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ABSTRACT

Alice and Bob possess sequencesxn andyn respectively and would
like to computed(xn, yn) whered(· , ·) is a distortion measure.
However, Alice and Bob do not trust each other and do not wish
to reveal their data to each other. This paper describes and analyzes
a protocol that uses homomorphic encryption for secure calculation
of some special distortion functions without revealingxn andyn.
The resulting distortion result is also in encrypted form. Two vari-
ants of the protocol are presented, one for the Hamming distance
between binary vectors, and the other for squared error distortion
between integer vectors. An application of the protocol for private
biometric authentication is described in which Bob interacts with a
remote encrypted fingerprint database (Alice) to achieve access con-
trol without revealing his own identity.

Index Terms— Homomorphic Encryption, Paillier Encryption,
Secure Multiparty Computation

1. INTRODUCTION

The process of comparing two signals to determine whether they
are similar or different is a key operation in numerous electrical en-
gineering systems. For instance, in image processing, one may be
interested in determining whether a compressed image has been re-
constructed to within a specified mean squared error tolerance. In
security applications, comparing a received image with an original
image allows forensic experts to determine the location and extent
of tampering. In general, given the two signals, and the error toler-
ance, a computer can perform a suitable measurement and determine
whether the difference between them is acceptable. However, when
one or both of the signals are encrypted, this task is much more dif-
ficult because encryption obfuscates the underlying structure of the
signal. For example, even if two binary vectors differ in only a single
bit, their encrypted versions can be vastly different. Thus, directly
measuring the Hamming distance between the encrypted versions
is not useful. Such situations arise in secure multiparty computa-
tion [1], wherein the parties - Alice and Bob - that own the two
signals do not trust each other, i.e., they would like to compute the
distance measure without revealing the signals to each other. In this
paper, we present a protocol that utilizes homomorphic encryption
to enable secure calculation of Hamming distance and squared error
distortion.

Homomorphic properties, which we shall elaborate on in the
next section, have been used for secure voting protocols and secure
auctions. More pertinent to this paper, Dåmgardet al. have used
homomorphic encryption and secret sharing for secure comparison
of two numbers, i.e., using an untrusted third party, Alice and Bob

can verify whose number is larger [2]. Ravikumaret al. [3] present a
stochastic scalar dot product protocol to approximate the Euclidean
distance. In the context of secure data mining of images and bio-
logical templates, Du and Atallah [4] provide efficient protocols to
approximate the Euclidean distance and thel1 distance between two
signals. Feigenbaumet al. [5] describe a protocol to approximate
several functions including Hamming and Euclidean distance with
sublinear communication overhead.

The protocols presented in this paper enable secure computation
of the exact Hamming distance or Euclidean distance, and no other
information about the signals is revealed. For a vector of lengthn,
the protocol requires communication data overhead ofO(n) from
Alice to Bob and a data overhead ofO(1) from Bob to Alice. The
remainder of this paper is organized as follows: Section 2 reviews
the concept of homomorphic encryption and describes Paillier en-
cryption which is later employed in the protocol. Section 3 describes
the protocol to determine the Hamming distance. In Section 4, the
same protocol is co-opted for squared error calculation. Section 5
shows how the secure Hamming distance calculation can be utilized
in remote private biometric authentication.

2. HOMOMORPHIC ENCRYPTION

Let P be a set of plaintexts asociated with a binary operator·P , and
H be a set of ciphertexts associated with a binary operator·H.

Definition 1 A mapping ξ : P → H is called homomorphic if the
following holds for all a, b ∈ P ,

ξ(a ·P b) = ξ(a) ·H ξ(b).

Some of the public-key cryptosystems in the literature pos-
sess the homomorphic property, namely the RSA [6], El Gamal [7],
Goldwasser-Micali [8] and Paillier [9] cryptosystems. The last three
of these are semantically secure, in that repeated encryption of same
plaintext results in different ciphertexts. The protocol described in
this paper works, with small modifications, for any semantically
secure homomorphic encryption scheme. For concreteness, we will
employ the Paillier cryptosystem whenever encryption/decryption is
required in the protocol. The Paillier cryptosystem [9] is reviewed
briefly below.

• Configuration: Choose two large prime numbersp, q, and
let N = pq. Denote byZ∗

N2 ⊂ ZN2 = {0, 1, ..., N2 − 1}
the set of non-negative integers that have multiplicative in-
verses moduloN2. Selectg ∈ Z

∗

N2 such thatgcd(L(gλ

mod N2), N) = 1, whereλ = lcm(p − 1, q − 1), and
L(x) = x−1

N
. Let (N, g) be the public key, and(p, q) be

the private key.



• Encryption: Let m ∈ ZN be a plaintext. Then, the cipher-
text is given by

ξr(m) = g
m · rN mod N2 (1)

wherer ∈ Z
∗

N is a number chosen at random.

• Decryption: Let c ∈ ZN2 be a ciphertext. Then, the corre-
sponding plaintext is given by

ψ(ξr(m)) =
L(cλ mod N2)

L(gλ mod N2)
= m mod N (2)

Note that decryption works irrespective of the value ofr used
during encryption. Sincer can be chosen at random for every en-
cryption, the Paillier cryptosystem is probabilistic, and therefore se-
mantically secure. It can now be verified that the following proper-
ties hold for the mapping (1) from the plaintext set(ZN ,+) to the
ciphertext set(Z∗

N2 , ·),

ψ(ξr1
(m1)ξr1

(m2) mod N2) = m1 +m2 mod N (3)

ψ( [ ξr(m1) ]m2 mod N2) = m1m2 mod N (4)

3. SECURE HAMMING DISTANCE CALCULATION

Suppose that Alice and Bob own two binary sequencesxn =
{x1, x2, ..., xn} and yn = {y1, y2, ..., yn} respectively and let
n≪ N . Let d(·, ·) denote the binary Hamming distance. Then,

d(xn
, y

n) =
n∑

i=1

(xi ⊕ yi) =
n∑

i=1

(xi + yi − 2xiyi) (5)

= A+B + C

where A =
n∑

i=1

xi, B =
n∑

i=1

yi, C = −
n∑

i=1

2xiyi

Observe that Alice knowsA, Bob knowsB, butC contains the cross
terms is unknown to both of them. For secure computation, Alice
and Bob obtain the encryption key from an authentication server, but
none of them possesses the decryption key. Now, the protocol for
secure computation of binary Hamming distance is as follows:

1. For eachi ∈ 1, 2, ..., n, Alice encryptsxi into ξri
(xi) ac-

cording to (1). Here,ri is chosen randomly fromZ∗

N . She
transmits the encrypted results to Bob.

2. For eachi ∈ 1, 2, ..., n, Bob computes

ỹi = −2yi mod N

ξri
(−2xiyi) ≡ [ ξri

(xi) ]ỹi mod N2

3. Bob computes

ξrc
(C) ≡ ξrc

(−

n∑

i=1

2xiyi) ≡

n∏

i=1

ξri
(−2xiyi) mod N2

whererc =
∏n

i=1
ri mod N ∈ Z

∗

N . Note that Bob oper-
ates solely in the encrypted domain in this step, so the values
of C andrc are unknown to him.

4. Bob choosesrb ∈ Z
∗

N at random and computes

ξrd
(B + C) ≡ ξrb

(B) ξrc
(C) mod N2

whererd = rbrc mod N ∈ Z
∗

N . Bob transmits this result
to Alice. The value ofrd is implicit in the encryption result
but is unknown to Bob.

BobAlice

Encryption Key only

Fig. 1. Protocol for secure distortion calculation using secret sharing
and homomorphic encryption.

5. Alice choosesra ∈ Z
∗

N at random and computes

ξr(d(x
n
, y

n)) = ξr(A+B + C)

≡ ξra
(A) ξrd

(B + C) mod N2

wherer = rard mod N ∈ Z
∗

N . Again, the value ofr is
implicit in the encryption result but unknown to Alice because
she does not knowrd. If required by the application, this
result is transmitted to Bob.

The transmission steps in the protocol are depicted in Fig. 1. Note
that, by design, the protocol does not revealxn to Bob oryn to Alice.
In order to knowxi, Bob must decrypt Alice’s transmissions in the
absence of the decryption key. Since he is computationally bounded,
Alice’s inputs are computationally secure. Recall that, since Paillier
encryption is semantically secure, repeated encryptions of a bit value
(0 or 1) will result in different ciphertext every time, dictated by the
random choice ofr in (1). If Alice wants to cheat successfully, she
must decryptξrd

(B+C) = ξrd
(
∑n

i=1
(yi −2xiyi)) in the absence

of the decryption key. Since she is computationally bounded, Bob’s
data is computationally secure.

Table 1 contains the number of computations performed by Al-
ice and Bob during the course of the protocol. In terms of the com-
munication overhead, Alice transmits a maximum ofn logN2 bits
in Step 1 and a maximum oflogN2 bits if she needs to commu-
nicate the final encrypted Hamming distance to Bob1. Thus Al-
ice’s maximum communication overhead isn logN2 + logN2 <

2(n+1) logN bits, while Bob transmits a maximum oflogN2 bits.
SinceN is a constant determined by the security requirements of the
encryption algorithm, the communication complexity, in terms of the
vector lengthn, isO(n) for Alice andO(1) for Bob.

Party # encryptions # exponentiations # multiplications
in encrypted domain

Alice n 0 1
Bob 1 n n

Table 1. Number of computations performed by Alice and Bob dur-
ing the protocol.

4. SECURE SQUARED DISTANCE CALCULATION

Suppose that Alice and Bob own two integer sequencesxn =
{x1, x2, ..., xn} and yn = {y1, y2, ..., yn} respectively and let

1All logarithms in this paper have base 2
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n ≪ N . Now, letd(·, ·) denote the squared error betweenxn and
yn. Then, the squared Euclidean distance is given by

d(xn
, y

n) =
n∑

i=1

(xi − yi)
2 =

n∑

i=1

(x2

i + y
2

i − 2xiyi)

= A+B + C (6)

where A =
n∑

i=1

x
2

i , B =
n∑

i=1

y
2

i , C = −
n∑

i=1

2xiyi

Again, observe that Alice knowsA, Bob knowsB, butC contains
the cross terms and is unknown to both of them. Now, the protocol
for secure computation of the squared error betweenxn andyn is
exactly the same as that described in Section 3, with the updated
definitions ofA,B andC from (6).

5. PRIVATE FINGERPRINT AUTHENTICATION

Consider an application of the secure distortion calculation protocol
to private biometric authentication on a remote server. As shown in
Fig. 2, in which Bob interacts with a remote authentication server
and a remote database (Alice) of legitmate fingerprints. At the sens-
ing station, a binary feature vector is extracted from Bob’s finger-
print. The remote authentication server grants access only if this
feature vector matches at least one of the feature vectors in Alice’s
database up to a specified Hamming distortionDth. However, Bob
would not like to transmit his feature vector directly to the authen-
tication server, for fear of revealing his fingerprint to the server or
to an external attacker in the network. Furthermore, Alice would
like to protect the feature vectors of legitimate users from Bob and
from external attackers, by encrypting them and storing only the en-
crypted values in the database. We now describe how Bob, Alice
and the remote authentication server can perform anonymous access
control2.

The authentication server possesses an encryption/decryption
key pair. It assigns Bob and Alice with a common encryption key
but no decryption key. Then, Bob and Alice follow the protocol
in Section 3, which allows Alice to obtain theencrypted Hamming
distance between Bob’s feature vectoryn and each feature vector

2An external computationally bounded attacker is unable to decrypt Bob’s
and Alice’s data but can maliciously alter their transmissions by exploiting
the malleability of homomorphic encryption. Security measuresrequired to
combat this type of attack are outside the scope of this work.

xn in her database. Alice transmits this encrypted result to the re-
mote authentication server over the network. Upon decryption, the
server compares the true Hamming distance to a thresholdDth and
transmits an “Access Granted/Denied” signal to Bob.

We implemented the system of Fig. 2 in software, and tested
it with a proprietary database of 1035 fingers with 15 samples
per finger. For extracting binary feature vectors from the finger-
print, we adopt the algorithm developed in [10]3. In brief, this
algorithm extracts minutiae points from a fingerprint, generates
random rectangles in the minutiae space, counts the number of
minutiae points in each rectangle, and binarizes these numbers
based on statistics gathered from the training set. A binary fea-
ture vector extracted from each fingerprint consists ofn = 150
bits corresponding to 150 rectangles in the minutiae space. The
Hamming distance between two binary feature vectors indicates
the difference between the respective underlying fingerprints. The
feature extraction algorithm ensures that repeated measurements
from the same finger result in a small Hamming distance while
measurements from different fingers result in a large Hamming dis-
tance. The distribution of the inter-user and intra-user Hamming
distance is shown in Fig. 3. The feature vectors of the legitimate
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Fig. 3. Given the distributions of intra-user and inter-user Hamming
distance, the choice ofDth determines the tradeoff between FAR
and FRR.

users are encrypted bit-wise, using Paillier homomorphic encryp-
tion with parametersp = 1267650600228229401496703217287,
q = 2535301200456458802993406412663 andg = 2, in which
the public encryption key is(N = pq, g) and the private decryption
key is (p, q). We used 100-bit prime numbers forp andq but they
could be larger if higher computational security is desired. As noted
earlier, the encryption key is known to everyone, but the decryption
key is known only to the remote authentication server. We verified
that, after decryption, the Hamming distance calculated in the en-
crypted domain using the protocol of Section 3 is exactly equal to
the true Hamming distance. Now, for the purpose of authentication,
we choose different values for the distortion thresholdDth and plot
the tradeoff between False Reject Rate (FRR) and False Accept Rate
(FAR) as shown in Fig 4. The equal error rate for this tradeoff curve
is 0.027, which is achieved forDth = 30 bits.

Next, we consider the possibility of cheating. If Bob knowsDth,
then he may try to gain access using an all-zeroes or all-ones vector

3The proposed system allows private (anonymous) login while the
Slepian-Wolf biometric system in [10] does not.
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Fig. 4. The equal error rate for the feature extraction scheme in [10]
is 0.027. This is achieved by selectingDth = 30 as a decision
threshold for authentication.

in encrypted form. The histogram of Hamming weights of the unen-
crypted feature vectors in the training set is plotted in Fig. 5. Feature
vectors with Hamming weight less thanDth or more thann −Dth

are vulnerable to all-zeroes and all-ones attack respectively. To pre-
vent such attacks, the server may refuse to enroll feature vectors with
too small or too large Hamming weights. Alice might want to cheat
by finding out which of the feature vectors stored in her database
are closest to Bob’s feature vector. However, the protocol only al-
lows her to find the encrypted Hamming distance, so she is unable
to cheat. The authentication server can only find out whether Bob
is legitimate or not, based on the comparison between the Hamming
distance andDth, but has no access to Alice’s or Bob’s feature vec-
tors.
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Fig. 5. An all-zeroes and all-ones attack by Bob can be prevented
by refusing to enroll feature vectors with Hamming weight less than
Dth or more than150−Dth. ForDth = 30, this means discarding
0.76% of the feature vectors.

Finally, we consider the communication overhead due to the pro-
posed secure Hamming distance protocol. Alice first transmits a
maximum ofn logN2 = 60, 000 bits to Bob, whereN = pq is
a 200-bit number, andn = 150. Then, Bob transmitslogN2 = 400
bits to Alice during the protocol. After the protocol concludes, Al-
ice transmits the encrypted Hamming distance to the authentication
server, which consumes a maximum oflogN2 = 400 bits. These

numbers represent the communication overhead for matching Bob’s
vector witheach encrypted vector in Alice’s database. The final re-
sult of the authentication is communicated to Bob using a single bit.

6. CONCLUSION AND DISCUSSION

A two-party protocol for secure computation of Hamming distance
and Euclidean distance was presented in this paper. The protocol
utilizes the properties of homomorphic encryption to enable the two
parties to compute the distortion in encrypted form without revealing
their inputs to each other. The security, computational complexity
and communication overhead of the two untrusting parties is ana-
lyzed. The secure Hamming distance protocol is applied to a private
fingerprint authentication system, where a user can anonymously in-
teract with a remote authentication server without revealing his fin-
gerprint, while the server performs authentication without revealing
the fingerprint features of legal users.
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