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Abstract

In this paper, a new integrated particle filter is pro-
posed for video object tracking. After particles are gen-
erated by importance sampling, each particle is regressed
on the transformation space where the mapping function is
learned offline by regression on pose manifold using Lie
algebra, leading to a more effective allocation of parti-
cles. Experimental results on synthetic and real sequences
clearly demonstrate the improved pose (affine) tracking per-
formance of the proposed method compared with the origi-
nal regression tracker and particle filters.

1. Introduction
Two decades of diligent effort shows that object and

pose tracking is still one of the most challenging tasks in
computer vision. It faces with many difficulties. For in-
stance, imaging projections cause loss of essential 3D in-
formation, thus, estimating 3D pose from 2D correspon-
dences becomes an ill-posed problem. Objects frequently
encounter deformations and significant appearance changes
in real world scenarios. They partially or fully occlude each
other for extended periods of time. They exhibit complex
and erratic motion patterns, which invalidates common in-
ertial assumptions. To make everything more complicated,
the scene illumination varies perpetually, noise corrupts im-
ages irrecoverably, and cameras move and vibrate inexpe-
diently. Different tracking methods are proposed to try to
these problems, e.g. particle filter [6], kernel methods [3, 7],
regression tracker [11].

Particle filter [1, 6, 12, 9] is a Monte Carlo (MC) method
known also as bootstrap filtering, survival of the fittest, and
the condensation algorithm. The key idea is to represent the
posterior density function (of the pose object for instance)
by a set of random samples with associated weights and to
compute estimates based on these samples and weights. It
can be shown that according to the Bayesian theory, the
weighted average of these particles converges to the true
state when the number of samples is large. Yet, this is com-

putationally infeasible. In theory, the particle filter can track
any parametric variation including the pose as in [8] where
the affine motion is imposed as the state and particle filter-
ing is applied on affine group. However, the intrinsic de-
pendency to random sampling tends to degenerate and de-
bilitate the estimated likelihoods especially for higher di-
mensional pose representations. Moreover, the computa-
tional requirements exponentially grow by the number of
state variables, which makes the direct application of parti-
cle filter unsuitable for tracking of complex pose changes.

On the other hand, regression methods attempts to es-
timate the state by learning a transformation from feature
space to state space. There were attempts using the Lie al-
gebra of transformations for tracking problems. In [2], the
additive updates were performed on the Lie algebra for tem-
plate tracking. However, the approach in [2] fails to account
for the noncommutativity of the matrix multiplications and
the estimations become valid only around the initial trans-
formation of the target. In a recent study [4], a kernel re-
gression model for manifold valued data is described for an-
alyzing shape changes of the brain on MR images. This ap-
proach is computationally expensive and is not well suited
for real time applications. More recently, a learning based
tracking on Lie algebra is presented in [11]. This method
minimizes a first order approximation to geodesic error by
fitting a regression function, and reports satisfactory pose
tracking results especially when the object motion (partic-
ularly translation) is not large. Yet, the existing regression
approaches are limited to small variations where the object
kernels in successive frames overlap significantly.

Figure 1 shows typical failure cases of the regression
tracker introduced in [11] and a standard particle filter as
in [1] where both methods use the same low level shape
based appearance features. It is evident that the persever-
ing large affine motion of the Wall sequence causes the
regression tracker to fail since the regression kernels would
not overlap closely (Fig. 1-b). In the meanwhile, the parti-
cle filter cannot track the input region basically due to the
insufficient number of particles (200) for the 6-dimensional
affine state space (Fig. 1-c). Note that, increasing the num-
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(a) (b) (c)
Figure 1. Typical results demonstrating tracking performance for
large motion: (a) Frame 0. (b) Estimated region by the regression
tracker [11] at the frame 1. (c) Result of the particle filter [1] with
limited number of (200) particles.

ber of particles cripples the computational speed.
To overcome the shortcomings of the above techniques,

we propose a novel method that inherits the individual ad-
vantages of both particle filtering and regression tracking.
Since the affine motion imposes a manifold, specifically
a Lie group structure, our formulation employs geodesic
distance and mean computation on Lie algebra. Our con-
tributions are threefold: 1) Unlike the regression only ap-
proach, our combined method robustly estimates large para-
metric variations thanks to the importance sampling in the
particle filter. 2) Without inflating the number of parti-
cles, our method accurately computes the particle likeli-
hoods thanks to the additional refinement provided by the
regression. This keeps the computational requirements at
minimum (real-time), which makes our method suitable for
tracking of complex pose changes in high dimensional state
spaces. 3) The adopted low-level features (histograms of
oriented gradients) make pose tracking in monocular se-
quences possible.

2. Regressing Particles on Lie Algebra

Schematics of the regression tracker, particle filter, and
our combined method are presented in Fig. 2.

At the initialization of the object, the regression tracker
estimates a function that maps the region feature vectors
to the hypothesized affine motion vectors by first hypoth-
esizing a set of random motion vectors within the given
bounds, determining the transformed regions for these mo-
tions, and then computing the corresponding features within
each warped region. In the tracking time, it extracts the fea-
ture vector only for the previous object region and applies
the learned regression function, which is a matrix multipli-
cation in case of linear regression is used.

Particle filter first draws new particles by importance
sampling in state space, computes likelihood values at each
particle, and finally calculates the mean as the estimate.

Our method, on the other hand, refines the particle states
by the learned regression function before the mean com-
putation, which helps aligning the corresponding image re-
gions better in case any of the particles partially overlaps
with the tracked object, and iteratively determines the mean

Figure 2. Schematics of three tracking algorithms: (a) Regression
tracker. (b) Particle filter. (c) Our proposed method.

in the tangent space [10] instead of the Euclidean coordi-
nates as the affine motion constitutes a manifold.

2.1. Object Model

The object state in this paper is demonstrated on affine
motions [5], however, it generalizes to any matrix Lie group
transformations including 3D pose estimation. A two-
dimensional affine transformation A(2) is given by a 3 × 3
matrix M

M =
(

A T
0 1

)
(1)

where M is determined by six parameters: A is a nonsin-
gular 2 × 2 matrix of rotation, scale, and skewness, and
T ∈ R2 is translation.

M maps a unit square at the origin to the affine region
enclosing the target object

[ximg yimg 1]T = M[xobj yobj 1]T (2)

where, the subscripts indicate the object coordinates and
image coordinates respectively. The inverse M−1 is also an
affine motion matrix and transforms the image coordinates
to the object coordinates.

2.2. Particle Filtering on Affine Motions

For particle filtering on affine motions, the state of a sam-
ple is its transformation matrix, where six parameters de-
scribe scale, orientation, skewness, and translation.

We denote the ith sample at time t as Mi
t, and its weight

as wi
t. The observation It is the given image at time t. The

samples {Mi
t, i = 1, 2, . . . , n} are generated from a pro-

posal density q(·). The weights at time t are updated by

wi
t ∝ wi

t−1

p(It|Mi
t)p(v

i
t|Mi

t−1)
q(Mi

t|Mi
t−1, It)

, (3)

where p(It|Mi
t) is the likelihood of the ith particle;

q(Mi
t|Mi

t−1, It) is the proposal density from which the par-
ticles Mi

t have been generated; p(Mi
t|Mi

t−1) is the transi-
tion probability, and is determined by the dynamics (motion
history) of the object. This can be learned through the data



even though it is usually considered as a random walk. The
normalized weights πi are given by

πi
t =

wi
t∑n

j=1 w
j
t

.

Since the state matrix M do not conform to Euclidean
geometry, the state estimate M̂t is approximated by the
weighted intrinsic mean as follows [10]

• initialize M̂t = M1
t

• repeat

– for i = 1 to n
compute mi

t = log(M̂−1
t Mi

t)

– compute ΓM̂t = exp(
∑n

i=1 π
i
tm

i
t)

– assign M̂t = M̂tΓM̂t

• until ‖log(ΓM̂t)‖ < ε

The disadvantage of particle filtering for large affine mo-
tions is that the importance sampling is required to have rel-
atively larger variance values to compensate for large mo-
tions, yet, an estimation with small number of particles per-
forms inefficiently in 6-dimensional state space. Figure 1-b
shows the performance of the particle filter, which is infe-
rior since a set of 200 particles is rarely enough to popu-
late the affine probability density. The number of particles
grows exponentially along with the increase of the dimen-
sions for more complex pose changes.

2.3. Regression Tracker

The regression tracker was proposed in [11]. It estimates
the transformation matrix Mt, given the observations up to
time t, I0...t, and the initial transformation M0. We model
the transformations incrementally

Mt = Mt−1.∆Mt (4)

and estimate the increments ∆Mt at each time frame. The
transformation ∆Mt corresponds to motion of target from
time t − 1 to t in the object coordinates. The image in the
object coordinates is written as I(M−1). We consider the
pixel values inside the unit rectangle and represent the re-
gion with a descriptor, that is, an orientation histogram. It
is denoted by h(M−1) ∈ Rm where m is the dimension
of the descriptor. Given the previous location of the object
Mt−1 and the current observation It, the new transforma-
tion ∆Mt is estimated by the regression function

∆Mt = f(ht(M−1
t−1)). (5)

The tracking problem reduces to learning and updating the
regression function f to estimate the pose of the object.

Figure 3. Learning regression function at initialization.

Figure 3 illustrates the way we learn the regression func-
tion before tracking. During initialization, t = 0, the obser-
vation I0 and the initial location of the object M0 are given.
A training set of n random affine transformation matrices
{∆Mi}i=1...n is generated around the identity matrix. The
object coordinates are transformed by multiplying on the
left with ∆M−1

i and the new descriptor is computed by
hi

0 = h0

(
∆M−1

i .M−1
0

)
. The transformation ∆Mi moves

the object back to the unit square. The training set consists
of samples

{
hi

0,∆Mi

}
i=1...n

. Notice that we use the nota-
tion ∆M both for the elements of training set with subscript
i and the estimated motions during tracking with subscript
t.

Let X be the n × m matrix of initial observations and
Y be the n × d matrix of mappings of motions to the Lie
algebra

X =


[
h1

0

]T
...

[hn
0 ]T

 Y =

 [log (∆M1)]T

...
[log (∆Mn)]T

 . (6)

The regression function can be found as

f(h) = exp
(
hT Ω)

)
, (7)

where Ω = (XT X + λI)−1XT Y and λ prevents from fea-
ture coefficients to become over dominant to others (refer
to [11] for details on the ridge regression).

After learning the model by randomly generating mo-
tion parameters within given scale, rotation, and translation
bounds in the first frame, the update process is very fast
at the consecutive frames as it requires only simple matrix
multiplications. Learning the model does not need to be
repeated at each frame as long as the object undergoes a
change is inside the bounds, e.g. human face does not turn
all the way around.

Even though the regression can estimate the affine trans-
formations in a computationally efficient way by itself, it



needs significant overlap of the object window (thus, recov-
erable states) between the adjacent frames. As we men-
tioned before, it fails in case of large motion changes where
such an overlap could not be satisfied, e.g. Fig. 1-a.

2.4. Regressing Particles

Our method first draw samples from a normal probability
density function,

Mi
t,m = Mi

t−1 +N (0, C). (8)

where Mi
t,m stands for the intermediate samples of Mi

t;
N (0, C), i.e. a Gaussian distribution with zero mean and
covariance matrix C.

To refine the position of the particle in the space such that
the underlying domain fits better to the object model, we
apply the regression function to each intermediate particles
as follows

Mi
t = Mi

t,m∆Mi
t = Mi

t,mf(ht(M−1
t,m)). (9)

In order to capture pose changes, we utilize the his-
togram of gradient as the cue to calculate the likelihood of
each particles. Therefore, p(It|Mi

t) in 3 is defined as

p(It|Mi
t) = e−

D2

2σ2 , (10)

where D is the dissimilarity, e.g. by Bhattacharya distance,
of the gradient weighted orientation histograms between the
2D image region corresponding to Mi

t and the template.
Ideally we like to get a closed form expression of the pro-

posal density q(Mi
t|Mi

t−1, It) based on the way we gener-
ate the samples, i.e. (8) and (9). However, the regression
tracking is a mapping from the feature density to transfor-
mation space. The low-level feature we utilized, the gradi-
ent histogram ht(M−1

t,m) in (9), prevents deriving a closed
form expression. Instead, we assume that the sampling of
the particles matches the transformation dynamics of the
object, i.e. p(Mi

t|Mi
t−1) = q(Mi

t|Mi
t−1, It). Then (3)

reduces to
wi

t ∝ wi
t−1p(It|Mi

t) (11)

A pseudo-code of the proposed algorithm is given in Fig. 4.
In principle, there is direct correlation between the way

we draw samples from the proposal density function in par-
ticle filtering and generate the random motions for the re-
gression function. The particle filter is designed to com-
pensate for rather large translations than rotations and scale
assuming the recoverable translation in regression part is
constrained by the object size, but not in particle filter.

3. Experimental Results
We performed extensive tests on both synthetic se-

quences as well as real-world videos. In each test, we com-

Step 1: Resampling and Generate particles
∗For i=1:n

• Resampling
• Draw particles from a Gaussian distribution (8) Mi

t,m =
Mi

t−1 +N (0, C).
∗End
Step 2: Regression for each particle
∗For i=1:n

• k = 1 and Mi
t = Mi

t,m

• Repeat

– Mi
t = Mi

t.∆Mi
t

– k = k + 1

• Until ∆Mt = I or k = K

∗End
Step 3: Estimate the state
∗For i=1:n

• weight calculation (11)
• mean estimate

∗End

Figure 4. pseudocode of the proposed algorithm.

Table 1. Overall evaluation.
Tracker type Pose estimation Large motion

Regression tracker Good Poor
Particle filter Poor Good
Our method Good Good

pared our approach with the regression tracker and the parti-
cle filter (different versions). All three algorithms were im-
plemented in MATLAB 8.0 on a 3.0GHz Intel Duo proces-
sor. The summary of algorithm performance comparisons
is given in Table 1.

In order to perform a fair comparison, we kept the pro-
posal density functions in both the conventional particle fil-
ter and our method same. In addition, the number of parti-
cles in the conventional particle filter is empirically selected
such that the CPU time of our method is less and almost
equal to particle filter. Gradient information is used as the
only cue to calculate the likelihood in the particle filter and
the region descriptors in the regression tracking. We applied
the histogram of oriented gradients (HOG) descriptors with
288 coefficients. Similar to SIFT descriptors, the contribu-
tion of each pixel to the histogram is proportional to its gra-
dient magnitude. The unit square is divided into 6×6 = 36
regions and a histogram is computed in each of them. Each
histogram is quantized at π/4 degrees between 0 and 2π.
The size of each histogram is eight dimensional and the de-
scriptors, h, are m = 288 dimensional. During tracking the
peripheral pixels are frequently contaminated by the back-
ground, hence we leave a 10% boundary at the outerside of



Figure 5. MSE of tracking algorithms on Logo sequence.

the unit square and construct the descriptor inside the inner
rectangle.

For synthetic sequences where the ground truth affine pa-
rameters are available we performed a single tracking it-
eration by each method, and simply measured the mean
squared error (MSE) on all six parameters instead of the
geodesic distance between the estimations and the true val-
ues. Notice that, although we track the targets with an affine
model, some targets are not planar. Even though an affine
model cannot perfectly fit the non-planar targets, we ob-
served it still produces the best affine approximations.

Cluttered Scene: In the synthetic sequence Logo, the
logo of CVPR09 wander erratically on a text background.
Note that, this sequence is a challenging not only because
of the motion but also due to the fact that we do not use
the intensity features but only the gradients in a this highly
cluttered image. As shown in Fig. 6, the regression tracker
fails to compensate for the pose when the logo jumps in
the image (MSE=22.93) after frame 97. The results for
the particle filter with 30 particles are not accurate either
with MSE=5.89. Even though the particle filter with 200
particles managed to approximate the translations it gives
worse MSE score (3.21) and visual results than the pro-
posed method (1.25). The proposed method tracked the
logo robustly using only 30 particles and it was able to re-
cover from the small error in frame 62. In our advantage, the
average CPU time is lower (2.29 to 2.55) than the 200 par-
ticle implementation. We presented the average CPU times
and errors in Table 2 and the corresponding frame-wise re-
sults in Fig. 5.

Large Motion and Scale Changes: For the real-world
sequences given in Figures 7, 10, 8 we visually ob-
served even better results when we applied the proposed
method. All sequences contain large and erratic motion,
scale changes, even tracking the picture in Wall is not
straightforward as it shows two spatially close concentric
rectangular regions moves together, which makes scale es-
timate much harder. Note that, we do not need to make
use of the color information available in this sequence.

Table 2. Statics of tracking algorithms on Logo sequence. CPU
times are for MATLAB implementation.

Algorithm CPU time per Average MSE
frame (sec)

Regression
tracker 0.25 22.93

Particle Filter
with 30 particles 0.47 5.89

Particle Filter
with 200 particles 2.55 3.21

Our method
using 30 particles 2.29 1.25

(a) Regression tracker

(b) Particle filter with 200 particles

(c) Our method using 30 particles
Figure 6. An example of tracking in cluttered challenging environ-
ment. Results of (a) Regression tracker (b) Particle filter with 200
particles (c) Our method using 30 particles on logo sequence.

(a) Regression tracker

(b) Particle filter with 350 particles

(c) Our method using 50 particles
Figure 7. An example of tracking with big size change of the ob-
ject. Results of (a) Regression tracker (b) Particle filter with 350
particles (c) Our method using 50 particles on car sequence.

Our experiments prove that the integration of the regression
tracker into the particle filter significantly improves the per-
formance.



(a) Regression tracker

(b) Particle filter with 220 particles

(c) Our method using 30 particles
Figure 8. Results of (a) Regression tracker (b) Particle filter with
220 particles (c) Our method using 30 particles on toy plane
sequence.

(a) Regression tracker

(b) Particle filter with 350 particles

(c) Our method using 50 particles
Figure 9. Results of (a) Regression tracker (b) Particle filter with
350 particles (c) Our method using 50 particles on face sequence.
Appearance of the face changes as well as its pose.

Figure 10. Results of our method using 30 particles on wall se-
quence. This sequence is not very simple; two spatially close con-
centric rectangular regions moves together in the sequence, which
makes scale estimate much harder. Also note that, we do not make
use of any color information.

4. Conclusions

We presented a simple but elegant method that integrates
the regression pose estimate on Lie algebra into the sequen-
tial importance sampling particle filter. Our method pro-
vides more accurate results than the conventional particle

filter with tenfold particles, and has the ability of recovering
large translational motion unlike the conventional regres-
sion tracker on Lie algebra. Our method is not restricted to
the affine motion and can be easily extended to more com-
plex parametric motions.

As a future study, we will apply it to 3D pose estimation
problems.
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