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Abstract

We present a complete vision guided robot system for model based 3D pose estimation and
picking of singulated 3D objects. Our system employs a novel vision sensor consisting of a
video camera surrounded by eight flashes (light emitting diodes). By capturing images under
different flashes and observing the shadows, depth edges or silhouettes in the scene are obtained.
The silhouettes are segmented into different objects and each silhouette is matched across a
database of object silhouettes in different poses to find the coarse 3D pose. The database is
pre-computed using a Computer Aided Design (CAD) model of the object. The pose is refined
using a fully projective formulation [ACB98] of Lowe’s model based pose estimation algorithm
[Low91, Low87]. The estimated pose is transferred to robot coordinate system utilizing the hand-
eye and camera calibration parameters, which allows the robot to pick the object. Our system
outperforms conventional systems using 2D sensors with intensity-based features as well as 3D
sensors. We handle complex ambient illumination conditions, challenging specular backgrounds,
diffuse as well as specular objects, and texture-less objects, on which traditional systems usually
fail. Our vision sensor is capable of computing depth edges in real time and is low cost. Our
approach is simple and fast for practical implementation. We present real experimental results
using our custom designed sensor mounted on a robot arm to demonstrate the effectiveness of
our technique.

International Journal of Robotics Research

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part
without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include
the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of
the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or
republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All
rights reserved.

Copyright c©Mitsubishi Electric Research Laboratories, Inc., 2009
201 Broadway, Cambridge, Massachusetts 02139



MERLCoverPageSide2



Vision Guided Robot System for Picking Objects By Casting Shadows

Amit Agrawal†, Yu Sun‡, John Barnwell† and Ramesh Raskar§
†Mitsubishi Electric Research Labs, Cambridge, MA 02139

‡University of South Florida, Tampa, FL 33620
§MIT Media Lab, Cambridge, MA 02139

email:[agrawal@merl.com]

Abstract

We present a complete vision guided robot system for model based 3D pose estimation and picking
of singulated 3D objects. Our system employs a novel vision sensor consisting of a video camera
surrounded by eight flashes (light emitting diodes). By capturing images under different flashes and
observing the shadows, depth edges or silhouettes in the scene are obtained. The silhouettes are
segmented into different objects and each silhouette is matched across a database of object silhouettes
in different poses to find the coarse 3D pose. The database is pre-computed using a Computer Aided
Design (CAD) model of the object. The pose is refined using a fully projective formulation [ACB98]
of Lowe’s model based pose estimation algorithm [Low91,Low87]. The estimated pose is transferred
to robot coordinate system utilizing the hand-eye and camera calibration parameters, which allows
the robot to pick the object.

Our system outperforms conventional systems using 2D sensors with intensity-based features as well
as 3D sensors. We handle complex ambient illumination conditions, challenging specular backgrounds,
diffuse as well as specular objects, and texture-less objects, on which traditional systems usually fail.
Our vision sensor is capable of computing depth edges in real time and is low cost. Our approach is
simple and fast for practical implementation. We present real experimental results using our custom
designed sensor mounted on a robot arm to demonstrate the effectiveness of our technique.

1 Introduction

Humans are extremely good at identifying objects in the scene and picking them. However, developing
robust and efficient vision guided robotics system for picking objects [HI84] has proven to be a challenging
task for last few decades. Typically, custom designed mechanical and electro-mechanical systems are used
to feed parts in specific pose to the robot [GGvdS06]. In some cases, manual labor is used to sort the
parts from a pile or bin so that the robot can pick them up. Last decade has seen an increase in efforts
towards automating the process of automatic part acquisition using vision systems. Vision sensors are
increasingly being used in such robotics systems as their cost is reducing and computation is becoming
cheaper and faster. They are successful in identifying, inspecting and locating parts on a conveyor belt
in carefully engineered manufacturing settings. Still, current systems can only operate in very strict
conditions and can handle geometrically simple objects.

Current systems for 2D/3D pose estimation typically find simple features in intensity images such
as lines, corners, ellipses or circles and try to infer the object pose based on the feature size and their
relationships with each other. Thus, they are limited to geometrically simple shapes. Changing the part
to a new object often requires developing new algorithms or extensive fine tuning. Changes in ambient
illumination and complex non-uniform backgrounds lead to the failure of vision algorithms utilizing
intensity-based features. It is desirable for the vision algorithms to be robust to illumination changes
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and to be capable of handling different object shapes. In addition, appearance of the parts also plays an
important role. Specular objects are difficult to handle due to their non-Lambertian reflectance. Feature
matching is extremely difficult for specular surfaces and texture-less objects, leading to the failure of
common 3D sensors to estimate reliable 3D geometry for such objects. A successful vision system
should be able to handle variations in the operating conditions. These variations include (a) changing
illumination conditions due to the ambient illumination, (b) non-uniform backgrounds and (c) objects of
varying shape (3D/planar objects) as well as reflectance properties (diffuse/specular, textured/texture-
less).

In this paper, we address several of these problems and present real experimental results to demonstrate
the effectiveness of our system. Our system is based on using depth edges (silhouettes) of objects. We
show that reliable depth edges can be obtained in real time by simply casting shadows from different
directions without estimating 3D geometry. We show that by using depth edges as features, one can
eliminate the need for accurate 3D reconstruction for 3D pose estimation, which is difficult for specular
objects. Depth edges also enable our approach to be independent of scene texture and intensity edges,
allowing texture-less objects as well as illumination changes to be handled easily. By using depth edges
as features, we use significantly more information in object shape than provided by specific features such
as lines, ellipses or circles. Our approach can thus handle complicated 3D shapes which may not have
enough of these simple discriminating features. It also leads to a simple approach for pose estimation
which typically has high computational complexity in matching set of specific features with the known
model of the object. Another important distinction with the traditional 2D sensors is that the cast
shadows provide occlusion information, which allows easy segmentation of the objects. Such information
cannot be obtained from the intensity images. As show in later sections, we use the occlusion information
as a constraint to avoid incorrect and over-segmentation of parts. Our system currently handles singulated
(non-stacked) objects, where objects are separated from each other but can have any possible position
and orientation. We present real experimental results using a robot arm on several of the above scenarios.
Extensions 2 and 3 show our system in operation for picking an object having complex 3D shape (shown
in Figure 4) and a specular object (shown in Figure 16) respectively.

1.1 Contributions

The contributions of our paper are as follows:

• We present a complete system for 3D pose estimation and picking of objects using a low cost
modified sensor.

• We show that depth edges are sufficient to estimate the precise 3D pose of the object for picking
without requiring absolute depths.

• We show that cast shadows can be used to estimate depth edges as well as simplify segmentation
of objects. We use physical constraints based on depth edges and shadow boundaries that avoid
incorrect and over-segmentation of objects.

1.2 Benefits and Limitations

Our approach has several benefits over related approaches as follows.

• Our system handles complex ambient illumination and non-uniform shiny backgrounds.
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• Since depth edges are independent of scene reflectance edges, our approach works well with objects
having different reflectance properties such as diffuse (Lambertian), specular as well as texture-less
objects.

• Our approach can handle objects of different shapes and sizes since it does not depend on object-
specific features such as lines, circles etc. Thus, new objects can be handled without any change in
the algorithm, except for the pre-computation of a database of the object silhouette features.

• Our system utilizes a low cost modified 2D sensor and does not require expensive 3D sensor, yet
provides 3D position and orientation of objects.

• Our approach is well-suited for real applications as it is robust, simple and leads to fast implemen-
tation.

Some of the limitations of our approach are as follows.

• We currently cannot handle stacked specular objects, as the shadows casted on the specular objects
are not estimated reliably.

• For thin objects, the shadows may get detached from the object leading to spurious depth edges.

• Although we can handle shiny backgrounds, dark (black) backgrounds reduce contrast of shadows.
Depth edges cannot be estimated reliably in that case.

• Transparent and translucent objects cannot be handled by our approach due to inter-reflections of
light leading to unreliable depth edges.

Although the proposed system works in open loop, close loop error correction and visual servoing
approaches can be added to the system. These approaches could use intensity-only features or depth
edges for dynamic scenes as shown in [RTF+04].

1.3 Related Work

Vision based robot systems have been the focus of significant research in both academia and industry.
These systems typically employ single/multiple cameras and illumination devices to analyze the scene,
locate the part and provide feedback to the robot arm for subsequent operations. To successfully grip
and pick up parts, the vision system needs to recognize the position and the orientation of the objects.
The vision sensor can be mounted on the end-effecter of the robot arm [ATYM93, Cha98, HHC96], or
located at a position near the robot [AHNO02,LKO+99,PML04].

Vision based robot systems [Hor86] can be broadly classified into (a) 2D, (b) 2.5D, and (c) 3D vision
systems. 2D vision systems have been successfully employed in several industrial applications [Cog].
Most of the current vision systems fall into this category. These systems have been used for several
tasks such as inspection and limited part acquisition. Typically such systems can recognize the in-plane
orientation and location of the part but cannot determine the out of plane rotation and the distance
of the part precisely. They require parts to be non-overlapping and placed on a flat surface. A model
based approach can be used for 3D pose estimation. Edges are extracted in captured 2D images, and the
contours of the object are detected by connecting the edges. The detected contours are then matched
with a stored CAD model and the location and orientation of the object is estimated [TN75, Per77,
TMV85]. However, these systems are highly susceptible to background color and illumination variations.
In contrast, our approach based on depth edges can easily handle challenging backgrounds and non-
uniform illumination.
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Figure 1: Experimental setup. A six degree of freedom (DOF) robot arm equipped with a pneumatic
gripper is used for experiments. The camera attached to the robot arm is housed inside a plastic case
and is surrounded by eight light emitting diodes (LED’s) controlled by a micro-controller. Objects to be
picked are placed on a table as shown. The world coordinate system is attached to the base of the robot
with the axis directions as shown.

2.5D vision systems augment the 2D vision system by also calculating the distance of the object
from the change in the size of the image of the object or by finding depths at few points. However, they
cannot estimate the exact out of plane rotation and are often un-reliable in their depth estimates. Such
systems often misleadingly claim to estimate 3D pose but can only handle few degrees of out of plane
rotation for simple objects.

3D vision systems use sensors for estimating the 3D geometry of the scene. The object is recognized
and localized by comparing the estimated range image with the standard orientated CAD models in a
database [BJ85,BNA88,CD86]. 3D range data can either be obtained with shape-from-texture [Bra81],
laser triangulation or edge-based binocular stereo [PMF85,AL91]. Some of the popular approaches are
described below. Our system does not require a 3D sensor but it can estimate the three dimensional
pose of the object using depth edges.

• Stereo Vision: Stereo systems use two cameras looking at the object to estimate the depth of the
object. Corresponding features are localized in the images captured from the two cameras and
the geometric relationship between the cameras can be use to identify the depth of the feature
points. However, finding corresponding features itself is a challenging problem, especially for parts
which are specular, shiny and homogeneous (texture-less). In addition, stereo has high degree of
sensitivity of the depth estimates with the noise in feature localization. Another problem with
stereo is that the depths are recovered only at the feature points and not on the entire object. The
reduced accuracy can be tolerated for certain applications such as un-racking body panels in body
shops, but is not sufficient for accurate picking of the object.

• Laser triangulation: These systems use structure light [Sic] to create a pattern on the surface of the
object, which is viewed from a camera. The laser triangulation can recover the 3D point cloud on the
object surface. This technology have been used for applications involving edge tracking for welding,
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sealing, glue deposition, grinding, waterjet cutting and deburring of flexible and dimensionally
unstable parts. Use of lasers for part pose determination requires registration and accounting for
shadows/occlusions. Laser triangulation does not work well on specular shiny objects due to laser
light being reflected from the object surface. In addition, the use of lasers also leads to safety issues
when deployed in close proximity of human operators.

Active Illumination: Controlling illumination is important for vision algorithms. Back-light illu-
mination is used to segment objects by illuminating them from behind. In bright-field illumination, the
light comes in approximately perpendicular to the object surface. The whole object appears bright, with
features displayed as a continuum of gray levels. This sort of illumination is used for most general-vision
applications. In dark-field illumination, the object is illuminated at a low angle from a point parallel
to its surface. Texture and other angular features appear bright while most of the object appears dark.
Dark-field illumination is useful for imaging surface contamination, scratches, and other small raised
features. In coaxial illumination, the object is illuminated from precisely the direction of the imaging
lens using a beam-splitter. Coaxial illumination is used to inspect features on flat, specular surfaces, to
image within deep features, and to eliminate shadows. Shadows are usually considered a nuisance, but
in our approach the illumination source is intentionally placed close to the camera and cast shadows are
utilized to estimate depth edges.

Several vision approaches use active illumination to simplify the underlying problem. Nayar et
al. [NWN95] recover shape of textured and textureless surfaces by projecting an illumination pattern
on the scene. Shape from structured light [SS03, ZSCS04] has been an active area of research for 3D
capture. Raskar et al. [RTF+04] proposed the multi-flash camera (MFC) by attaching four flashes to
a conventional digital camera to capture depth edges in a scene. Crispell et al. [CLS+06] exploited the
depth discontinuity information captured by the MFC for a 3D scanning system which can reconstruct
the position and orientation of points located deep inside concavities. The depth discontinuities obtained
by the MFC have also been utilized for robust stereo matching [FRC+05], recognition of finger-spelling
gestures [FTR+04], automated particle size analysis with applications in mining and quarrying industry
and for 3D segmentation [KAR+07]. Our approach also uses a variant of MFC (with 8 flashes) to extract
depth discontinuities, which are then used to segment objects and estimate their 3D pose.

Model based Pose Estimation has been a topic of significant research in computer vision. Initial
work on using a CAD model and features in intensity images for 3D pose estimation was shown in [Low87,
Low91]. In [DD95], an algorithm is proposed for pose estimation from given 2D/3D correspondences.
Silhouettes have also been used for model based human pose estimation [ST02,GD96,AT04] and object
recognition/classification [MN78,GGS+06]. In these approaches, background segmentation to obtain the
silhouettes is typically a difficult problem. We show that by using cast shadows, obtaining silhouettes
is easy even for challenging environments. Several techniques on classifying objects based on silhouettes
assume complete closed contours, but our approach can work with incomplete silhouettes and missing
depth edges.

2 System Overview

Our system consists of a robot arm equipped with a gripper and a vision sensor as shown in Figure 1.
The overview of our approach is shown in Figures 2 and 3. The robot arm is mounted with a camera
surrounded by eight flashes. Eight images are captured, each by turning on a different flash. In addition,
an image with all the flashes turned off is also captured. The images are processed to obtain depth
edges as described in Section 2.1. The silhouettes are then segmented into different objects (Section 2.2).
Using the CAD model of the object, a database of silhouettes is generated for several poses. The obtained
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silhouettes are matched against the database to estimate the coarse pose which is further refined using
the CAD model (Section 3). The final pose estimated is transferred to the robot coordinate system
using the hand-eye and camera calibration parameters. The location of a pre-decided pick point and pick
direction for the object is estimated in the robot coordinate system, using which the robot arm picks the
object. Next we describe each of these steps in detail.

Camera with 
Flashes

Capture 
Images

Compute Depth 
& Shadow Edges 

Segment 
Depth edges 

Figure 2: Flowchart of our approach. Eight images are captured by turning on LED’s surrounding
the camera in succession (only four are shown for simplicity). Cast shadows are utilized to compute
depth edges (green) and shadow edges (orange) in the scene. Depth edges are then segmented into
silhouettes corresponding to different objects. Each silhouette is then used to estimate the 3D pose of
the corresponding object as shown in Figure 3.

2.1 Estimating Depth Edges and Shadow Edges by Casting Shadows

The key difference in our system over other systems is our vision sensor, which consists of a video camera
surrounded by eight flashes. This technique for finding depth edges was first proposed in [RTF+04].
Illumination from flashes is often used in machine vision in the form of ring lights to avoid shadows, or
colored LED’s for color based analysis. In our approach, we turn on one flash at a time to cast shadows
and capture an image. Since shadows will be cast due to object boundaries and not due to reflectance
boundaries, shadows give information about the depth discontinues of the object as shown in Figure 4.
To compute the depth edges, we use the technique described in [RTF+04,KAR+07]. Let I1 . . . I8 denote
the images taken with flashes turned on.

Canceling ambient illumination effects: To cancel the effects of the ambient illumination, we
capture an image without any flash (referred to as I0). The effect of ambient illumination is removed
by subtracting I0 from I1 . . . I8. This simple procedure provides our system with the robustness towards
illumination changes in the scene. Let D1 . . . D8 denote the images after subtracting I0.

Finding Depth Edges: To compute depth edges, first a max composite image, Dmax, is obtained
by taking the maximum of intensity value at every pixel from D1 . . . D8.

Dmax(x, y) = max
i=1...8

(Di(x, y)). (1)

Note that Dmax will be a shadow-free image. Then, ratio images are calculated as

Ri(x, y) = Di(x, y)/Dmax(x, y), i = 1 . . . 8 (2)
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Figure 3: Flowchart describing 3D pose estimation. The pose for each object is estimated using the
corresponding segmented silhouette. A coarse pose estimate is achieved by feature matching with a pre-
computed database of silhouette features to obtain approximate rotation angles. Fine pose refinement
using the CAD model is then performed to estimate accurate rotation and translation of the object.
Overlay of the rendered CAD model on I0 and the rendered CAD model silhouette on the segmented
object silhouette using the final estimated pose is shown at the bottom for one of the object.

Ideally, in the absence of noise with linear camera response, each ratio image Ri equals 0 for shadowed
and 1 for non-shadowed parts of the image. Depth edges are obtained by estimating the foreground to
shadow transition in each ratio image (Figure 5) and combining all the estimates. To handle noise and
non-linearities, we run oriented Sobel filters on ratio images and add the filter responses to obtain a
depth edge confidence map Cdepth, which is thresholded to obtain binary depth edges.

Cdepth(x, y) =
∑

i=1...8

hi(x, y) ∗Ri(x, y), (3)

where ∗ denotes convolution and hi(x, y) corresponds to the oriented Sobel filter according to the position
of the flash with respect to the camera for that image. For example, for the image taken with the flash
on the left side of the camera, the shadows will be casted on the right of the objects. Scene depth edges
then correspond to those vertical edges, which are bright on the left and dark on the right and can be

obtained by applying the filter given by




1 0 −1
2 0 −2
1 0 −1


. Similarly, for the image corresponding to the
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I1 I2 I3

I4 I5 I6

I7 I8 I0

Figure 4: Captured images of a scene with three brass hooks using our camera. I1 to I8 correspond to
the images taken with different flashes (I1 corresponds to the image taken with the flash on top of the
camera). I0 corresponds to the image taken without any flash. Notice how the shadows move with the
position of the flash.

flash on the right of the camera, the corresponding filter is given by



−1 0 1
−2 0 2
−1 0 1


. We use hysteresis

thresholding to obtain binary depth edges. Note that the entire procedure for obtaining depth edges
involve simple operations like filtering and obtaining ratios and can run in real time.

Finding Shadow Edges: We define shadow edges as the shadow to background transition in captured
images (Figure 5). The shadow edge confidence map, Cshadow, can be obtained similarly by simply flipping
the sign of corresponding oriented Sobel filter.

Cshadow(x, y) =
∑

i=1...8

−hi(x, y) ∗Ri(x, y). (4)

Figure 6 shows the estimated depth and shadow edges for the scene containing three brass hooks as
shown in Figure 4. Note that the region between the depth and shadow edges corresponds to the shadow
region and thus shadow edges provide occlusion information. Another key idea of our approach is to use
this information present in the shadow edges. In the next section, we will show how shadow edges can
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Depth Edge

Shadow Edge

C

L

Shadow 
Edge

Depth Edge

Figure 5: Depth and shadow edges. (Left) C denotes the camera and L denotes one of the light sources.
Depth edges are attached to the object, while shadow edges are defined as the boundary between the
shadow and the background. (Right) Depth and shadow edges in the camera image.

be used to significantly simplify the segmentation of depth edges into object silhouettes. Note that the
shadow edges are unique to our approach and cannot be obtained from traditional 2D intensity images.

Depth Edges Canny Edges Depth & Shadow Edges

Figure 6: Detected depth edges (green) and shadow edges (orange) using our approach on the scene
shown in Figure 4. In comparison, Canny edges [Can86] on ambient image I0 are also shown in the
middle. Note that the Canny intensity edges are noisy and do not provide reliable features due to the
non-Lambertian reflectance properties of the brass hook.

2.2 Segmentation using Depth Edges and Shadow Edges

Image and range segmentation [SS01,SM00,CGM02,CM02,HJBJ+96,YB98] is a well researched area in
image processing and computer vision. Although 2D segmentation can segment an image into semantic
regions, it cannot provide occlusion information due to the lack of shadows or depth information. Even
when a depth map of the scene is available, we need to explicitly find occlusions using depth edges. In
contrast, using depth and shadow edges together lead to a simple and effective segmentation algorithm
for singulated objects.

The key issue in segmenting obtained silhouettes into different objects is missing depth edges and
incomplete contours. Suppose complete contours were obtained for depth edges and shadow edges. Since
we assume that the objects are not stacked and are singulated, we can simply find connected components
in depth edges. Each connected component then corresponds to a particular object silhouette. However,
in practice, the silhouettes are incomplete and noisy due to image noise, specularities on specular objects,
pixel saturation, low contrast (soft) shadows and other non-linearities. Thus, one needs to complete depth
edges to form closed contours for segmentation.
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A B BAA

Depth Edges Shadow Edges

Completed Depth Edges

Figure 7: Completing depth edges using information from shadow edges. Two objects A and B are shown
with depth edges in green. Depth edges are missing for both A and B. Without using any constraints,
edge completion could result in 6 new connections as shown on left and heuristics need to be applied to
avoid incorrect connections. Instead of using heuristics, we use the physical constraint that depth edges
and shadow edges cannot intersect. This automatically removes the incorrect connections as shown on
the right.

Edge completion is also an active area of research in image processing. To complete missing edges,
Gestalt rules are applied to link perceptually similar edges [KBO03]. This involves several heuristics such
as edge proximity, edge length, etc. These techniques, however, require several tuning parameters, are
not robust and are highly susceptible to noise. To this end, we propose physical constraints which help
in completing depth edges. In any scene, cast shadows lead to physical constraints between the depth
and shadow edges. Cast shadows have a penumbra region and depth edges as defined above correspond
to the discontinuity on one side of the penumbra, while the shadow edges correspond to the discontinuity
on the other side of the penumbra. Thus, two physical constraints can be derived as follows

1. For every depth edge pixel, there exist a shadow edge pixel.

2. A depth and shadow edge cannot exist simultaneously at the same pixel.

These two rules enable us to complete missing depth edges to form closed contours. We achieve this by
fitting line segments to the depth edges and shadow edges and extending each depth edge line segment.
A consequence of these rules is that (a) for every extended depth edge line segment, there should be
a parallel shadow edge line segment, and (b) extended depth edges line segments cannot intersect any
existing shadow edge. Every extended line segment is checked with respect to the above rules and is kept
if it satisfies both of them. This significantly helps to remove spurious connections as shown in Figure 7.
In practice, we discard line segments with length smaller than a threshold (15 pixels). Note that if a
line segment is connected on both ends to other line segments, it is not extended. Thus, only those line
segments with at least one open end-point (terminal points) are checked for extension. In addition, the
process is non-recursive. Typically, few tens of terminal points are obtained and the entire process take
less than 0.5 second in C/C++.

At the end of this stage in the system, we obtain close contours for depth edges for which connected
component analysis results in segmentation as shown in Figure 8. An important point to note here is
that the extended depth edges are only used for segmentation and not for pose estimation. Once the
silhouettes corresponding to an object are segmented, we only use the original depth edges for pose
estimation. We also ignore the depth edges inside the object to avoid spurious depth edges due to
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Object 1 Object 2 Object 3

Figure 8: Segmentation of depth edges into different objects. Depth edges inside the object (internal
silhouettes) are ignored to avoid spurious edges due to specular reflections and only external silhouettes
are kept. Each of these three silhouettes is used to estimate the pose of the corresponding object.

specularities and only use the outermost silhouettes for pose estimation, but this may lose useful internal
silhouettes.

3 3D Pose Estimation

In the last section, we described how depth and shadow edges are estimated and used for object seg-
mentation. In this section, we describe how the segmented silhouettes are used for estimating the 3D
position and orientation of the object. For multiple objects in the scene, the process is repeated for
every object. We assume that a CAD model of the object is known in advance and thus our approach
is model based. The pose estimation involves obtaining the rotation and translation parameters of the
object. The pose estimation is done in two steps for faster processing. In the first step, a coarse pose is
estimated to obtain the approximate rotation angles. In the second step, all six rotation and translation
parameters are optimized.

3.1 Coarse Pose Estimation

In coarse pose estimation, the optimization is done over the rotation angles only. Several techniques
based on moments have been proposed for estimating the pose based on silhouettes and we propose to
use Zernike moments. The Zernike moment formulation outperforms the alternatives in terms of noise
resilience, information redundancy and reconstruction capability [TC88]. The pseudo-Zernike formulation
proposed in [BW54] further improves these characteristics.

Let s(x, y) be the binary image corresponding to the estimated silhouette of an object. The complex
Zernike moments, M(x, y), of s(x, y) are obtained by taking the projection of s(x, y) on complex Zernike
polynomials Vmn

M(x, y) =
m + 1

π

∫

x

∫

y
s(x, y)Vmn(x, y)∗dxdy, x2 + y2 ≤ 1, (5)

where m defines the order of the moments and ∗ denote complex conjugate. The integer n is such that

m− |n| = even, |n| ≤ m. (6)

The Zernike polynomials Vmn are expressed in polar coordinates as

Vr,θ = Rmn(r) exp(
√

(− 1)nθ), (7)
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where r, θ are define over unit disc and

Rmn(r) =

m−|n|
2∑

s=0

(−1)s (m− s)!

s!(m+|n|
2 − s)!(m−|n|

2 − s)!
rm−2s (8)

if (6) is satisfied, else Rmn(r) = 0.
To calculate the Zernike moments, the image (or region of interest) needs to be mapped to the unit

disc using polar coordinates. We first find the bounding box of the segmented object silhouette in the
image and resample the bounding box to a square of size 129 × 129. We use m = 6, giving rise to 36
Zernike basis polynomials of size 129× 129. Thus, for each silhouette, a 36 dimensional feature vector is
obtained.

Building Pose Database: Given the CAD model of the object, we find silhouettes in different poses
and store their Zernike moments in a database. We sample the pose space uniformly, at an equal interval
of 9 degrees, leading to 360/9 = 40 rotations along each axis. This results in a database of 403 = 64000
poses. We use a fast silhouette rendering algorithm described in [RC99] to compute silhouettes using
the CAD model. The entire database generation takes 10− 15 minutes on a desktop PC. Note that this
database generation needs to be done only once for an object.

The coarse pose is obtained by finding the L2 norm of the Zernike moments of the query silhouette
with the moments stored in the database and choosing the pose corresponding to the minimum L2 norm.
Figure 9 shows the result of the coarse pose estimation for object 2 in Figure 8.

3.2 Fine Pose Refinement

Note that since the Zernike moments are normalized with respect to the scale and the translation, the
obtained coarse pose is close to the correct pose only in terms of rotation angles. The fine pose refinement
procedure then updates all six parameters. The goal in pose refinement is to find that rotation R and
translation T , for which the projection of the CAD model silhouette matches the segmented silhouette of
the object in the scene. We use OpenGL to compute the 3D silhouette of the CAD model for the given
pose.

We refine the pose starting with the rotation angles given by the coarse pose estimate. The initial
translation and scale is obtained by matching the scale and image translation of the projected CAD model
silhouette with the segmented object silhouette. Note that given a set of 3D/2D correspondences, one
could use existing algorithms for model based pose estimation (e.g. Lowe’s algortihm [Low87]). However,
the 3D silhouettes depend on the pose itself and it is computationally expensive to update them at each
iteration.

For fine pose refinement, we use an outer minimization loop. At each iteration of outer minimization,
the CAD model is rendered and the 3D coordinates of the CAD model silhouette are obtained using the
rendered silhouette and the OpenGL depth buffer. Then, correspondences between the 3D CAD model
silhouette and the segmented 2D object silhouette are obtained. Given this set of 3D-2D correspondences,
rotation and translation is updated using a fully projective formulation described in [ACB98], which is
an improvement of Lowe’s original algorithm [Low87]. The updated pose is again used to obtain new 3D
silhouettes and correspondences for the next iteration of outer minimization. The error at each iteration
of outer minimization is calculated using the mismatch between the projected CAD model silhouette
and the segmented object silhouette using the distance transform [FBTdFC07]. Let s(x, y) denote the
segmented object silhouette and p(x, y) denote the projected CAD model silhouette. Then the error
between them is defined as

e =

∑
x,y s(x, y)d(p(x, y))

ns
+

∑
x,y p(x, y)d(s(x, y))

np
, (9)
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where d(.) denote the distance transform operator, ns denote the number of silhouette pixels in s(x, y)
and np denote the number of silhouette pixels in p(x, y). If both silhouettes match, e will be equal to zero.
Outer minimization is performed until the error goes below some pre-defined threshold (0.05). Usually
10− 15 iterations are sufficient. After fine pose refinement, the rotation and translation of the object in
the camera coordinate system is known as shown in Figure 9.

Rendered View after Coarse 
Pose Estimation

Rendered View after Fine Pose 
Estimation

Overlay of rendered view on 
image

Overlay of rendered and 
estimated silhouettes

Figure 9: Pose estimation results on object 2. (Top Left) Rendered CAD model using rotation angles
obtained after coarse pose estimation. (Top Right) Rendered CAD model after fine pose refinement,
which updates all six rotation and translation parameters. (Bottom Left) Overlay of the rendered CAD
model on I0 according to the final estimated pose. (Bottom Right) Overlay of the rendered CAD model
silhouette (green) on the segmented object silhouette (red) shows the success of the fine pose refinement.
X, Y, Z denote translation and A,B, C denote rotation angles after fine pose refinement.

3.3 Picking the Object

Let R and T denote the estimated rotation and translation of the object in the camera coordinate

system. Let Mobject
camera =

[
R T
0 1

]
denote the 4× 4 estimated pose matrix. The robot arm is equipped

with a gripper for picking the object. In order to pick the object, it needs to be located in the world
coordinate system. First, the transformation between the camera and the robot gripper (Mcamera

gripper) is
obtained by the hand-eye calibration [ZR96, SA89]. The transformation between the robot gripper and
the world coordinate system Mgripper

world can be computed with forward kinematic and encoder readings.
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The transformation matrix of the object in the world coordinate system is then given by

Mobject
world = Mgripper

world M camera
gripper Mobject

camera (10)

In order to pick the object, a pick point and a pick direction on the CAD model needs to be specified.
If pobject = {px, py, pz} denote the pick point on the CAD model, then the location of the pick point in
the world coordinate system, pworld, is given by

pworld = Mobject
world




px

py

pz

1


 . (11)

pworld is then sent to robot controller. The gripper is also rotated according to the final pose angles to
align with the pick direction (e.g. vertical) with respect to the object. Note that the pick point and
the pick direction can be different for different poses of the object. A trajectory is computed and the
robot controller moves the grippers accordingly. After the gripper reaches the gripping pose, it closes to
pick up the object and then move it to a predefined location with a new trajectory. If there are multiple
objects in the scene to pick, pose estimation for the next object is done while the robot is picking the
current object to reduce operational delay.

4 Results

In this section, we demonstrate the effectiveness of our system using several examples on objects with
complex 3D shape, texture-less objects, shiny background and specular objects. Extensions 2 and 3
show our system in operation for picking an object having complex 3D shape (shown in Figure 4) and a
specular object (shown in Figure 16) respectively.

4.1 Implementation

Our system consists of a Mitsubishi MELFA RV-6S 6-axis industrial robot equipped with a pneumatic
gripper as shown in Figure 1. The robot is directly controlled by a Mitsubishi MELFA CR2B controller.
The robot has 0.02 mm repeatability and has been fully calibrated by Mitsubishi. The vision sensor is
composed of a Dragonfly VGA camera from PointGrey (www.ptgrey.com) surrounded by eight Lumiled
light emitting diodes (LED’s) and is housed into a plastic box. A micro-controller inside the camera
box (Figure 1) triggers the camera and flash synchronously. Extension 1 shows the flashes triggering in
succession around the camera.

The camera is rigidly mounted on the robot hand right after the wrist roll joint. The camera is
calibrated using the Matlab Camera Calibration Toolbox available at http://www.vision.caltech.
edu/bouguetj/calib_doc/. Hand-eye calibration is performed using the software available at http:
//www.vision.ee.ethz.ch/~cwengert/calibration_toolbox.php. The center of the camera is 128.3
mm away from the center of the gripper in the vertical direction and 150.4 mm off the center of the
robot wrist roll joint, as estimated by the hand-eye calibration. The camera is placed ≈ 375 mm above
the table for capturing images. Nine images are captured, eight with individual flashes turned on and
the last with all flashes turned off to capture the contribution of the ambient illumination. Software is
written in C/C++ and takes ≈ 1 second for image capture, segmentation and coarse pose estimation
and 5− 10 seconds for fine pose refinement depending on the complexity of the CAD model. Note that
for multiple objects, fine pose refinement for the next object is done while picking the current object to
reduce the operational delay.
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Figure 10: 3D pose estimation results for all three objects shown in Figure 4. Top row shows the overlay
of the rendered CAD model silhouette (green) according to the final estimated pose on the segmented
object silhouette (red). Bottom row shows the overlay of the rendered CAD model according to the final
estimated pose on I0.

4.2 Objects with Complex 3D Shape

The brass hook example shown in Figure 4 is an example of an object with complex 3D shape. In
addition, the brass hook does not have diffuse Lambertian reflectance properties. 3D scanner fails in
obtaining reliable geometry of this object. Our approach can easily find silhouettes of this object having
complex 3D shape and non-Lambertian reflectance properties. Figure 10 shows the pose estimation result
for all three objects shown in Figure 4. Extension 4 shows a video of fine pose refinement starting from
the initial coarse pose for one of the brass hooks. Extension 2 shows a video of the robot picking two
brass hooks from the table and placing them in a pre-determined pose on the side of the table.

4.3 Non-uniform Shiny Background

Shiny reflective backgrounds create significant problems for 3D scanners and 2D vision systems. In
contrast, our system can work well even in such harsh environments. A example is shown in Figure 11
where we place a shiny metallic plate as the background. First, note that the ambient illumination
image (I0) has non-uniform illumination due to the metallic background and thus leads to significant
amount of noise for Canny edges. Secondly, flash results in strong specularities and saturation in images
as shown in Figure 11. Note that the specularities on the background change their spatial location in
the image as the flashes go around the camera. This fact is used to remove the specular highlights. We
use the gradient domain method described in [RTF+04, FRTT04] to reduce the specular highlights on
the background. Figure 12 shows the depth edges estimated using our technique compared with Canny
edges on I0. Our approach is robust against effects of strong highlights and non-uniform background
illumination. The 3D pose estimation result on both the objects are shown in Figure 13.
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Figure 11: Non-uniform shiny background. A metallic plate is placed as the background. The ambient
illumination image I0 shows non-uniform illumination on the background. Captured images with flash
shows specularities and highlights due to the metallic plate. These can be removed if their location in
the image changes.

4.4 Texture-less objects

Our approach can also handle texture-less objects with no change in algorithm. A challenging example
of white objects on white background is shown in Figure 14, on which intensity edge detection does
not give reliable features. Stereo based algorithms will also fail on texture-less objects. Notice that the
depth edge estimation using our technique is noiseless. Figure 15 shows the overlay of the rendered CAD
model silhouette on the segmented object silhouette and the rendered CAD model on I0 after final pose
estimation.

4.5 Specular Objects

Our approach also works well on specular objects on which 3D scanning fails to give reliable depth
estimates. Figure 16 shows an example on two specular pipes. Notice the specularities within the object
and inter-reflections between the object and the background. This creates problems for intensity edges,
so that clear object boundaries cannot be obtained using traditional 2D camera. However, as shown in
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Depth & Shadow Edges Canny Edges, High Th = 0.01Canny Edges, High Th = 0.05

Figure 12: Non-uniform shiny background. Our technique results in reliable depth edges. In comparison,
Canny intensity edges (on ambient illumination image) results in significant noise due to non-uniform
illumination and metallic background. Shown are the Canny edge detection results using two different
thresholds. Increasing the threshold reduces noise but also loses important edges of the objects.

Figure 16, reliable depth edges can be easily obtained using our approach. Figure 17 shows the pose
estimation results on both objects. Extension 3 shows a video of the robot picking two specular pipes
from the table and placing them in a pre-determined pose on the side of the table. Extension 5 shows a
video of fine pose refinement starting from the initial coarse pose for one of the specular pipes.

4.6 Camera Non-Parallel to Background

Our approach can handle general camera orientation, not necessarily parallel to the background. Fig-
ure 18 shows an example, where the camera position is not parallel to the background for capturing the
images. The captured images and rendered 3D model silhouettes on one of the images are also shown.
The estimated pose allows gripping of the object as shown. Notice that the object has concavities and
holes. Extension 7 shows the video demonstrating picking for this object.

In summary, we showed that our technique works well on objects with different shapes and reflectance
properties, as well as non-uniform background. In handling a new object, our system only requires the
CAD model of the object.

5 Analysis

We now analyze the accuracy of our system. There are several sources of error that could lead to the
failure of the picking process. These sources include

• Image noise

• Camera calibration and hand-eye calibration errors

• Camera lens distortions (radial distortion, barrel distortion, vignetting, etc.)

• Errors in CAD model of the object

• Missing and spurious depth edges

• Errors in 3D pose estimation

In the following, we analyze these errors in several ways.
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Figure 13: Non-uniform shiny background. Overlay of the rendered CAD model silhouette on the
segmented object silhouette and the rendered CAD model on I0 for both objects after fine pose estimation.
Note that although depth edges have noise, silhouettes used for pose estimation are clean as only the
outermost object boundary is utilized.

Calibration Errors: The camera calibration and hand-eye calibration was done using a standard
checkerboard. The checkerboard was placed on the table and images were captured by moving the robot
arm to different positions. Figure 19 shows 4 out of 11 checkerboard images used for camera and hand-eye
calibration. First, the intrinsic camera calibration parameters including the focal length, principal point
and radial distortion parameters and the extrinsic parameters (rotation and translation of camera for
each position) were obtained. The average re-projection pixel error of the checkerboard corners on to
the captured images was 0.14 and 0.13 pixels in x and y directions respectively.

Next, hand-eye calibration was performed and the location of the checkerboard in the world coordinate
system was determined for each of the 11 views. Since the checkerboard was not moved, its location in the
world coordinate system should remain the same for all the views. However, the estimated location would
differ in each view due to image noise and calibration errors. Figure 20 shows the plots of the estimated
X, Y , and Z coordinates of one of the checkerboard corners for all the views. The maximum average
absolute error in the estimated coordinates is 1.64 mm and the maximum variance of the estimated
coordinates is 4.69 mm2.

Repeatability Analysis for Pose Estimation: In repeatability analysis, we fix the position of the
robot arm (and camera), repeat image capture, segmentation and pose analysis for an object and locate
the position of the pick point in the world coordinate system. Ideally, the location of the pick point
should remain the same and the variance in the location should be zero. However, note that even if the
experiment is run again from the same camera position, due to image noise and hysteresis thresholds,
the estimated depth edges will not be exactly same. Thus, the goal is to measure the variance in the
location of pick point due to image noise and pose estimation errors.
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Figure 14: White objects on white background. Texture-less and colorless objects are difficult to handle
for stereo based 3D reconstruction algorithms. Useful intensity edges are also not obtained on such
scenes. In contrast, our technique works well on such scenes since depth edges are obtained by casting
shadows. The extracted depth edges are significantly better compared to Canny edges on I0.

Figure 21 shows one of the images of brass hook from a particular camera position. We repeat the
pose estimation 20 times for this camera position. The pick point is set to the top of the brass hook.
Figure 21 shows the plots of the estimated translation and rotation angles. Notice that the estimated
pose is very close to the true pose. The maximum variance in the estimated translation is 0.59 mm2 and
in the estimated rotation is 0.04◦.

Pose Estimation Accuracy with Silhouette Size: The accuracy of the pose estimation also depends
on the size of the silhouette or the number of pixels in the object silhouette. If the camera is too far from
the object, the resolution of the silhouettes will be low and the pose estimation could have ambiguity
between Z translation and out-of-plane rotation. To evaluate this, we repeat the pose estimation by
placing the camera at different heights (Z axis), while keeping the object fixed. Figure 22 shows the
plots of the estimated location of the pick point and the pick angles with respect to the changing distance
of the camera from the object. Note that as the camera moves up, the size of the object (and its silhouette)
decreases. The estimates of in-plane rotation and X − Y translation are more robust to silhouette size,
compared to the estimates of Z translation and out-of-plane rotation.

Pose Estimation Accuracy with Varying Camera Position: Similar to above, we estimated the
accuracy and success/failure rate of the system by capturing images from different viewpoints over a
sphere. We use 13 azimuth and 13 elevation angles leading to 169 camera viewpoints. Since the object
is not moved, the variance of the estimated pose in the world-coordinate system should be zero. Out of
169 trials, pose estimation failed in 17 trials leading to large errors in pose estimation. For remaining
152 trials, the variance of the estimate in location were less than 5 mm2. To calculate the success/failure
rate, we obtain ground truth location manually using the teach box. We declare a trial as success if
the estimated location differs from the ground truth location less than the tolerance provided by the
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Figure 15: Pose estimation results on objects shown in Figure 14. Top row shows the overlay of the
rendered CAD model on I0 and the bottom row shows the overlay of the rendered CAD model silhouette
on the segmented object silhouette according to the final estimated pose for all three objects.

gripper (4 mm). The estimated success rate was 83%. Note that this could be improved by combining
information from multiple viewpoints for better pose estimation.

Ambiguities in Pose Estimation: Since we only use the external object silhouettes, the coarse pose
estimation could have ambiguities if the external silhouettes of the object are approximately same in
different poses. This is highly dependent on the shape of the object. To handle such ambiguities, one
need to identify poses which can give rise to similar silhouettes and test for all of them in fine pose
refinement. In some cases, we can identify certain ‘axis’, rotation along which could result in similar
silhouettes. For the brass hooks shown in Figure 4, such an axis connects the top of the hook with the end
of ‘V’ shape bottom. A 180 degree rotation along this axis could result in similar external silhouettes
as shown in Figure 23. Since the CAD model is known, we pre-determine poses which could lead to
ambiguity. If the estimated final pose is close to being ambiguous, we record the error between the
estimated and projected silhouettes (Eq. (9)) and rotate the brass hook by 180 degrees along this axis
using the coarse pose estimate and repeat fine pose estimation. The new error between the estimated
and projected silhouettes is compared with the previous one. If it has decreased, the new pose estimate
is used, else it is discarded. Extension 6 shows a video of fine pose refinement starting from an incorrect
initial coarse pose, followed by the rotation of the CAD model by 180◦ along the pre-defined axis and
further fine pose refinement to obtain the correct pose.

6 Discussions and Future Work

Several improvements can be made to our system. Our system currently handles singulated objects.
Stacked objects lead to a more difficult segmentation problem but occlusions and shadow information
can be used [KAR+07] for 3D segmentation of diffuse objects. Stacked specular objects, however, are
more challenging as shadows are not casted on the specular surfaces properly, leading to a significant
amount of missing depth and shadow edges. One possible solution could be to combine segmentation
and pose estimation instead of first doing segmentation and then obtaining 3D pose from segmented
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Figure 16: Specular objects. 3D range scanners does not provide reliable geometry information on
specular objects. In addition, reliable 2D intensity based features are not also not obtained on specular
objects due to inter-reflections. Our approach can easily handle specular objects and estimate reliable
depth edges.

silhouettes.
Our system runs in open loop and the estimated pose is used to control the robot. Visual servoing and

pose verification will improve the robustness of the system. Currently we sample the pose space uniformly,
but for a given object certain poses are more likely than others. Thus, adaptive pose sampling
could reduce the size of the database and reduce ambiguities in pose estimation for symmetric objects.
In addition, combining information from multiple views of the object could improve pose estimation
accuracy.

Our approach could also be combined with 3D sensors such as stereo-vision and laser triangulation
systems that employ a camera by augmenting the camera with LED’s around it to build a hybrid
sensor. This would complement our approach which provides excellent depth discontinuities but not
absolute depths, with 3D sensors that provide absolute depths but often have difficulty in estimating
precise 3D geometry at depth discontinuities.

7 Conclusions

We have presented a vision based robotic system for model based 3D pose estimation and picking of
objects. Our system utilizes a low cost novel sensor consisting of a camera surrounded by flashes. Cast
shadows are used to estimate depth edges (silhouettes) of objects, which are then used for segmentation
and 3D pose estimation using a CAD model of the object. We show that instead of absolute 3D esti-
mates, depth discontinues are sufficient to precisely estimate the 3D pose of the object. Our approach
outperforms similar vision systems based on 2D intensity based features and 3D sensors in terms of ro-
bustness, ability to handle objects of different shapes/size and reflectance properties including specular,
diffuse and texture-less objects, as demonstrated by several real examples using our sensor mounted on
a robot arm. Our system can also handle harsh environmental conditions such as non-uniform back-
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Figure 17: Pose estimation results on objects shown in Figure 16. Top row shows the overlay of the
rendered CAD model on I0 and the bottom row shows the overlay of the rendered CAD model silhouette
on the segmented object silhouette according to the final estimated pose for both objects.

grounds and complex ambient illumination. Our technique is simple, low cost, fast and generic enough
to accommodate variations in industrial automation applications.
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8 Appendix: Index to Multimedia Extensions

The multimedia extensions to this article can be found online by following the hyperlinks from www.
ijrr.org. Table 1 describes the multimedia extensions for this paper.
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Figure 22: Pose estimation accuracy with silhouette size: The pose of the object was estimated at 9
different camera positions by moving the robot arm from 225 mm to 400 mm (in the Z direction) in
steps of 25 mm. The input images corresponding to the first and last camera location shows the difference
in the object size. The corresponding object silhouettes will also differ in size. Notice that as the camera
moves up, the resolution of the silhouettes decreases and the Z estimate and out of plane rotation angles
(θX and θY ) of the pick point worsens. The in-plane rotation and X − Y translation estimates are more
robust to the silhouette size. The maximum error in Y translation is only 3.5 mm, while the maximum
error in Z translation is 26.1 mm.
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