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Abstract
It is well-known that a biometric fuzzy vault can be constructed by applying an error correct-
ing code (ECC) to a biometric signal. This is attractive because authentication only requires
the check bits of the ECC to be stored on the access control device, whereas the personal
biometric traits need not be stored. For a given coding rate, the ECC attempts to correct
the errors between an enrollment biometric and the provided probe, and authenticates if it is
successful in doing so. Unfortunately, most implementations of biometric fuzzy vaults have
very poor robustness to the inherent noisiness of biometric measurements. In this paper,
we provide ECC design considerations for secure biometric systems, which provide both bet-
ter robustness and greater security. In particular, for any feature extraction algorithm, we
propose to reorder the feature bits according to their reliability, and associate the reliable
bits with high-degree variable nodes in the graph of the ECC. Further, the reliability of a
bit is measured at enrollment and used to initialize the ECC decoding. Experiments on an
extensive database show considerable reduction in the false reject rate, while restricting the
successful attack rate to a very low value.
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ABSTRACT

It is well-known that a biometric fuzzy vault can be constructed by
applying an error correcting code (ECC) to a biometric signal. This
is attractive because authentication only requires the check bits of
the ECC to be stored on the access control device, whereas theper-
sonal biometric traits need not be stored. For a given codingrate, the
ECC attempts to correct the errors between an enrollment biometric
and the provided probe, and authenticates if it is successful in doing
so. Unfortunately, most implementations of biometric fuzzy vaults
have very poor robustness to the inherent noisiness of biometric mea-
surements. In this paper, we provide ECC design considerations for
secure biometric systems, which provide both better robustness and
greater security. In particular, for any feature extraction algorithm,
we propose to reorder the feature bits according to their reliability,
and associate the reliable bits with high-degree variable nodes in the
graph of the ECC. Further, the reliability of a bit is measured at en-
rollment and used to initialize the ECC decoding. Experiments on
an extensive database show considerable reduction in the false reject
rate, while restricting the successful attack rate to a verylow value.

Index Terms— Biometrics, fuzzy vault, distributed source cod-
ing, LDPC codes, error correction coding

1. INTRODUCTION

Biometric access control is becoming increasingly popularas an al-
ternative to traditional password-based authentication.This is pri-
marily because biometrics authentication is convenient (does not in-
volve remembering a password) and because a biometric signal is
difficult to replicate. However, biometric access control presents
new challenges of its own. Biometric measurements are inherently
noisy, and an authentication system must be robust to variations
among the biometric samples of a given user. Conventionally, this
problem is solved by storing a reference biometric sample, or a fea-
ture vector obtained from the biometric, on the device. Then, some
robust pattern-matching algorithm compares the referencesample
with a probe and confirms or denies access. This creates a security
threat, because anyone who gains unauthorized access to thedevice
can steal the biometric sample. Since a user cannot generatean un-
limited number of new biometrics, this is a serious problem.

In principle, this problem can be solved by using a “fuzzy vault”
scheme [1, 2]1. The user and the system agree on a secret key,
and if there is sufficient “common randomness” between the enroll-
ment and the probe biometrics, then the user can extract the key

1Another way to address this problem is via “cancelable” biometrics, in
which biometric features stored on the device can be revokedand different
features can be assigned in the case of suspected attack. However, it is diffi-
cult to provide security guarantees for such systems especially if the cance-
lable feature transformation algorithm is compromised.

and thereby gain access to the system. In practice, this involves us-
ing an error correction code (ECC) in a Slepian-Wolf coding frame-
work [3]. The ECC can correct the slight variations among noisy but
legitimate measurements. Further, the check bits of the ECCemu-
late the cryptographic hash in traditional password systems. Just as a
hacker cannot invert the hash and steal the password, he cannot just
use the check bits to recover and steal the biometric.

The advantages notwithstanding, implementations based onthis
principle [4, 5, 6] suffer from high false reject rates (FRR). The
main reason for this is that it is difficult to model the noisy chan-
nel between multiple biometric measurements from a given user.
Therefore, it is difficult to design an ECC for this noisy channel.
This problem was partially remedied in [7] in the context of finger-
print biometrics. The method adopted in that work was to transform
the fingerprint into a feature vector which possesses some desirable
properties. In particular, after feature transformation,the compli-
cated biometric channel is reduced to a binary symmetric channel
(BSC), for which standard ECC designs are readily available. Us-
ing LDPC codes in a Slepian-Wolf coding framework, this system
achieves FRR = 11% and FAR = 0.01% and provides 30 bits of se-
curity.

To make secure biometric systems practical, the FRR-FAR
tradeoff must be improved further. While the scheme of [7] provides
a simple framework for implementing a secure biometric system, it
does not fully exploit the fact that bits extracted from a biometric
have different reliabilities [8]. In particular, the feature transfor-
mation generated reliable bits, but the ECC was agnostic to the
difference in reliabilities. The hypothesis of this work isthat ex-
ploiting the unequal reliabilities of the feature bits in ECC decoding
can significantly improve the security vs. robustness (FAR vs. FRR)
tradeoff. We retain the idea from [7] of transforming a complicated
channel between biometric signals to a simple channel between the
corresponding feature vectors. However, after feature transforma-
tion, we manipulate the decoding decisions of the ECC based on the
reliability of those features.

The remainder of this paper is organized as follows: In Sec-
tion 2, we present a general framework for secure biometrics, in
which the system is divided into a feature transformation and a syn-
drome code. The desirable characteristics of the feature transfor-
mation are enumerated. In Section 3, we discuss ECC design con-
siderations that enable the system to achieve an efficient FAR-FRR
tradeoff. The method presented is general and is applicableto any
biometric modality. For concreteness, in Section 4, we takethe
example of feature vectors extracted from fingerprints thatpossess
the properties of Section 2, and demonstrate the improvement in the
security-robustness tradeoff.
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Fig. 1. A general framework for implementing and analyzing a se-
cure biometric system.

2. SECURE BIOMETRICS ARCHITECTURE

A general framework for secure biometrics is shown in Fig. 1.This
framework implements a biometric fuzzy vault in two stages.The
first stage involves transforming the biometric into feature vectors,
and the second stage involves Slepian-Wolf coding of the feature
vectors. The central idea is to generate binary feature vectors which
are i.i.d. Bernoulli(0.5), independent across different users but dif-
ferent measurements of the same user are related by a binary sym-
metric channel (BSC) with small crossover probability2. This is one
of the standard channel models and therefore standard ECC designs
such as LDPC codes can be used for Slepian-Wolf coding of the fea-
ture vectors. We emphasize that the feature transformationis made
public and isnot assumed to provide any security. Security is pro-
vided by the syndromes generated by the Slepian-Wolf coder.

2.1. Enrollment and Authentication Procedure

Suppose that there areM users. During enrollment, useri ∈ I =
{1, 2, ..., M} provides a biometricmi. Then a feature transforma-
tion functionffeat(·) maps the biometric into a binary feature vector
ai = ffeat(mi) of fixed lengthN . Individual bits ofai are denoted
by ai,j with j ∈ J = {1, 2, ..., N}. Next, a functionfsec(·) maps
the binary vector into a secure biometricsi = fsec(ai). In the frame-
work considered here,fsec(·) does syndrome encoding using an er-
ror correcting codeC. The access control system storessi, C and a
cryptographic hash of the binary feature vectorfhash(ai). It does not
store eithermi or ai.

During authentication, the useri, or attacker impersonating user
i, requests access by providing a proben. The access control sys-
tem transformsn into a probe feature vectorb = ffeat(n). Now,
the ECC decoder assumes that the probe feature vectorb is an er-
ror prone version of the enrollment feature vectorai. It combines
the secure biometricsi (syndrome) and the probe vectorb and per-
forms ECC decoding. In distributed source coding terminology, this
is equivalent to Slepian-Wolf decoding of the syndromesi usingb

as side information. The result is either an estimatebai of enrollment
vectorai, or a special symbol∅ indicating decoding failure. Now, it
is possible thatbai 6= ai, yetbai satisfies the syndromesi. To protect
against this possibility, and more importantly to protect against an

2The statistical requirements on feature vectors in this section were first
reported by some of the current authors in [7]. Here, the objective is to
augment that framework so that the feature vectors can be properly matched
to an error correcting code in the following section.

attacker using a stolen set of syndromes to construct his ownesti-
matebai which satisfies the syndromes but is not the true biometric,
access is granted if and only iffhash(bai) = fhash(ai).

2.2. Desirable Statistical Properties of Feature Vectors

Based on the requirements mentioned at the beginning of thissec-
tion, we propose a general secure biometric system in which the fea-
ture vectors possess the following properties:

1. A bit in a feature vector representation is equally likelyto be
0 or 1. Thus, the entropy,H(Ai,j) = 1 bit for all i ∈ I
andj ∈ J . (HereAi,j denotes a random variable, andai,j

denotes the actual realization.)

2. Different bits in a given feature vector are independent,so
that a given bit provides no information about any other bit.
Thus,H(Ai,j, Ai,k) = H(Ai,j) + H(Ai,k) = 2 bits for all
j 6= k wherej, k ∈ J .

3. Feature vectorsAi andAu from different users are indepen-
dent, so that one user’s feature vector provides no information
about another user’s feature vector. Thus,H(Ai,j, Au,k) =
H(Ai,j) + H(Au,k) = 2 bits for all i, u ∈ I, i 6= u and all
j, k ∈ J .

4. Suppose feature vectorsAi andA
′

i are obtained from differ-
ent readings of the same biometric. Then bitsAi,j andA′

i,j

are statistically related by a BSC whose crossover probability
is denoted bypi,j . Thus,H(A′

i,j |Ai,j) = H(pi,j) for all
i ∈ I andj ∈ J . If pi,j is small, it means that the bitAi,j is
robust to repeated noisy measurements.

It has been shown in [9] that this secure biometric framework
has positive information theoretic security. In other words, given
the syndromesi, H(Ai|si) > 0. For this work, we are concerned
with practical implementation using error correcting codes. For an
ECC with rateR, 0 < R < 1, the syndrome stored on the device
consists of(1 − R)N bits. The coding rateR determines a perfor-
mance tradeoff for the access control system, which is discussed in
the following section.

3. ECC DESIGN CONSIDERATIONS

To optimize the security robustness tradeoff, we propose toexploit
the reliability of feature vector bits and assign the feature bits to
appropriate codeword bits of an ECC. For secure biometrics using
the framework of Fig. 1, measures of security and robustnessare
defined in brief as follows:

1. The False Reject Rate (FRR) is the probability with which
ECC decoding fails to recover an enrollment feature vector
given the stored syndrome and a legitimate probe feature vec-
tor.

2. The False Accept Rate (FAR) is the probability with which
ECC decoding recovers an enrollment feature vector given
the stored syndrome and an illegitimate probe feature vector.

3. The Successful Attack Rate (SAR) is the probability with
which ECC decoding recovers an enrollment feature vector
given the stored syndrome and an illegitimate probe feature
vector constructed by an attacker using some extra side infor-
mation about the feature extraction process. For instance,the
attacker may know which transforms applied to the biometric
signal can produce reliable bits for the victim. This is a more
realistic measure of security than FAR.



4. Number of Bits of Security (NBS) measures the secrecy of-
fered by the secure biometric, i.e., the syndrome. It is defined
as the number of bits that an attacker must guess correctly in
order to extract a feature vector, given the syndrome and the
ECC parameters. If the feature vector bits satisfy the proper-
ties of Section 2, then NBS= N − (1 − R)N = RN .

There is a natural tradeoff among these measures. For example, to
make NBS large, one must perform ECC with a large coding rate,
thereby generating a small number of syndrome bits. This will in-
crease the likelihood that a noisy but legitimate biometricprobe can
not be decoded to the enrollment feature vector, thereby increasing
the FRR. In any case, given a coding rateR, the best tradeoff be-
tween FRR and FAR (or SAR) will be achieved by a channel code
that most closely approaches channel capacity. By design (Property
4, in Section 2), each bit of a legitimate probe feature vector is related
to the corresponding bit of the enrollment feature vector bya BSC.
The reliability of a feature vector bit can be measured in terms of the
crossover probability of the corresponding BSC. Let the crossover
probability bep and the reliability beR, then

R =

˛̨
˛̨log

„
1 − p

p

«˛̨
˛̨ . (1)

It is obvious that the largerR is, the more likely it is that the bit
has not flipped between measurements. In the sequel, we applylow-
density parity check (LDPC) codes to demonstrate how this reliabil-
ity information can be combined with coding so as to optimizethe
security-robustness tradeoff.

3.1. Properties of LDPC codes

An LDPC code is often represented by a bipartite graph with two
types of nodes, variable nodes that correspond to codeword bits, and
check nodes that correspond to parity-check constraints. The num-
ber of check nodes that a variable node connects to is called thede-
gree of that variable node.

In general, LDPC codes can be categorized into regular LDPC
codes and irregular LDPC codes. Regular LDPC codes are thosefor
which all nodes of the same type have the same degree, while irreg-
ular LDPC codes have non-constant degrees for variable and check
nodes. In [10], it has been shown that irregular LDPC codes can
approach Shannon capacity with iterative decoding. Therefore, we
use an irregular LDPC code to generate the syndrome. Then, ac-
cess control involves Slepian-Wolf decoding of the syndrome in the
presence of the probe feature vector as side information. Decoding
is performed iteratively using belief propagation (BP). When BP de-
coding is used for irregular LDPC codes, high-degree variable nodes
obtain more information from their connected check nodes. Conse-
quently, the bits in these nodes can be decoded more accurately [11].
We exploit this property in our code design, as detailed below.

3.2. Associating Reliable Bits with LDPC Codegraphs

There are numerous examples in the literature in which bits extracted
from human biometric signals have different reliabilities. For in-
stance, when bits are extracted from fingerprint minutiae, the reli-
ability of the extracted bit depends on the location of the minutiae
point. It stands to reason that, in order to make an accurate access
control decision, it is necessary for the decoding algorithm to exploit
the reliability information to the fullest extent possible. This applies
to conventional biometric matching as well as to the proposed secure
biometrics framework.

The probabilitypi,j in Property 4 of Section 2.2 can be estimated
during the enrollment stage when multiple biometric samples, and
hence multiple feature vectors, are extracted from each user. After
pi,j is measured, we propose to re-order the bits in the feature vector
ai in the order of increasingpi,j , i.e., in the order of decreasing
reliability. By abuse of notation, we denote the re-orderedfeature
vector by the same symbolai. After re-ordering,j < k ⇒ pi,j ≤
pi,k for all j, k ∈ J . This reordering is performed for each enrolled
user. The corresponding reliabilityRi,j can be calculated for all
i ∈ I andj ∈ J according to (1). The reordered reliabilities then
have the property thatRi,j ≥ Ri,k for j < k.

Next, the reordered feature vector bits are associated withvari-
able nodes of the chosen LDPC code graph such that highest-
reliability bits are placed at the highest-degree variablenodes. The
advantage of this is that reliable information can be spreadout more
quickly during the message-passing iterations of BP. Afterthe map-
ping between feature vector bits and variable nodes is decided, we
may permute variable nodes so that their indices agree with their
corresponding feature vector bit indices. This permutation does not
change either the code or its error performance.

3.3. Soft Initialization of LDPC Decoding

Following the above association of high-reliability bits with high-
degree variable nodes, the coding performance can be improved fur-
ther if the soft-decision decoder knows the reliability of each bit of
side information. At each iteration of the BP algorithm, themes-
sages exchanged between variable nodes and check nodes are often
represented by Log Likelihood Ratio (LLR). Since differentbits of
the feature vector have different reliability, each variable node should
have its own initial LLR at the start of the decoding process.Denote
the initial LLR of thejth variable node of useri by Li,j for i ∈ I
andj ∈ J . Now, thejth bit in the probe feature vector of useri

is the output of a BSC with crossover probabilitypi,j and reliability
Ri,j which have both been estimated at the time of enrollment.

When a probe feature vectorb is provided for authentication,
the initial LLR for thejth variable node can be obtained by

Li,j =


Ri,j if bj = 0

−Ri,j if bj = 1

wherebj is the probe feature vector bit which is mapped to variable
nodej. This is repeated for allj ∈ J .

For secure biometric authentication ofM users withN -bit fea-
ture vectors, the above method would require the storage ofMN

reliabilities at the access control device, in addition to the M syn-
dromes. As a more practical alternative, we propose to storeonly
N reliabilities as follows: After reordering the feature vectors as
in Section 3.2, the average crossover probability for each bit posi-
tion across allM users is computed usinḡpj = 1

M

PM

i=1
pi,j for

all j ∈ J . Then, the reliabilitiesR̄j corresponding to these aver-
age crossover probabilities are obtained by substitutingp = p̄j in
(1). Finally, store theseN reliabilities R̄j , j ∈ J on the access
control device. With these stored reliabilities, BP decoding for any
probe feature vector will start by initializing the LLRs at the variable
nodes using

L̄j =


R̄j if bj = 0

−R̄j if bj = 1

wherebj is the probe feature vector bit provided by the user, or at-
tacker. Note that, the sign of the LLR is determinedat decoding
time and depends on the feature vector provided for authentication.
In other words, storingR̄j on the access control device does not
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Fig. 2. Distibution of intra-user and inter-user pairwise distances.
The attacker distribution is slightly shifted towards the left because
the attacker knows some side information about the victim’sfeature
vector.

leak any information about whether a bit is more likely to be a0
or 1. Even if the attacker knows the reliabilities, he still needs to
guess enough positions correctly in order to successfully recover a
victim’s enrollment feature vector. Actually, the reliability infor-
mation can improve security to some extent because, if the attacker
provides wrong bits in the reliable positions, the decodingis more
likely to fail.

3.4. Effect of Shuffled Belief Propagation

In standard BP, during each message passing iteration, all variable
nodes or all check nodes are processed in parallel, while in shuffled
BP [12, 13], they are processed serially. Therefore, nodes that are
processed later can utilize the latest updated informationfrom previ-
ously processed nodes. Compared with standard BP, the shuffled BP
algorithm can reduce the number of iterations to achieve thesame
performance. Alternatively, by using the same number of iterations,
the decoding performance is usually improved.

4. RESULTS

In this section, we present the results of experiments carried out to
test the effectiveness of the proposed ECC design changes. We used
an extensive (proprietary) database of 1035 users with 15 fingerprint
samples per user. The fingerprint samples are converted intominu-
tia maps; the average number of minutaie points in a sample is32.
There is a coarse alignment operation performed in the beginning
in which a user’s fingerprints are aligned with respect to oneof the
15 available samples. This experimental setup and feature extrac-
tion algorithm are adoped from [7]. Since we are concerned with the
effect of ECC design, we do not repeat the details of the feature ex-
traction algorithm. In brief, the feature bits are extracted as follows:
Random cuboids are generated in the minutiae space, and the minu-
tiae falling inside each cuboid are counted. This number is compared
with the median of the number of points in the cuboid measuredfor
all users in the database, and a 0 or 1 bit is generated depending on
whether the number is less than or greater than this median value.
400 cuboids are generated in all, and 150 of the most robust cuboids
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Fig. 3. The magnitude of the log likelihood ratio of the average
crossover probabilities for each of the 150 bits is stored onthe access
control device and is used to initialize belief propagationdecoding.

are preferred. Here, robustness refers to the fact that the number of
minutiae points in the cuboid is far away from the median, resulting
in a bit value that is preserved in repeated measurements. Clearly,
different users have different robust cuboids.

With our ECC design considerations, we further reorder the
cuboids using another reliability measure, namely the crossover
probability pi,j , i ∈ {1, 2, ..., 1035}, j ∈ {1, 2, ..., 150}. These
cuboids are stored in their new order on the access control device.
Fig. 2 plots the distribution of the Hamming distance between the
feature vectors. It is observed that there is a very small overlap be-
tween the inter-user and intra-user distributions. These distributions
assume that every user employs his own set of cuboids. Also plotted
is an attacker distribution in which a user (attacker) decides to use
the robust ordered cuboids of another user (victim). In thiscase, the
distribution shifts slightly closer to the intra-user distribution, but
the overlap between the two is still reasonably small.

As described in Section 3.3, the reliabilities corresponding to
the average crossover probabilities are stored on the device in order
from maximum to minimum. This is plotted in Fig. 3. For any user,
these reliabilities are used to initialize BP decoding. TheECC used
is an irregular LDPC code with 150 variable nodes. We test at vari-
ous coding ratesR = 0.2, 0.25, 0.3, 0.35 which will determine the
number of syndrome bits. The corresponding code graphs havebeen
obtained from [14]. To see the effect of ordering the bits according
to reliability, soft initialization of LDPC decoding, shuffled belief
propagation, access control is implemented for various scenarios, as
shown in Table 1. The LDPC code rate used for all simulations in the
table isR = 0.2, thus NBS= 30. It is observed that there is a slight
reduction in the FRR when the reliabilities defined in Section 3.3 are
used to initialize BP. There is a further dramatic reductionin the FRR
when, in addition to the reliability initialization, the reliable feature
bits are paired with the high-degree variable nodes. If the ECC is
agnostic to the reliability ordering, the FRR is 11% whereas, with
the proposed modifications, it drops to 3.3% with shuffled BP.The
corresponding FAR is very small in all experiments. As expected,
the SAR is greater than the FAR because the attacker additionally
knows the new “reliability ordering” of the feature bits. Still, the
SAR is less than 0.06% in all the simulations. Having obtained con-
siderable reduction in FRR, at very low FAR, it is now possible to
gradually trade off the increased robustness against the number of
bits of security. If the system designer is dissatisfied with30 bits of
security, he can use larger coding rates to achieve greater secrecy.
This tradeoff is plotted in Fig. 4 for the ECC decoding schemewith
the best perfomance, i.e., shuffled BP decoding with soft initializa-
tion of LLRs and reliable bits in high-degree variable nodes. It is



Scheme FRR FAR SAR

Unordered feature bits Not Applicable
Equal initial LLR 0.11 1.19×10−4 since equal

Standard BP decoding initial LLRs
Unordered feature bits
Unequal initial LLR 0.099 2.15×10−6 4.37×10−4

Standard BP decoding
Unordered feature bits
Unequal initial LLR 0.083 3.36×10−6 5.00×10−4

Shuffled BP decoding
Reliability-ordered bits

Unequal initial LLR 0.037 1.01×10−6 4.30×10−4

Standard BP decoding
Reliability-ordered bits

Unequal initial LLR 0.033 1.61×10−6 5.41×10−4

Shuffled BP decoding

Table 1. The security-robustness tradeoff improves slightly when
the initial LLRs for LDPC decoding are based on the reliabilities of
the bits. It improves considerably when the reliable bits are asso-
ciated with high-degree variable nodes. Using shuffled BP reduces
FRR at the expense of a slight increase in FAR and SAR.

observed that by increasing the coding rate from 0.2 to 0.35,the
number of bits of security increases from 30 to 53, while the FRR
increases from 3.3% to 7%.

5. CONCLUSIONS

This paper proposed some ECC design considerations in secure bio-
metrics. Specifically, the feature bits extracted from a human bio-
metric are reordered in the order of reliability and then paired with
appropriate variable nodes in the ECC code graph. Additionally, the
ECC decoder is made aware of the average reliabilities in each vari-
able node. It was shown using results on an extensive fingerprint
database that the proposed changes reduce the FRR from 11% to
3.3% while maintaining a very low FAR. As a result of the proposed
changes, the amount of data stored on the access control device in-
creases very slightly. Further, the considerable reduction in FRR
affords the opportunity to tradeoff the robustness for increased num-
ber of bits of security. It is possible that there are entirely new kinds
of attacks whose effectiveness might not be captured by the error
metrics analyzed herein. Our current work is directed at analyzing
such attacks.
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