected candidates from the ground truth circles and the miss rate (right). Black lines and axes correspond to the
refined Haar cascade and the red lines and axes correspond to the refined circular Hough detector. This figure is best viewed in color.

Fig. 8 Output of the Hough circle detector before (upper row) and after (lower row) applying the refinement procedure. The trans-
parency of the detected circles in the upper row images correspond to their confidence expressed with the scaled number of votes
picked from the Hough voting space.

plot the behavior of NCC for a 6D regression func-
tion encoding all six 2D affine transform parameters
is compared to the behavior of NCC observed using
three other trackers. These are: 1) a 4D regression func-
tion encoding only two rotation-shift parameters and
both translation parameters, 2) a 3D regression func-
tion encoding only one isotropic scaling-rotation para-
meter and both translation parameters, and 3) a sim-

ple tracker which makes individual circle detections in
each frame, but uses a Kalman filter (KF) [1] to pre-
dict the position and scale of a sign. During the on-line
training of the regression trackers, all non-translation
parameters were randomly generated within the range
[−0.2, 0.2] and the translation parameters were ran-
domly generated within the range [−0.4, 0.4].
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Fig. 9 Normalized cross-correlation (NCC) between the reference image recorded at the time of initial sign detection and the recon-
structed full-face view of a sign in each frame of the input sequences. Each sequence was generated in a synthetic empty 3D scene and
simulates what is typically observed from a vehicle approach a traffic sign.

Based on the results of the above experiment, we
conclude that learning of the motion model based on
the Lie algebra enables construction of a robust ob-
ject tracker which is invariant to the affine transforma-
tions. In Fig. 9 the 6D affine tracker outperforms the
two other regression trackers and the KF-based tracker
which do not model the full structure of the motion.
The correlation between the original frontal view of a
sign and a view inferred from the current transforma-
tion parameter estimates remains high for the entire
duration of the sequences. In the case of the 4D and
3D affine trackers, as well as the KF-based tracker, this
correlation drops more quickly, particularly in the sec-
ond part of each sequence. In addition, the behavior of
the KF-based tracker is less stable, as no temporal de-
pendency between the consecutive frame observations
is modeled. In other words, as long as the sign remains
relatively unaffected by the affine distortion, all meth-
ods provide a relatively accurate track of the target.
However, when the sign gets closer to the camera and
thus becomes more substantially distorted in the image
plane, only the fully-affine regression tracker remains
able to restore the full-face view of the target with low
error. From the point of view of the entire system this
is a particularly useful property because the most infor-
mative frames of the input video, when the appearance
of a sign is the most unambiguous, can be efficiently
used for recognition.

Fig. 10 Haar wavelet features used in the experimental eval-
uation of the traffic sign classifier trained using the SimBoost
algorithm.

5.3 Evaluation of SimBoost

Performance of the road sign classifier trained with the
SimBoost algorithm introduced in section 4.1 has been
estimated using the similar dataset as the one used in
section 5.1. 7757 static images of 14 circular Japanese
road signs were cropped from the test video sequences
such that each sign filled the entire image, and used
to train a 100-feature classifier. Another 8434 images
were used for testing. The quality and the illumina-
tion in all images varied significantly. When construct-
ing the test input pairs, the prototype images of each
class were chosen randomly out of all images available
for this class. Exploiting flexibility of the distance mea-
sure in (11), three different image descriptors and the
associated distance metrics were used within the Sim-
Boost framework to populate the pool of input features.
They are listed in table 1.

Results of the experiment are shown in the confusion
matrices in Fig. 11. As seen, the histograms of oriented
gradients and the color-parametrized Haar wavelet fil-
ters are the most useful image descriptors for classifi-
cation of the traffic signs. Interestingly, both types of
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Table 1 Image descriptors and the associated distance metrics used in the experimental evaluation of the traffic sign classifier trained
using the SimBoost algorithm.

Image feature Description Associated distance metric

Color-parametrized
Haar wavelet [11]

Rectangular filters shown in Fig. 10, parametrized with
color, as described in section 5.1. Only the filters of scale
w, h = {4, 8}px, shifted by 1

4
w, 1

4
h along each dimension

were used, where by scale we refer to the width and height
of a single rectangular block of a filter.

d(φj(i1), φj(i2)) = |v1 − v2)|, where v1 =
φj(i1), v2 = φj(i2)

Histogram of oriented
gradients (HOG) [14]

6-bin gradient orientation histograms computed at all pos-
sible image regions satisfying: w, h = {10, 15, 20}px, dx =
1
2
w, dy = 1

2
h, where w, h are the width and height of the

analysis region, and dx, dy are the shifts along each axis.

d(φj(i1), φj(i2)) =
pPn

k=1(v1,k − v2,k)2,
where v1 = φj(i1), v2 = φj(i2), v1,v2 ∈
Rn, and n is the number of histogram bins

Region covariance [17] 4 × 4 covariance matrices encoding x and y coordinates
and the first-order image derivatives. Only the regions of
scale w, h = {10, 15, 20}px, shifted by 1

2
w, 1

2
h along each

dimension were considered.

d(φj(i1), φj(i2)) =
qPn

k=1 ln2 λk(C1,C2),

where {λk(C1,C2)}k=1,...,n are the gener-
alized eigenvalues of C1 and C2, computed
from λkC1xk = C2xk

features carry non-overlapping pieces of discriminative
information, and thanks to the flexibility of the distance
formulation in SimBoost, these cues can efficiently be
combined. The classifier trained with both types of de-
scriptors available in the input feature pool achieved
a superior correct classification rate of nearly 76%. In
Fig. 12 we have visualized the first 10 features selected
by SimBoost for this best-performing classifier.

6 Performance of the Entire System

To evaluate the proposed traffic sign detection, track-
ing and recognition algorithms altogether, we built a
prototype system incorporating all three components
with their optimal settings. A demo application was
implemented in C++ and part of the computationally
demanding image processing operations were handled
using the OpenCV library [23]. The system allows man-
ual modification of several parameters, among others
the frequency of detection 4, the scale of the signs to be
detected, and the frequency of the tracker update.

We have obtained a number of realistic video se-
quences to test an overall performance of the imple-
mented system. Each sequence was captured with a
front-looking wide-angle camera mounted on board of
a vehicle, in various, usually crowded street scenes in
Japan. The illumination of the scene is roughly con-
stant in all test videos. In system runtime, a 720× 540
pixels portion of the scene was cropped from the upper-
central region of each frame of the input video, and
further downscaled by 50%. The range of radii of the
circles captured by the detector was set to 12-24 pix-

4 Exploration of the entire scene in search of the new road sign
candidates in each frame of the input video is unnecessary and
can be performed every k frames without the increase in the miss
rate.

Table 2 Classification rates obtained in the dynamic experi-
ment. The numbers of correctly classified signs of each class are
given against the total numbers of such signs detected in the
input sequences.

7/7 4/5 1/1 4/5 1/2 10/10

6/9 2/2 3/3 9/10 26/31

els and the tracker updated itself every n = 15 frames,
generating m = 6 new random affine transformations
in each frame. During the on-line training of the regres-
sion tracker, the affine matrix parameters were gener-
ated randomly within the same ranges as defined in the
experiment from section 5.2, i.e. [−0.2, 0.2] for all non-
translation parameters, and [−0.4, 0.4] for both trans-
lation parameters. Table 2 illustrates the numbers of
traffic signs of each class that occurred in the videos
and were detected, together with the numbers of these
signs that were correctly classified.

As seen, an overall error rate of the classifier did
not exceed 15%. Misclassifications were mainly caused
by the motion blur erasing the relevant image gradi-
ents, and by the cumulated reconstruction errors of the
tracker. These errors can partly be attributed to the
background fragments which contaminate the corners
of the image regions enclosing the target circular signs.
Regarding the other system components, the refined
Hough circle detector appeared to be relatively accu-
rate and resistant to clutter. Overall, it missed 14 true
signs, mostly due to the insufficient figure-background
contrast, and yielded less than ten false sign candidates.
Figure 13 shows several examples of signs our detec-
tor was not able to detect. Finally, the tracker demon-
strated its ability to rapidly correct small affine sign
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0.03 0.00 0.03 0.01 0.06 0.06 0.05 0.00 0.02 0.00 0.00 0.67 0.00 0.07

0.00 0.23 0.00 0.00 0.06 0.00 0.00 0.00 0.01 0.00 0.48 0.00 0.21 0.00

0.01 0.01 0.02 0.02 0.05 0.00 0.00 0.06 0.00 0.81 0.01 0.00 0.00 0.01

0.01 0.06 0.01 0.02 0.19 0.01 0.01 0.09 0.42 0.00 0.11 0.00 0.06 0.01

0.00 0.08 0.00 0.01 0.01 0.00 0.01 0.61 0.11 0.00 0.08 0.00 0.08 0.00

0.04 0.02 0.00 0.00 0.04 0.01 0.71 0.07 0.02 0.00 0.01 0.03 0.01 0.04

0.00 0.00 0.16 0.00 0.00 0.83 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.09 0.00 0.00 0.72 0.00 0.01 0.00 0.06 0.00 0.08 0.00 0.03 0.00

0.04 0.01 0.05 0.50 0.02 0.02 0.01 0.13 0.07 0.00 0.02 0.00 0.01 0.12

0.00 0.01 0.41 0.04 0.03 0.44 0.00 0.00 0.02 0.00 0.01 0.00 0.00 0.03

0.00 0.39 0.00 0.00 0.06 0.00 0.00 0.01 0.01 0.00 0.27 0.00 0.25 0.00

0.64 0.00 0.00 0.03 0.00 0.01 0.08 0.01 0.00 0.00 0.00 0.02 0.00 0.20

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.97 0.00

0.01 0.00 0.04 0.00 0.00 0.06 0.01 0.00 0.00 0.00 0.00 0.85 0.00 0.04

0.00 0.18 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.65 0.00 0.12 0.00

0.01 0.00 0.01 0.00 0.01 0.09 0.00 0.00 0.00 0.82 0.00 0.03 0.00 0.02

0.01 0.00 0.02 0.00 0.01 0.02 0.00 0.00 0.94 0.00 0.00 0.00 0.00 0.00

0.02 0.00 0.04 0.01 0.08 0.03 0.00 0.68 0.12 0.00 0.00 0.00 0.01 0.00

0.01 0.00 0.00 0.00 0.00 0.01 0.95 0.00 0.00 0.00 0.00 0.00 0.00 0.02

0.01 0.00 0.15 0.01 0.00 0.78 0.00 0.00 0.01 0.00 0.00 0.02 0.00 0.02

0.01 0.01 0.00 0.00 0.97 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00

0.06 0.00 0.05 0.79 0.00 0.04 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.03

0.01 0.00 0.65 0.01 0.01 0.25 0.00 0.01 0.02 0.00 0.00 0.00 0.00 0.04

0.00 0.58 0.00 0.00 0.15 0.00 0.00 0.00 0.00 0.00 0.19 0.00 0.07 0.00

0.86 0.00 0.00 0.01 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.10

(c) CR = 54.1% (d) CR = 75.8%

Fig. 11 Classification accuracy of a 100-feature classifier trained using the SimBoost algorithm and different image descriptors: (a)
color-parametrized Haar wavelets [13], (b) histograms of oriented gradients (HOG), (c) 4 × 4 covariance matrices encoding x and y
coordinates and the first-order image derivatives [17], (d) Haar and HOG features jointly.

Fig. 12 10 best features selected by the SimBoost algorithm while training the 14-class road sign classifier using jointly the color-
parametrized Haar wavelet filters and the histograms of oriented gradients. Both kinds of image descriptors are present.
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Fig. 13 Examples of road signs the refined Hough detector could
not capture.

distortions, which enabled real-time system operation.
Example videos demonstrating this ability are available
at: http://people.brunel.ac.uk/∼cspgaar/MVA2009/.

7 Conclusions

In this study we have presented a comprehensive ap-
proach to detection, tracking and recognition of traffic
signs from a moving vehicle. Our system is comprised of
three components. The detector utilizes a state-of-the-
art object detection technique, but features a Confidence-
Weighted Mean Shift mode-finding algorithm to im-
prove its accuracy and cope with multiple redundant
hypotheses in the detector’s response space. The main
contribution of our work are the novel tracking and
recognition algorithms. The proposed tracker models
the motion of the target through an instance-specific
tracking function. It encodes correlations between the
unique feature representation of a candidate sign and
the affine distortions it is subject to while being ap-
proached by a camera. It is shown that based on the Lie
group theory such a tracking function can be learned
and updated instantly from random transformations
applied to the image of the target in known pose. A de-
tected and tracked sign candidate is classified by maxi-
mizing its similarity to the class’s prototype image. This
similarity is estimated by a linear combination of lo-
cal image descriptor differences and is learned from im-
age pairs using a novel variant of AdaBoost algorithm,
called SimBoost.

The proposed algorithms have been evaluated in a
number of experiments involving static road sign im-
ages, synthetic image sequences, and real-life video cap-
tured from a car-mounted camera. These experiments
were aimed at: 1) evaluation of the detection refinement
algorithm with two different object detection techniques
and determining the most suitable refined detector, 2)
demonstrating the ability of the tracker to model the
affine motion of the signs and reconstruct their frontal
views under significant deformations, and 3) estimating
the error rate of a classifier trained with different low-
level image descriptors using the SimBoost algorithm
so as to determine the most suitable image representa-
tion. The overall performance of the system was esti-
mated based on the prototype implementation we built

in C++. The obtained results prove the efficiency of the
proposed algorithms and confirm that we have chosen
the right direction to tackle the challenging traffic sign
recognition problem.
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