
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Generic Self-Calibration of Central Cameras

Srikumar Ramalingam

TR2009-078 December 2009

Abstract
We consider the self-calibration problem for a generic imaging model that assigns projection
rays to pixels without a parametric mapping. We consider the central variant of this model,
which encompasses all camera models with a single effective viewpoint. Self calibration refers
to calibrating a camera’s projection rays, purely from matches between images, i.e. without
knowledge about the scene such as using a calibration grid. In order to do this we consider
specific camera motions, concretely, pure translations and rotations, although without the
knowledge of rotation and translation parameters (rotation angles, axis of rotation, translation
vector). Knowledge of the type of motion, together with image matches, gives geometric
constraints on the projection rays. We show for example that with translation motion alone,
self-calibration can already be performed, but only up to an affine transformation of the
set of projection rays. We then propose algorithms for full metric self-calibration, that use
rotational and translational motions or just rotational motions.

Computer Vision and Image Understanding Journal

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in
whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that all
such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi Electric
Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and all
applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall require
a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved.

Copyright c© Mitsubishi Electric Research Laboratories, Inc., 2009
201 Broadway, Cambridge, Massachusetts 02139





Generic Self-Calibration of Central Cameras

Srikumar Ramalingam

Mitsubishi Electric Research Laboratories, Cambridge, USA

Peter Sturm

INRIA Grenoble – Rhône-Alpes and Laboratoire Jean Kuntzmann, Grenoble, France

Suresh K. Lodha

University of California, Santa Cruz, USA

Abstract

We consider the self-calibration problem for a generic imaging model that assigns pro-
jection rays to pixels without a parametric mapping. We consider the central variant of
this model, which encompasses all camera models with a single effective viewpoint. Self-
calibration refers to calibrating a camera’s projection rays, purely from matches between
images, i.e. without knowledge about the scene such as using a calibration grid. In order
to do this we consider specific camera motions, concretely, pure translations and rotations,
although without the knowledge of rotation and translation parameters (rotation angles,
axis of rotation, translation vector). Knowledge of the type of motion, together with im-
age matches, gives geometric constraints on the projection rays. We show for example that
with translational motions alone, self-calibration can already be performed, but only up
to an affine transformation of the set of projection rays. We then propose algorithms for
full metric self-calibration, that use rotational and translational motions or just rotational
motions.

Key words: Generic imaging models, self-calibration, omnidirectional cameras

Email addresses: Srikumar.Ramalingam@merl.com (Srikumar Ramalingam),
Peter.Sturm@inrialpes.fr (Peter Sturm), lodha@soe.ucsc.edu (Suresh K.
Lodha).

URLs: http://www.merl.com/people/?user=ramalingam (Srikumar
Ramalingam), http://perception.inrialpes.fr/people/Sturm/ (Peter
Sturm), http://www.soe.ucsc.edu/∼lodha (Suresh K. Lodha).

Preprint submitted to Elsevier Science 23 June 2009



1 Introduction

Many different types of cameras have been used in computer vision. Existing cal-
ibration and self-calibration procedures are often taylor-made for specific cam-
era models, mostly for pinhole cameras (possibly including radial or decentering
distortion), fisheyes, specific types of catadioptric cameras etc.; see examples in
[2,3,10,6,11,12].

A few works have proposed calibration methods for a highly generic camera model
that encompasses the above mentioned models and others [7,4,8,19,18]: a camera
acquires images consisting of pixels; each pixel captures light that travels along a
projection ray in 3D. Projection rays may in principle be positioned arbitrarily, i.e.
no functional relationship between projection rays and pixels, governed by a few
intrinsic parameters, is assumed. Calibration is thus described by:

• the coordinates of these rays (given in some local coordinate frame).
• the mapping between rays and pixels; this is basically a simple indexing.

One motivation of the cited works is to provide flexible calibration methods that
should work for many different camera types. The proposed methods rely on the
use of a calibration grid and some of them on equipment to carry out precisely
known motions.

The work presented in this paper aims at further flexibility, by addressing the prob-
lem of self-calibration for the above generic camera model. The fundamental ques-
tions are: can one calibrate the generic imaging model, without any other infor-
mation than image correspondences, and how? This work presents a step in this
direction, by presenting principles and methods for self-calibration using specific
camera motions. Concretely, we consider how pure rotations and pure translations
may enable self-calibration.

Further, we consider the central variant of the imaging model, i.e. the existence of
an optical center through which all projection rays pass, is assumed. Besides this
assumption, projection rays are unconstrained, although we do need some conti-
nuity (neighboring pixels should have “neighboring” projection rays), in order to
match images.

The self-calibration problem has been addressed for a slightly more restricted model
in [20,21,15]. Tardif et al. [20,21] introduced a generic radially symmetric model
where images are modelled using a unique distortion center and concentric distor-
tion circles centered about this point. Every distortion circle around the distortion
center is mapped to a cone of rays. In [15] the self-calibration problem is trans-
formed to a factorization requiring only a singular value decomposition of a matrix
composed of dense image matches. Thirthala and Pollefeys [22] proposed a linear
solution for recovering radial distortion which can also include non-central cam-

2



eras. Here, pixels on any line passing through the distortion center are mapped to
coplanar rays.

This paper is an extended version of [16]. In addition to the methods proposed
in [16], we study the self-calibration problem for two new scenarios. The first is
to obtain a metric self-calibration from two pure rotations. Second we study the
possibility of obtaining self-calibration up to an unknown focal length in the case
of using one rotation and one translation. The same self-calibration problem has
been studied independently in [14,9,5], where an algebraic approach is utilized for
a differentiable imaging model and infinitesimal camera motion. In contrast to these
works, we use a discrete imaging model and consider finite motions.

In this work we focus on restricted motions like pure translations and pure rota-
tions. We compute dense matches over space and time, i.e. we assume that for any
pixel p, we have determined all pixels that match p at some stage during the ro-
tational or translational motion.We call a complete such set of matching pixels, a
flowcurve. Such flowcurves provide geometrical constraints on the projection rays.
For example, a flowcurve in the case of a pure translation corresponds to a set of
pixels whose projection rays are coplanar. In the case of pure rotation, the corre-
sponding projection rays lie on a cone. These coplanarity and “co-cone” constraints
are the basis of the self-calibration algorithms proposed in this paper.

Overview of the paper. We formulate the generic self-calibration problem for cen-
tral cameras in section 2. In section 3 we describe the geometrical constraints that
can be obtained from pure translation and pure rotation. In section 4 we show that
with translational motions alone, self-calibration can already be performed, but
only up to an affine transformation of the set of projection rays. Our main con-
tribution is given in section 5 where we show different self-calibration approaches
using combinations of pure rotations and pure translations. Finally in section 6 we
show results for fisheye images using a self-calibration method that uses two rota-
tions and one translation.

2 Problem Formulation

We want to calibrate a central camera with n pixels. To do so, we have to recover
the directions of the associated projection rays, in some common coordinate frame.
Rays need only be recovered up to a euclidean transformation, i.e. ray directions
need only be computed up to rotation. Let us denote by Di the 3-vector describing
the direction of the ray associated with the ith pixel p.

Input for computing ray directions are pixel correspondences between images and
the knowledge that the motion between images is a pure rotation (with unknown
angle and axis) or a pure translation (with unknown direction and length). For sim-

3



plicity of presentation, we assume that we have dense matches over space and time,
i.e. we assume that for any pixel p, we have determined all pixels that match p at
some stage during the rotational or translational motion. Let us call a complete
such set of matching pixels, a flowcurve. For ease of expression we sometimes call
flowcurves arising from translational respectively rotational motion, t-curves re-
spectively r-curves. Flowcurves can be obtained from multiple images undergoing
the same motion (rotations about same axis but not necessarily by the same angle;
translation in same direction but not necessarily with constant speed) or from just a
pair of images I and I ′, as shown further below.

In Figures 1 and 2, we show flowcurves obtained from a single image pair each
for a pure translation and a pure rotation (rotation about an axis passing through
the optical center). Let p and p′ refer to two matching pixels, i.e. pixels observing
the same 3D point in I and I ′. Let p′′ refer to the pixel that in I ′ matches to pixel
p′ in I . Similarly let p′′′ be the pixel that in I ′ matches to pixel p′′ in I , and so
forth. The sequence of pixels p,p′,p′′,p′′′, . . . gives a subset of a flowcurve. A
dense flowcurve can be obtained in several ways: by interpolation or fusion of such
subsets of matching pixels or by fusing the matches obtained from multiple images
for the same motion (constant rotation axis or translation direction, but possibly
varying velocity).

3 Constraints From Specific Camera Motions

In this section, we explain constraints on the self-calibration of projection ray di-
rections that are obtained from flowcurves due to specific camera motions: one
translational or one rotational motion.

3.1 One Translational Motion

Consider two matching pixels p and p′, i.e. the scene point seen in pixel p in image
I , is seen in image I ′ in pixel p′. Due to the motion being purely translational,
this implies that the projection rays of these two pixels, and the baseline, the ray
along which the center of the camera moves while undergoing pure translation, are
coplanar (they indeed form an epipolar plane, although we won’t use this notation
in the following). We briefly illustrate this coplanarity property in figure 1.

It is obvious that this statement extends to all pixels in a t-curve (translational
flowcurve): their projection rays are all coplanar (and they are coplanar with the
baseline). We conclude that the ray directions of the pixels in a t-curve, lie on one
line at infinity. That line at infinity also contains the translation direction.

4



Fig. 1. Illustration of flowcurves from translation motions (t-curves). On the top we show
two images related by a pure translation. Here the camera moves towards the bulding.
Let p and p′ be two matching pixels in the left and right images respectively. Now we
consider the pixel in the left image at the same location as p′ in the right image. Let the
matching pixel to this one in the right image be p”. Doing this iteratively we obtain a set of
pixels p,p′,p′′, . . . which lie on the flowcurve. In the bottom we show the projection rays
corresponding to pixels in the flowcurve. Let the optical center move from C1 to C2 and
the projection rays corresponding to p be C1M, to p′ be C1M

′ and so on. It can be easily
seen that the projection rays C1M, C1M

′, . . . as well as C2M . . . , are coplanar.

When considering all flowcurves for one translational motion, we thus conclude
that the ray directions of pixels are grouped into a pencil of lines at infinity, whose
vertex is the translation direction. Clearly, these collinearity constraints tell us
something about the camera’s calibration.

When counting degrees of freedom, we observe the following: at the outset, the
directions for our n projection rays, have 2n degrees of freedom (minus the 3 for a
global rotation R). Due to the translational motion, this is reduced to:

• 2 dof for the translation direction
• 1 dof per flowcurve (for the line at infinity, that is constrained to contain the

translation direction)
• 1 dof per pixel (the position of its ray along the line at infinity of its flowcurve).
• minus 3 dof for R.

5



3.2 One Rotational Motion

Let L be the rotation axis (going through the optical center). Consider two matching
pixels p and p′. Clearly, the associated rays lie on a right cone with L as axis and
the optical center as vertex, i.e. the angles the two rays form with the rotation axis
L, are equal. Naturally, the rays of all pixels in an r-curve, lie on that cone. Each
r-curve is associated with one such cone. This is illustrated in figure 2.

We will use the following parameterization for projection rays in our self-calibration
algorithms described in section 5, which all rely on at least one rotational motion.
Let us select one of the rotational motions and use it to define the coordinate system
in which projection rays are expressed. Since calibration can be done up to a global
rotation only, we choose, without loss of generality, the rotation axis of the selected
rotational motion, as Z-axis. Let the opening angle of the cone associated to the
i-th r-curve be αi. Then, the direction of the projection ray associated with the j-th
pixel on that r-curve, can be parameterized as:

Dij ∼










cos βij − sin βij 0

sin βij cos βij 0

0 0 1



















0

sin αi

cos αi










(1)

Here, βij is the azimuth of the ray.

When counting degrees of freedom, we so far observe the following. Due to the
rotational motion, the following dof remain when estimating the projection rays:

• 1 dof per r-curve (opening angle αi of the associated cone).
• 1 dof per pixel (azimuth βij of its ray).

We have not yet exploited all information that is provided by the rotational motion.
Besides the knowledge of rays lying on the same cone, we have more information,
as follows. Let Θ be the (unknown) angle of rotation. Then, the angular separation
between any two rays whose pixels match in the two images, is equal to Θ. Hence,
the rays for each set of pixels that are transitive 2-view matches like the p,p′,p′′,

etc. in figure 2, can be parameterized by a single parameter, the azimuth of one of
them. We remain with:

• 1 dof for the rotation angle Θ
• 1 dof per r-curve (opening angle αi of the associated cone).
• 1 dof per set of matching pixels (azimuth of one of the associated rays).

6



Fig. 2. Illustration of flowcurves from rotational motion (r-curves). They are formed ac-
cording to the same principle as outlined in figure 1. In the bottom we show the projection
rays corresponding to pixels in one r-curve; they lie on a right cone.

3.2.1 Closed Rotational Flowcurves

Let us consider what we can do in addition, if the rotation axis “pierces” the image,
i.e. if there is a pixel whose ray is collinear with the rotation axis. We call this
the center pixel of the rotation 1 . Then, in the vicinity of the center pixel, closed
flowcurves can be obtained. For example, for a pinhole camera with square pixels
and no skew, a rotation about its optical axis produces flowcurves in the form of
circles centered in the principal point.

What does a closed r-curve give us? Let us “start” with some pixel p on a closed
flowcurve, and let us “hop” from one matching pixel to another, as explained in
Figure 2. We count the number of pixels until we get back to p. Then, the rotation
angle Θ can be computed by dividing 360◦ by that number. Of course, pixel hopping

1 In the general camera model used here, there may actually be more than one such pixel;
either one can be used. This can happen in even regular fisheye cameras when the field of
view is greater than 180◦ or in a hypothetical exotic camera when more than one pixel see
the same direction. Also, in practice there will of course be no pixel whose ray is exactly
collinear with the rotation axis; we then choose the one which is closest.

7



(a) (b) (c)

Fig. 3. Let p1,p2, ...,pn,pn+1 be the pixels in an r-curve. As we traverse along the
flowcurve from p1 we overshoot this starting pixel and reach pn+1. This overshooting
can be detected when d(pn,p1) < d(pn,pn+1). In (a) we show a continuous flowcurve
which our method is capable of handling. In (b) and (c) we show flowcurves that violate
our smoothness assumption. In such degenerate cases, it is difficult to compute the rotation
angle using interpolation.

may not always lead us exactly to the pixel we started with, but by interpolation,
we can get a good approximation for Θ. A simple approach to compute the rotation
angle using interpolation is illustrated in figure 3(a) and leads to the following
formula:

Θ =
2π

n −
d(p1 ,pn+1)
d(p1,p2)

, (2)

where d(·) represents the distance between two points. Figures 3(b) and (c) also
show cases in which this simple interpolation scheme will fail. Nevertheless, Θ can
be computed by robustly averaging over all available r-curves for which its value
can be found with the proposed scheme.

3.3 Assumptions for our Self-Calibration Algorithms

For the self-calibration algorithms explained below, we suppose that the axes of
used rotational motions, pierce the camera image 2 and that the rotation angle Θ
can be computed as described above. Further, we assume that the rotation’s center
pixel can be determined; it is the single pixel that is matched to itself between
the two images 3 . As explained above, we know that the rays associated with two
matching pixels are separated by the rotation angle Θ (i.e. the difference of their
azimuth angles is Θ). We assume that we can compute the azimuth between the
rays associated with any two pixels on a rotational flowcurve. We currently use a
2 Note that for a field of view of less than 180◦, this prevents the use of pan or tilt rotations.
3 In practice, there may be several such pixels grouped together, or none. In the first case,
we pick the pixel that is closest to the center of gravity of these pixels. In the second case,
we determine the matching pair of pixels that has the smallest distance among all matching
pairs, and choose the pixel that is closest to the midpoint of the two.

8



simple bilinear interpolation scheme to do so, along the lines of the above scheme
(cf. equation (2)). A more sophisticated approach could be the result of future work.

Finally, under these assumptions, we redo the above count of degrees of freedom
for a single rotational motion, which gets modified to:

• 2 dof per r-curve: opening angle αi and azimuth of one of the associated rays.
Let us call the latter the azimuth of the i-th r-curve.

4 Multiple Translational Motions

In this section, we explain that multiple translational motions allow to recover cam-
era calibration up to an affine transformation. First, it is easy to explain that no
more than an affine “reconstruction” of projection rays is possible here. Let us con-
sider one valid solution for all ray directions Di, i.e. ray directions that satisfy all
collinearity constraints associated with t-curves (cf. section 3.1). Let us transform
all ray directions by an affine transformation of 3-space






A b

0T 1






i.e. we apply the 3 × 3 homography A to the Di. This may be seen as a projective
transformation inside the plane at infinity, although we prefer to avoid any possible
confusion by such an interpretation, and simply think of the mapping as an affine
one. Clearly, the D′

i = ADi also satisfy all collinearity constraints (collinearity is
preserved by affine and projective transformations).

This situation is very similar to what has been observed for perspective cameras:
a completely uncalibrated perspective camera can be seen as one whose rays are
known up to an affine transformation of 3-space: the role of A is played by the
product KR of calibration and rotation matrix; since calibration is only required
up to rotation, only K matters. So, the rays of a perspective camera are always
“affinely” calibrated. Even with uncalibrated perspective cameras, 3D reconstruc-
tion is possible, but only up to projective transformations. Now, when moving a
camera by pure translations, no further information on calibration can be gained,
although a projective reconstruction may be upgraded to affine [13].

Coming back to our generic camera model, it is thus obvious that from pure trans-
lations, we can not reach farther than recovering the rays up to an affine transfor-
mation (the situation would be different for example if multiple translations were
considered with the knowledge that speed is constant).

We now provide a simple constructive approach to recover affine self-calibration.

9



Let us consider 4 translational motions, in different directions such that no 3 di-
rections are collinear. Let us carry out the translations such that the FOE (focus of
expansion) is inside the image, i.e. such that there exists a pixel for each motion
whose ray is collinear with the baseline. Let these 4 pixels be pixels 1 to 4. Since
we can recover ray directions up to a 3× 3 homography only, we may, without loss
of generality, attribute arbitrary coordinates to the directions D1 · · ·D4 (such that
no 3 of them are collinear). We now alternate between the following two steps:

(1) Compute the line at infinity of ray directions for all t-curves for which two
or more ray directions have already been determined; this is simply done by
fitting a line to the points corresponding to these directions.

(2) Compute ray directions of pixels who lie on two or more t-curves whose lines
at infinity have already been determined.

Repeat this until convergence, i.e. until no more directions or lines at infinity can
be computed. In the first iteration, 6 lines at infinity can be computed, for the t-
curves that link pairs of our 4 basis pixels. After this, 3 new ray directions can
be recovered. In the second iteration, 3 new lines at infinity are computed. From
then on, the number of computable ray directions and lines at infinity increases
exponentially in general (although pixels and t-curves will be more and more often
“re-visited” towards convergence).

This algorithm is deterministic, hence the computed ray directions will necessarily
be an “affine reconstruction” of the true ones. However there are a few issues with
this “proof”:

• the construction does not state a sufficient condition in order to calibrate all ray
directions of a camera; it just says that the ray directions we do calibrate (i.e. that
are attained by the construction scheme), are indeed equal to the true ones up to
the same global affine transformation.

• a practical implementation of the above algorithm will have to deal with noise:
for example, computed t-curves are not exact and the lines at infinity computed
for t-curves that contain the same pixel, will not usually intersect in a single
point.

• strictly speaking, the above scheme for self-calibration is not valid for cameras
with finitely many rays. To explain what we mean, let us consider a camera with
finitely many rays, in two positions. In general, i.e. for an arbitrary translation
between the two positions, a ray in the second camera position, will have zero
probability of cutting any ray in the first camera position! Hence, the concept of
matching pixels has to be handled with care. However, if we consider a camera
with infinitely many rays (that completely fill some closed volume of space), a
ray in one position will always have matching rays in the other position (unless it
is outside the other position’s field of view). Hence, our constructive proof given
in this section, is, strictly speaking, valid for cameras with infinitely many rays.

10



5 Self-Calibration Algorithms

We put together constraints derived in section 3 in order to propose self-calibration
algorithms for different scenarios that require rotational and translational motions.
First, we show that with one rotational and one translational motion, full self-
calibration up to a single degree of freedom, is possible. This degree of freedom
is equivalent to an unknown focal length in the case of a perspective camera. Sec-
ond, it is shown how to remove this ambiguity using an additional rotational mo-
tion. Finally, an algorithm for full self-calibration from two rotational motions, is
presented.

5.1 One Rotation and One Translation

In this section we present a self-calibration algorithm using a single rotation and
a single translation. As shown in section 3.3, the rotational motion, together with
the assumptions we make, allows us to nail down the self-calibration problem to
the determination of the opening angle and the azimuth angle associated with each
r-curve. This can be done using the t-curves arising from the translational motion,
as explained in the following.

First, let us explain how the azimuth angles can be computed. For the following,
please refer to figure 4. On the left side we show a few r-curves and the center pixel
c of the rotational motion (cf. section 3.2.1). Consider the t-curve that contains c

and its intersections with the r-curves. The rays associated with the intersection
points must be coplanar (cf. section 3.1). Also, since the t-curve passes through the
rotation’s center pixel, the above rays must be coplanar with the rotation axis; this
is illustrated on the right side of figure 4. Obviously, all these rays have the same
azimuth relative to the rotation axis (up to adding 180◦). Without loss of generality,
we set the azimuth angle to zero, for all pixels on the t-curve that lie on one side of

c

Fig. 4. Computation of the azimuth angles using a rotation and translation.

11



c

p
p

p

11

12

21

Fig. 5. Computation of the opening angles using a rotation and translation (see text for
details).

the center pixel 4 . We have thus computed the azimuth angle for each r-curve (that
is cut by the considered t-curve). Using the assumptions stated in section 3.3, this
thus gives us the azimuth angle for every pixel.

We now compute opening angles of our cones (refer to figure 5). Consider two
r-curves, with opening angles α1 and α2, and intersection points with any t-curve
not passing through the center pixel c. Let p11 and p12 be two intersection points
on the first r-curve and p21 one on the second r-curve, and β11, β12 and β21 the
associated azimuth angles (known). The projection rays associated with these three
points must be coplanar, since the associated image points lie on a t-curve. Hence,
the associated ray directions Dij must be collinear. Let us stack the three direction
vectors (cf. equation (1)) in a 3× 3 matrix; collinearity implies that its determinant
vanishes. After simple operations, this leads to the following linear equation in the
tangents of the opening angles:

tanα2 =
sin(β11 − β12)

sin(β11 − β21) + sin(β21 − β12)
tanα1

Combining such equations for sufficiently many sets of translational and rotational
flowcurves, one can compute the opening angles of all cones, and thus the complete
calibration, by solving a homogeneous linear equation system. However, the cali-
bration is only defined up to one degree of freedom, since the equation system is
homogeneous; the tangents of all opening angles are only computed up an unknown
scale factor. Concretely, the ray directions are computed up to a transformation of

4 Determining which pixels lie on the same side of c, may be difficult to do in full gen-
erality. Most often, it is sufficient to follow intersection points by starting from c in one
direction and to stop when the last r-curve cutting the considered t-curve is reached or
when an r-curve is re-visited. The latter case can appear for cameras with opening angles
larger than 180◦.

12



the form

S =










s 0 0

0 s 0

0 0 1










(3)

It is easy to show that with the considered input, this is the maximum that is pos-
sible: for any such scale factor s, the available constraints will all be satisfied.
Collinearity of ray directions, induced by t-curves, is invariant to the above trans-
formation. As for the constraints arising from the rotational motion, namely the fact
that rays associated with pixels on an r-curve lie on a right cone, it is easy to show
that they also hold independently of s.

In some sense, the obtained calibration is equivalent to the case of a pinhole cam-
era that is fully calibrated, besides an unknown focal length. In that analogy, the
rotation axis plays the same role as the optical axis of the pinhole camera.

5.2 Two Rotations and One Translation

Using an additional rotational motion, the result of the previous section can be
extended towards a complete metric self-calibration. All that has to be computed is
the scale factor s.

Consider two pixels on an r-curve associated with the second rotation, and the cen-
ter pixel of that rotation. From the method of the previous section, their associated
ray directions are known up to the transformation S (cf. equation (3)). Let them be
SD1, SD2 and SD0 respectively. The rays associated with our two pixels must form
the same angle with the rotation axis, represented by SD0:

DT

1 S2D0
√

DT
1 S2D1

√

DT
0 S2D0

=
DT

2 S2D0
√

DT
2 S2D2

√

DT
0 S2D0

where S2 = S S = diag(s2, s2, 1). This leads to the following constraint:
(

DT

1 S
2D0

)2 (

DT

2 S
2D2

)

−

(

DT

2 S
2D0

)2 (

DT

1 S
2D1

)

= 0

This is a cubic equation in s2. It has the trivial solution s2 = 0, hence can be
reduced to a quadratic equation in s2.

Since many equations of this type can be constructed, it is easy to find a unique
solution for s2, e.g. by applying a straightforward RANSAC-scheme on the set of
all computed values for s2. Finally, s is thus determined up to sign. The effect of
swapping the sign is a mirroring of all projection rays, in the plane Z = 0, i.e. this
corresponds essentially to the same calibration, but with rays looking backwards
and with a change of orientation (right-handed versus left-handed).

13



5.3 Two Rotations

Remember the assumptions stated in section 3.3: for each of the rotational motions,
we can determine r-curves and and for each r-curve, we know the azimuth angles
of all pixels on it, up to an additive angle (one per r-curve).

For self-calibration, we proceed in three main steps. First, we compute consistent
azimuth angles for all r-curves per rotational motion. Second, we compute the angle
spanned by the two rotation axes. Third, directions of all rays are computed.

Azimuth angles. Consider the base plane, the plane spanned by the two rotation
axes and the optical center (see figure 6). Without loss of generality, we impose
that, in the local coordinate frame associated with each of the two rotations (cf.
section 3.2), the base plane corresponds to azimuth angles equal to zero or 180◦.
We now have to determine pixels whose rays lie in that plane. Consider one r-curve
each for the two rotations, which have two intersection points. In general, the rays
associated with the two points, are reflections of one another, in the base plane. Let
β1 and β2 be their azimuth angles relative to the first rotation. In order to give the
base plane an azimuth angle of zero, we may subtract 1

2
(β1 + β2) from all azimuth

angles of the first r-curve. This will effectively give opposite azimuth angles to the
two rays. The same has to be done for the azimuth angles relative to the second
rotation, for the second r-curve considered here.

This has to be done for all r-curves associated with each rotation that have an in-
tersection with any r-curve of the other rotation. Note that there may be special
cases where the two intersection points of r-curves do not correspond to rays that
are symmetric in the base plane. This is relatively unlikely and we ignore this here,
but note that it is not impossible, especially with very wide fields of view. A second
remark concerns the fact that with the above method, we determine azimuth angles
only up to an ambiguity of 180◦. To fix this, we impose that the center pixel of one
rotation has azimuth angle zero relative to the other rotation.

c
c1

2

base plane

Fig. 6. Computation of the azimuth angles from two rotations (see text for details).

14



Angle between rotation axes. We adopt the coordinate frame associated with the
first rotation, as global frame. As explained above, the second rotation axis has,
without loss of generality, an azimuth angle of zero, hence its direction is given by










0

− sin γ

cos γ










where γ is the angle between the two rotation axes. Consider a pixel and the direc-
tion of its associated ray. Let D1 respectively D2 be the direction, expressed in the
coordinate frame of the first respectively second rotation. Then, the two are related
by

D1 =










1 0 0

0 cos γ − sin γ

0 sin γ cos γ










D2 (4)

Consider now the r-curve associated with the second rotation and that passes through
the first rotation’s center pixel c1 (see figure 7). Let p be one of the intersection
points of that curve, with any r-curve associated with the first rotation. Since p lies
on the same r-curve as c1, the angle spanned by its ray and the second rotation axis,
must be γ. Hence, direction of the ray associated with p, expressed in the second
coordinate frame, is given by (cf. (1)):

D2 =










cos β2 − sin β2 0

sin β2 cos β2 0

0 0 1



















0

sin γ

cos γ










where β2 is the known azimuth angle. As for its direction in the first coordinate

c
c

p

1

2

Fig. 7. Computation of the angle between the two rotation axes. Left: one r-curve associated
with the second rotation, going through the center pixel of the first rotation and one r-curve
of the first rotation. Point p is one of their intersections. Right: the ray associated with p

lies on the same right cone centered in the second rotation axis, as the whole first rotation
axis. Hence, the angle spanned by the ray and the second rotation axis, is identical to that
between the two rotation axes. More details are given in the text.

15



frame, it is given by

D1 =










cos β1 − sin β1 0

sin β1 cos β1 0

0 0 1



















0

sin α1

cos α1










with known azimuth angle β1 and unknown opening angle α1.

Upon inserting the last two equations into (4), we get:









cos β1 − sin β1 0

sin β1 cos β1 0

0 0 1



















0

sin α1

cos α1










=










1 0 0

0 cos γ − sin γ

0 sin γ cos γ



















cos β2 − sin β2 0

sin β2 cos β2 0

0 0 1



















0

sin γ

cos γ










or: 








sin γ sin β2 − sin α1 sin β1

cos γ sin γ(1 − cos β2) + sin α1 cos β1

cos α1 − cos2 γ − sin2 γ cos β2










= 0

From the first two equations, we easily get:

cos γ =
cos β1 sin β2

sin β1(cos β2 − 1)

and can thus compute the angle between the two rotation axes.

Direction of all rays. Let p be any pixel; the direction of the associated ray is given
in the two coordinate systems by:

D1 =










cos β1 − sin β1 0

sin β1 cos β1 0

0 0 1



















0

sin α1

cos α1










D2 =










cos β2 − sin β2 0

sin β2 cos β2 0

0 0 1



















0

sin α2

cos α2










and they are related by equation (4). Developing that equation, leads to:










− sin β1 0 sin β2 0

cos β1 0 − cos γ cos β2 sin γ

0 1 − sin γ cos β2 − cos γ






















sin α1

cos α1

sin α2

cos α2













︸ ︷︷ ︸

x

= 0

16



The vector x is a null-vector of the left-hand matrix and it can be computed analyt-
ically:

x ∼













sin γ sin β2

sin β1 cos β2 − cos γ cos β1 sin β2

sin γ sin β1

cos γ sin β1 cos β2 − cos β1 sin β2













To find the correct scale factor for x, we must find a λ such that λ2(x2
1 +x2

2) = 1 or
λ2(x2

3 +x2
4) = 1. Note that it is easy to show that we always have x2

1 +x2
2 = x2

3 +x2
4,

i.e. the two constraints on λ are identical. We thus can compute λ as

λ = ±
1

√

x2
1 + x2

2

and the other unknowns as sin α1 = λx1 etc. The sign ambiguity on λ and the sines
and cosines of the opening angles α1 and α2 does not matter here: changing the
sign of both cos αi and sin αi in the expression of Di still leads to representing the
same direction (Di contains homogeneous coordinates of directions).

Using the explained procedure, we may compute the direction of all projection rays
associated with pixels for which the azimuth angle could be determined (cf. section
3.3), relative to both rotations.

To get a complete calibration, i.e. ray directions for all or most of the pixels, one
will usually require more than the minimum amount of two rotations or, additional
translations. How to best use all available constraints in that case, could be a topic
of future research.

6 Experiments

We tested the algorithm of section 5.2 using simulated and real cameras. For real
cameras, ground truth is difficult to obtain, so we visualize the self-calibration result
by performing perspective distortion correction.

6.1 Dense Matching

It is relatively easy to acquire images in favorable conditions. For pure translations,
we use a translation stage. As for pure rotations, one could use a tripod for exam-
ple, but another possibility is to point the camera at a far away scene and perform

17



hand-held rotations. To make the image matching problem simpler in the case of
translational motion we used planar surfaces. We considered two scenarios. The
first approach uses a simple coded structured light algorithm [17], which involves
successively displaying patterns of horizontal and vertical black and white stripes
on the screen to encode the position of each screen pixel. In the second scenario
we consider a planar scene with black dots. In both these cases we do not use any
knowledge of the physical coordinates of the scene. We used the OpenCV library
to perform dense matching [1]. Neighborhood matches were used to check the con-
sistency in matching and to remove false matches. Although the planar scene was
used to simplify the matching process, the self-calibration algorithm is independent
of the nature of the scene.

To simplify the computation of intersections of flowcurves, we fit conics to them.
This is justified for pinhole cameras and even in the presence of radial distortion or
for fisheye cameras, this was found to be a reasonable approximation. Nevertheless,
for best possible accuracy, this approximation should be replaced, e.g. by fitting
other parametric curves or by directly working on sets of pixels.

6.2 Simulations

First we tested our algorithm in section 5.2, using simulations. We constructed a
pinhole camera with and without radial distortions. The virtual pinhole camera,
constructed using an arbitrary camera matrix, is made to capture a random surface.
We obtained matches in the case of pure translation and pure rotations. Samples of
flowcurves and self-calibrated 3D rays are shown in Figure 8.

Figure 9 shows quantative results, for varying amounts of Gaussian noise in point
matches and varying numbers of points per flowcurve (points are distributed equally
along each curve). Shown are errors on the estimated rotation angle Θ and average
angular errors between reconstructed and true projection rays. The rotation angle
is reasonably well estimated for realistic noise levels. However, if too few points
per flowcurve are available, then the interpolation scheme (cf. equation (2)) be-
comes sensitive (even without noise, estimates are not perfect). As for the errors
on the estimated projection rays, they are well below 1◦ for realistic noise levels
(up to 1.5 pixels standard deviation) and if sufficiently many points are available on
flowcurves.

6.3 Real Images

We tested the algorithm of section 5.2 on real images obtained with a Nikon coolpix
fisheye lens FC-E8, which has a field of view of 183 degrees. In Figure 10 we show

18



(a)

(b) (c)

Fig. 8. (a) A few flowcurves associated with two rotations and a single translation are
shown, together with fitted conics. (b) and (c) show the metric reconstruction of projection
rays observed from two different viewpoints. Note that the projection rays corresponding
to translational flowcurves are not shown.

samples of extracted translation and rotation flowcurves (shown are matched pixels
and fitted conics).

The self-calibrated results are displayed via perspective distortion correction, ap-
plied to three different images, as shown in figure 11. This is shown for the image
region that could be calibrated, i.e. that consists of pixels for which sufficiently
many flowcurves could be extracted. Although some distortion remains, possibly
due to imprecisions in the camera rotation carried out, the major distortion effects
are successfully removed. We consider this as a good result, considering the gen-
eral self-calibration problem dealt with here, which is much less constrained than
e.g. self-calibration of pinhole cameras.

19



(a) (b)

Fig. 9. Simulation results. (a) Error on the estimated rotation angle Θ. (b) Average angular
error on the estimated projection rays (angle between estimated and true rays).

Let us briefly explain the procedure for distortion correction applied to obtain the
images in figure 11. At the end of the self-calibration of a central camera, we obtain
a bundle of rays passing through the optical center. To each can be associated a
specific color, borrowed from its image pixel. To obtain a perspective view we first
intersect the bundle of rays with some plane on which we want the perspective
view. We give the color of the ray to its point of intersection on the plane. Color
interpolation is used to obtain a complete and smooth image on the plane, which
represents the distortion corrected image.

(a) (b) (c)

Fig. 10. Flowcurves of a fisheye camera for (a) a pure rotation and (b) a pure translation.
(c) Intersection of translation and rotational flowcurves.

20



(a) (b)

(c) (d)

(e) (f)

Fig. 11. We show the original images along with the boundary showing the calibrated region
on the left. On the right we show the distortion correction for the calibrated region.21



7 Discussion

We have studied the generic self-calibration problem for central cameras using dif-
ferent combinations of pure translations and pure rotations. Our experimental re-
sults are promising and show that self-calibration may indeed be feasible in prac-
tice.

We may summarize minimal required conditions for self-calibration. First, two ro-
tational motions have been shown to be sufficient for full self-calibration. Note
that even for self-calibration of the pinhole model from pure rotations, two rota-
tions are required. Second, with a single rotational motion, self-calibration of the
general imaging model considered here, is largely underconstrained. With a single
additional translational motion, self-calibration can be solved up to one degree of
freedom (akin to a pinhole camera with unknown focal length). The explanations of
section 5.1 suggest that even with additional translations, this ambiguity can not be
removed. Finally, if only translational motions are considered, then self-calibration
can only be obtained up to an affine transformation of rays. We have shown how
to perform this from four translational motions. As for the minimum requirements,
preliminary work suggests that three translations are required and sufficient, for
self-calibration up to an affine transformation.

As for future work, we are interested in solving the self-calibration for general
motions. We also plan on extending the presented approaches towards using more
motions, in order to calibrate the whole image plane instead of a restricted region
thereof. Also, more sophisticated schemes for determining flowcurves and azimuth
angles would be required to get more accurate results for different camera types.

References

[1] Opencv (open source computer vision library). Intel,
www.intel.com/research/mrl/research/opencv/.

[2] J.P. Barreto and H. Araujo. Paracatadioptric camera calibration using lines. In
International Conference on Computer Vision (ICCV), pages 1359–1365, 2003.

[3] D.C. Brown. Close-range camera calibration. In Photogrammetric Engineering,
volume 37(8), pages 855–866, 1971.

[4] G. Champleboux, S. Lavallée, P. Sautot, and P. Cinquin. Accurate calibration of
cameras and range imaging sensors: the NPBS method. In ICRA, pages 1552–1558,
1992.

[5] F. Espuny. A closed-form solution for the generic self-calibration of central cameras
from two rotational flows. In VISAPP, 2007.

22



[6] C. Geyer and K. Daniilidis. Paracatadioptric camera calibration. In IEEE Transactions
on Pattern Analysis and Machine Intelligence (PAMI), volume 24, pages 687–695,
2002.

[7] K.D. Gremban, C.E. Thorpe, and T. Kanade. Geometric camera calibration using
systems of linear equations. In ICRA, pages 562–567, 1988.

[8] M.D. Grossberg and S.K. Nayar. A general imaging model and a method for finding
its parameters. In International Conference on Computer Vision (ICCV), volume 2,
pages 108–115, 2001.

[9] E. Grossmann, E-J. Lee, P. Hislop, D. Nistér, and H. Stewénius. Are two rotational
flows sufficient to calibrate a smooth non-parametric sensor? In CVPR, 2006.

[10] R.I. Hartley and A. Zisserman. Multiple view geometry in computer vision.
Cambridge University Press, 2000.

[11] S.B. Kang. Catadioptric self-calibration. In Conference on Computer Vision and
Pattern Recognition (CVPR), pages 201–207, 2000.

[12] B. Micusik and T. Pajdla. Autocalibration and 3d reconstruction with non-central
catadioptric cameras. In Conference on Computer Vision and Pattern Recognition
(CVPR), 2004.

[13] T. Moons, L. Van Gool, M. van Diest, and E. Pauwels. Affine reconstruction from
perspective image pairs. In Workshop on Applications of Invariants in Computer
Vision, Azores, pages 249–266, 1993.

[14] D. Nistér, H. Stewenius, and E. Grossmann. Non-parametric self-calibration. In
International Conference on Computer Vision (ICCV), 2005.

[15] S. Ramalingam, P. Sturm, and E. Boyer. A factorization based self-calibration
for radially symmetric cameras. In Third International Symposium on 3D Data
Processing, Visualization and Transmission, 2006.

[16] S. Ramalingam, P. Sturm, and S.K. Lodha. Towards generic self-calibration of central
cameras. In OMNIVIS, 2005.

[17] J. Salvi, J. Pages, and J. Batlle. Pattern codification strategies in structured light
systems. In Pattern Recognition, volume 34(7), pages 827–849, 2004.

[18] P. Sturm and S. Ramalingam. A generic concept for camera calibration. In European
Conference on Computer Vision (ECCV), volume 2, pages 1–13, 2004.

[19] R. Swaminathan, M.D. Grossberg, and S.K. Nayar. A perspective on distortions. In
Conference on Computer Vision and Pattern Recognition (CVPR), volume 2, page 594,
2003.

[20] J.P. Tardif and P. Sturm. Calibration of cameras with radially symmetric distortion. In
OMNIVIS, 2005.

[21] J.P. Tardif and P. Sturm. Self-calibration of a general radially symmetric distortion
model. In European conference on computer vision, 2006.

23



[22] S. Thirthala and M. Pollefeys. 1d radial cameras and its application to omnidirectional
geometry. In International Conference on Computer Vision (ICCV), 2005.

24


	Title Page
	page 2

	/projects/www/html/publications/docs/TR2009-078.pdf
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24


