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Abstract

We show that motion blur in successive video frames is invertible even if the point-spread func-
tion (PSF) due to motion smear in a single photo is non-invertible. Blurred photos exhibit nulls
(zeros) in the frequency transform of the PSF, leading to an ill-posed de-convolution. Hardware
solutions to avoid this require specialized devices such as the coded exposure camera or acceler-
ating sensor motion. We employ ordinary video cameras and introduce the notion of null-filling
along with joint-invertibility of multiple blur-functions. The key idea is to record the same object
with varying PSFs, so that the nulls in the frequency component of one frame can be filled by
other frames. The combined frequency transform becomes null-free, making deblurring well-
posed. We achieve jointly invertible blur simply by changing the exposure time of successive
frames. We address the problem of automatic deblurring of objects moving with constant veloc-
ity by solving the four critical components: preservation of all spatial frequencies, segmentation
of moving parts, motion estimation of moving parts, and non-degradation of the static parts of
the scene. We demonstrate several challenging cases of object motion blur including textured
backgrounds and partial occluders.
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Figure 1: By simply varying the exposure time for video frames, multi-image deblurring can be made invertible. (Left) Varying exposure
photos of a moving car. Notice the change in illumination and the blur size in the captured photos. (Right) The foreground object is
automatically rectified, segmented, deblurred, and composed onto the background using the varying exposure video. Novel renderings, such
as motion streaks, can be generated by linear combination of the deblurred image and the blurred images.

Abstract

We show that motion blur in successive video frames is invertible
even if the point-spread function (PSF) due to motion smear in a
single photo is non-invertible. Blurred photos exhibit nulls (zeros)
in the frequency transform of the PSF, leading to an ill-posed de-
convolution. Hardware solutions to avoid this require specialized
devices such as the coded exposure camera or accelerating sensor
motion. We employ ordinary video cameras and introduce the no-
tion of null-filling along with joint-invertibility of multiple blur-
functions. The key idea is to record the same object with varying
PSFs, so that the nulls in the frequency component of one frame can
be filled by other frames. The combined frequency transform be-
comes null-free, making deblurring well-posed. We achieve jointly-
invertible blur simply by changing the exposure time of successive
frames. We address the problem of automatic deblurring of objects
moving with constant velocity by solving the four critical compo-
nents: preservation of all spatial frequencies, segmentation of mov-
ing parts, motion estimation of moving parts, and non-degradation
of the static parts of the scene. We demonstrate several challeng-
ing cases of object motion blur including textured backgrounds and
partial occluders.
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1. Introduction
Motion blur is a common problem in photographing fast moving
objects. Consider deblurring a fast moving object in front of a static
background. Automatic deblurring involves three critical compo-
nents: (a) maintaining invertible PSF, (b) estimating the motion
of the moving parts, and (c) segmenting the moving objects from
the static background. In addition, the fidelity of the static parts
of the scene should also be preserved. Previous approaches have
attempted to solve one or more of these challenges individually,
but none addresses them all. Although, solving them for a sin-
gle photo is challenging, we observe that the solution for video is
more promising. In this paper, we propose a unique approach based
on ordinary cameras and show joint-invertibility of blurs in video
frames via the concept of frequency domain null-filling.

Maintaining invertible motion PSF is not possible in ordinary pho-
tos. The box function due to the finite exposure time corresponds
to convolution with a low pass filter and hence the frequency trans-
form of the PSF contains zeros (nulls). These spatial frequencies
in the captured photo are lost and hence the deblurring process be-
comes ill-posed. Previous approaches have used specialized de-
vices to engineer the motion PSF. Raskar et al. [2006] open and
close the shutter within the exposure time using a broadband binary
code. The code does not have any nulls in the frequency transform;
thus making the resulting PSF invertible. However, they assume
constant background and require manual PSF estimation and object
segmentation. Motion invariant photography (MIP) [Levin et al.
2008b] moves the camera with a constant acceleration while cap-
turing the photo. The idea is to make the motion PSF invariant to
object speed within a certain range. This makes segmentation and
PSF estimation unnecessary. However, it needs a priori knowledge
of motion direction and causes blur in the static parts of the scene.

In this paper, we show that automatic deblurring is possible by us-
ing information from multiple frames. The key idea is to record the
same object with varying PSFs, so that the nulls in the frequency
components of one frame can be filled by other frames. We refer
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Figure 2: One can use widely available auto exposure bracketing (AEB) mode in consumer digital SLR to achieve PSF null-filling. Top
row shows three photos of a moving truck captured using Canon Digital Rebel XT with AEB mode (exposures: 1/50, 1/80, and 1/30 sec).
Bottom row shows the manually rectified blurred regions and the deblurred output. Notice that sharp features such as text are recovered in
the deblurred image.

to this as null-filling. The combined frequency transform becomes
null-free, making the deblurring well-posed. We achieve jointly-
invertible blur simply by changing the exposure time of successive
frames. Our technique does not require camera motion or any cod-
ing within the exposure time. It can be implemented on a standard
video camera with auto-exposure feature which typically varies the
exposure time to compensate for scene brightness.

1.1. Contributions

We propose an automatic deblurring solution by solving the critical
components of the deblurring process and exploiting the temporal
variations in the blur for invertibility. The contributions of our paper
are as follows:

• We propose PSF null-filling that combines several non-
invertible PSFs to form a jointly-invertible PSF for motion
blur.

• We show that by varying the exposure of each frame within a
video, PSF null-filling can be achieved for object motion.

• We demonstrate automatic PSF estimation and object seg-
mentation for motions with constant velocity.

1.2. Benefits and Limitations

Our technique can be used with off-the-shelf machine vision cam-
eras and does not require specialized hardware as in [Raskar et al.
2006]. It can also be implemented on traditional cameras with auto-
exposure feature or exposure bracketing in burst mode. Multiple
frames simplify critical components of the process to support au-
tomatic deblurring. Static parts of the scene are not degraded and
a priori knowledge of object motion is not required as opposed to
MIP [Levin et al. 2008b].

Our method has several limitations which are shared by typical mo-
tion deblurring techniques. We assume linear constant velocity mo-
tions that lead to spatially-invariant blur in photos. Non-constant
motions (e.g. acceleration) break the spatially-invariant PSF as-
sumption. However, we can still handle spatially varying motions
that lead to spatially-invariant blur after image rectification. We
cannot handle view dependent effects such as out of plane rota-
tion, specularities and non-diffuse BRDF, along with transparent or
translucent objects. We assume the moving object to be in sharp
focus and allow out of focus background. We also assume constant
illumination. Multiple moving objects can be handled only if they
do not occlude each other in the photos. In addition, attached shad-
ows are considered part of the foreground and show noise in the
deblurred output due to low signal to noise ratio (SNR).

1.3. Related Work

PSF Manipulation: Specialized capture devices employ two im-
portant classes of techniques for engineering the PSF to make it
(a) invertible and/or (b) invariant. For defocus PSF, wavefront cod-
ing [Dowski and Cathey 1995] uses cubic phase plate in front of
the lens to make the PSF invariant to scene depths. This can also be
achieved by lateral sensor motion [Nagahara et al. 2008]. However,
these approaches result in defocus blur on the scene parts originally
in focus. Coded exposure [Raskar et al. 2006] flutters the shutter
with a broadband binary code to make the PSF invertible. Accel-
erating camera motion [Levin et al. 2008b] makes the motion PSF
invariant to the speed of the object (requiring a priori knowledge of
motion direction), at the cost of blurring static parts. Our approach
does not modify the camera but indirectly engineers the joint-PSF
across frames by carefully choosing the exposure times.

PSF Estimation and Deblurring: Motion deblurring has been an
active area of research over last few decades. Blind deconvolu-
tion [Jansson 1997] attempts to estimate the PSF from the given
image itself. Since deblurring is typically ill-posed, regularization
algorithms [Richardson 1972; Lucy 1974] are used to reduce noise.
Recent interest in computational photography have spurred signifi-
cant research in PSF estimation and deblurring algorithms. Fergus
et al. [2006] use natural image statistics to estimate the PSF from
a single blurred image. Recent papers [Jia 2007; Joshi et al. 2008;
Dai and Wu 2008; Yuan et al. 2008; Shan et al. 2008] have shown
excellent results on PSF estimation and/or deblurring. While these
techniques use natural image statistics and image priors for PSF es-
timation and deblurring from a single image, the information lost
in a single photo due to non-invertible PSF is hallucinated. Our
approach uses multiple images for motion blur estimation and in-
vertible deblurring.

Using two images with different PSFs has been studied for PSF es-
timation [Chen et al. 1996; Sellent et al. 2008]. Rav-Acha and Pe-
leg [2005] and Cho et al. [2007] propose to use two blurs in differ-
ent directions for deblurring. In contrast, our approach utilize blurs
in same direction with different magnitudes. Yuan et al. [2007]
use a small exposure image to estimate the motion PSF and use it
to deblur a long exposure image to handle camera shake. Chen et
al. [2008] perform iterative blur kernels estimation and dual-image
deblurring to infer the sharp image from complex motion blurs
caused by camera shake. Synthetic shutter speed imaging [Telleen
et al. 2007] captures a set of sharp images using small exposure
times and composites the noisy images together by estimating the
relative camera motion. These methods do not analyze the prob-
lem as PSF null filling. In addition, they are impractical for object
motion deblurring observed with static cameras.
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Figure 3: (Left) By combining non-invertible PSF’s with no common zeros, one can obtain an invertible PSF. While each |Hk(w)| has zeros,
the combined operator P does not have zeros due to null-filling. (Middle left) Each noise covariance matrix (Σk) has large diagonal and
sub-diagonal entries which result in ringing and noise amplification compared to the covariance matrix Σ for combined deblurring. (Middle
right) Singular values of motion blur matrices show that the combined system is better conditioned. (Right) Comparison with coded exposure.
Even though coded exposure performs better for high spatial frequencies, it does not benefit PSF estimation and object segmentation.

Exact Deconvolution: Using multiple filters for exact deconvolu-
tion has been investigated by Berenstein and Patrick [1990] in the
context of finding the set of convolution filters that results in fi-
nite impulse response (FIR) deconvolution filters. However, their
motivation for obtaining FIR deconvolution filters is for faster pro-
cessing on DSP chips. Forcing deconvolution filters to be FIR is
restrictive and un-necessary. One could use infinite impulse re-
sponse (IIR) deconvolution filters which provide more flexibility
in choosing the convolution filters (which corresponds to choosing
the exposure time for each frame for motion blur).

Hardware Techniques: Inertial sensors are used in consumer cam-
eras to perform image stabilization. Ben-Ezra and Nayar [2004]
and Tai et al. [2008] proposed hybrid imaging systems that esti-
mate PSF using an auxiliary low resolution high frame rate camera
to deblur the high resolution primary sensor images. In contrast,
our technique estimates the PSF using the high resolution images
themselves and does not require an auxiliary camera for PSF esti-
mation.

Video Analysis: Motion PSF has been estimated by combining
partial information from successive video frames of a single cam-
era [Schultz and Stevenson 1996; Bascle et al. 1996]. Multiple
cameras with overlapped exposure time [Shechtman et al. 2002]
and reconfigurable multi-camera array [Wilburn et al. 2005] have
also been used to increase the temporal resolution of the captured
video streams. Our technique uses a single ordinary camera with
different exposure times to make the resulting PSF invertible. Back-
ground subtraction and segmentation [Piccardi 2004] using a video
sequence with same exposure time for all frames is well-known in
computer vision community.

Varying Camera Exposure: Several computational photography
techniques combine photos with varying parameters. A high dy-
namic range image (HDRI) can be obtained by combining vary-
ing exposure photos [Mann and Picard 1995; Debevec and Ma-
lik 1997]. In [Grossberg and Nayar 2003], optimal exposures for
HDRI were obtained.

2. Joint Invertibility of Non-Invertible PSFs

We first explain the key idea behind PSF null-filling. Let f denote
the sharp image of the object if it was static. Suppose we capture
N blurred images ik of the same object with different PSFs hk

ik = f ∗ hk + nk, k = 1 . . . N, (1)

where ∗ denotes the convolution operator and nk denotes zero mean
additive white Gaussian noise with variance σ2

k. Let Tk be the ex-
posure time for the kth frame.

2.1. Frequency Domain Analysis

We denote the Fourier transform of quantities using capital letters.
The Fourier transform of the captured images are given by

Ik(w) = F (w)Hk(w) + Nk(w) k = 1 . . . N. (2)

Assuming 1D object motion parallel to the sensor plane with con-
stant velocity, each of the PSFs corresponds to a box filter whose
width is proportional to the exposure time Tk. Let rk be the blur
size in the kth frame. Then

hk(x) = 1/rk 0 < x < rk. (3)

Single image deblurring (SID) of any individual image can be writ-
ten as

F̂ (w) = Ik(w)Vk(w) =
Ik(w)

Hk(w)
= F (w) +

Nk(w)

Hk(w)
, (4)

where F̂ (w) denotes the Fourier transform of the deblurred im-
age and Vk(w) = 1

Hk(w)
=

H∗k(w)

|Hk(w)|2 denotes the Fourier trans-
form of the corresponding deconvolution filter vk. Thus, if the fre-
quency transform of the PSF contains zeros, the deconvolution fil-
ter becomes unstable and noise is severely amplified. The Fourier
transform of the box filter is a sinc function which contains zeros,
thereby making deblurring ill-posed.

Now consider utilizing all N frames for multi-image deblurring
(MID). The optimal deconvolution filters Vk(w) can be obtained
by minimizing the noise power in the resulting deblurred image
given by

∑N
k=1 N2

k (w)|Vk(w)|2 at each frequency w. Note that∑N
k=1 Vk(w)Hk(w) = 1 to recover the sharp image. Using La-

grange multiplier, the cost function is given by

J(w) =

N∑

k=1

N2
k (w)|Vk(w)|2 + λ(

N∑

k=1

Vk(w)Hk(w)− 1). (5)

By setting the derivatives with respect to Vk(w) to zero and solving,

Vk(w) =
H∗

k (w)/N2
k (w)∑N

k=1 |Hk(w)|2/N2
k (w)

, (6)

F̂ (w) =

N∑

k=1

Ik(w)Vk(w) = F (w) +

∑N
k=1 H∗

k(w)/Nk(w)∑N
k=1 |Hk(w)|2/N2

k (w)
.

If there are common zeros among all the PSFs at a certain frequency
w, then Hk(w) = 0 for all k at that frequency and Vk(w) becomes



unstable. Thus, if the PSFs do not have common zeros, the com-
bined deconvolution can be made well-posed, even though each
PSF is non-invertible. Intuitively, if there are no common zeros
in the Fourier transform, then the information lost in each individ-
ual image will be captured by some other image. The nulls in each
individual PSF can be filled by other PSFs. For motion PSF, this
requires that the exposure times should not be integer multiples of
each other. In comparison, coded exposure [Raskar et al. 2006]
modifies the PSF for a single image such that the corresponding
H(w) does not have any zeros.

Let P 2(w) define the denominator in (6). For simplicity, we assume
same noise power Nk(w) = N0(w) for all k. Thus, P 2(w) =∑N

k=1 |Hk(w)|2. Figure 3 (left) plots |H(w)| for N = 3 PSFs
assuming blur sizes mk of 20, 24 and 29 pixels and object width
W = 300 pixels along the motion line. Note that each PSF has
zeros in the frequency spectrum but the zeros are not aligned. The
plot for P (w) shows that while each of the individual frequency
transform has zeros, P (w) does not have any zeros. Note that if all
PSFs are the same (Hk(w) = H(w)), then P =

√
N |H(w)|.

2.2. Discrete Domain Solution

The convolution equation in discrete domain can be written as
ik = Akf + nk for each motion line, where Ak is the circulant
motion smear matrix for frame k and ik, f and nk are the vector of
blurred object, sharp object and noise intensities along each motion
line [Raskar et al. 2006]. For SID, the estimated deblurred vector
f̂ can be obtained by solving a set of linear equations: ASIDf = b
where

ASID = AT
k Ak & b = AT

k ik. (7)

To reduce ringing artifacts of SID, natural image priors such as
Gaussian prior can be used [Levin et al. 2007]:

ASID = AT
k Ak + w

(
CT

gx
Cgx + CT

gy
Cgy

)
(8)

where Cgx , Cgy are the convolution matrices of derivative filters
gx = [1 -1], gy = [1 -1]T and w is a weighting parameter. The
system can be solved in spatial domain using Conjugate Gradient
algorithm.

Similarly, for MID, the combined linear system can be written as



i1
...

ik


 =




A1

...
Ak


 f +




n1

...
nk


 = Acf + nc. (9)

The estimated deblurred vector can be obtained by solving the fol-
lowing system: AMIDf = b where

AMID =

N∑

k=1

AT
k Ak+w

(
CT

gx
Cgx + CT

gy
Cgy

)
& b =

N∑

k=1

AT
k ik.

We use the Conjugate Gradient algorithm to solve the combined
system as well.

2.3. Noise Analysis

For SID, using (8), the covariance matrix of the noise in the estimate
f̂− f is equal to

ΣSID = (ASID)
−1AT

k σ2
kAk(ASID)

−T . (10)

If Gaussian prior is not used, (10) simplifies to

ΣSID = (AT
k Ak)−1AT

k σ2
kAk(AT

k Ak)−T = σ2
k(AT

k Ak)−1. (11)

For MID, the covariance matrix is

ΣMID = (AMID)
−1(

N∑

k=1

AT
k Akσ2

k)(AMID)
−T . (12)

The mean square error (MSE) equals Trace(ΣMID)/W , where W
is the size of the motion line. The SNR of the deblurred object is
given by

SNRMID =

∑N
k=1 ik/N√

Trace(ΣMID)/W
. (13)

By simply averaging the captured N photos, the capture SNR is

SNRCapture =

∑N
k=1 ik√∑N
k=1 σ2

k

. (14)

Thus, due to deconvolution, SNR decreases by a factor of Nf ,
where

f =

√
Trace(ΣMID)/W∑N

k=1 σ2
k

. (15)

For SID, assuming no prior is used, (13) simplifies to

SNRSID =
ik√

σ2
kTrace[(AT

k Ak)−1]/W
(16)

If all frames have the same exposure, then all ik’s and Ak’s are the
same for all k, and (13) simplifies to

SNRMID Equal Exposure =
ik
√

N√
σ2

kTrace[(AT
k Ak)−1]/W

(17)

Thus, using frames with the same exposure (traditional video) is
equivalent to averaging the deblurred image obtained from individ-
ual frames separately, since the SNR increases by

√
N . In con-

trast, varying exposure gives significantly larger noise reduction as
shown in Figure 3 (middle).

2.4. Exposure Sequence Optimization

The optimal exposure sequence can be obtained by minimizing the
decrease in SNR given by (15). Since the variance of the pho-
ton generated electrons linearly increases with the measured sig-
nal (and hence exposure time), σ2

k is given by βTk, where β is a
camera dependent constant and Tk is the exposure time. β can be
further eliminated from (15). We use a random search method sim-
ilar to [Raskar et al. 2006]. For many random sets of exposures,
we compute the decrease in SNR and record the best sequence.
Note that for coded exposure, the search space is of the order of
2n, where n is the code length (e.g. 52). In contrast, the number of
unknowns for MID is equal to the number of different exposures.
Typically, 3 − 4 different exposures yield a good balance between
computational cost and deblurring performance; and thus the search
space is small. We first pick N and find the best exposure sequence.

3. Deblurring using Varying Exposure Video
PSF invertibility is one of the criteria for a successful deblurring
method. In real situations of a moving object in front of a non-
smooth background, PSF estimation and object segmentation are
equally important. Now we describe the steps involved in motion
deblurring using multiple frames captured with different exposures.

Let mk(x, y) be the binary mask for the object in the kth frame.
If b(x, y) is the background image without the object, the captured
motion blurred images ik are given by [Raskar et al. 2006]

ik = (f ·mk) ∗ hk + (1−mk ∗ hk) · b. (18)
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Figure 4: Overview of automatic PSF estimation, segmentation and
deblurring algorithm.

For explanation, let us assume that the object is moving perpendic-
ular to the optical axis horizontally and PSFs are spatially-invariant
for each photo. We first estimate the background b using simple me-
dian filtering along the temporal direction. We assume that the typ-
ical background subtraction [Piccardi 2004] will provide the back-
ground b in a practical scenario. The rest of the algorithm proceed
according to the flowchart shown in Figure 4.

3.1. PSF Estimation

For spatially-invariant linear blur, PSF can be found by multiply-
ing the image-space object velocity v (pixel/ms) with the exposure
time (ms). Object velocity is the ratio of the inter-frame motion
vector to the inter-frame time lapse. For spatially-invariant blur,
the inter-frame motion vector can be computed by matching cor-
responding image patches in different frames. However, different
exposure times lead to different sizes of blur. To facilitate matching
and PSF estimation we repeat the exposure sequence for capturing
the video. Every N th frame has the same exposure, where N is the
number of different exposures used (≈ 3 − 4). Thus, motion vec-
tors can be easily computed by matching the frames captured using
the same exposure. Averaging the motion vectors for different ex-
posures gives the estimate of object velocity v and the PSFs.

3.2. Foreground Initialization

A blurred photo has contributions from both blurred foreground and
static background. The image blurring equation (18) can be written
in terms of alpha matting equation as [Jia 2007; Dai and Wu 2008]

ik = αkg + (1− αk) · b, (19)

where g = (f·mk)∗hk
mk∗hk

and αk = mk ∗ hk. Ideally, deblurring of
alpha maps should recover the binary segmentation mask mk. Note
that while matting is typically used for non-opaque static objects,
we assume that the foreground motion blurred object is opaque and
in sharp focus. Thus, the alpha map depends only on the motion
blur and the matting foreground actually corresponds to the blurred
object (not the sharp object).

To compute initial alpha maps, we first generate a crude trimap for
each frame by thresholding the difference between the input photo
ik and the background image b (Figure 5 (2)). The trimap is 1 for
the interior of the moving object, 0 for background and unknown
for the blurred region. Morphological operations, such as erosion
and hole-filling, are applied to reduce noise. Using the trimap, al-
pha matting [Levin et al. 2008a] is performed on each frame inde-
pendently (Figure 5 (3)). The blurred foreground fb

k is obtained by
subtracting the background contribution from each input photo as

fb
k = ik − (1− αk) · b (20)

as shown in Figure 5 (4). Since a general matting algorithm does
not utilize the property of motion blur, the initial alpha maps are
crude.

1) Photo 1 Photo 2 Photo 3

2) Trimap

3) Alpha

4) Foreground

5) Deblurring

6) Segmentation

7) Refined Alpha

8) Refined 
Foreground

9) Final 
Deblurring

11) SID10) Composite

Figure 5: Deblurring Pipeline. Input frames (1) are automatically
processed. Intermediate results (2-10) show how the alpha map,
deblurring and segmentation improve after the first iteration. (11)
shows the SID result using only the first photo and foreground ex-
traction.

3.3. Multi-Image Deblurring (MID)

Because the object moves in successive frames, the blurred fore-
grounds (fb

k) need to be aligned before deconvolution. For linear
constant velocity motion, the alignment is a shift in the image plane.
Since we already computed the object velocity v, the shift between
ith and (i + 1)th frame is simply given by vTf , where Tf is the
inter-frame time lapse and can be computed given the camera frame
rate. The input photos are also scaled to the same intensity level
using the ratios between different exposure times assuming linear
camera response. After aligning the blurred foregrounds, deblur-
ring is performed by solving the linear system (10) using Conju-
gate Gradient algorithm. Due to inaccurate alpha maps, this initial
estimate of the deblurred image is noisy and contains erroneous
background contribution as shown in Figure 5 (step 5).

3.4. Alignment Refinement

The alignment of the foreground layers in the previous step can
be slightly off due to the violation of the constant motion assump-
tion in real world scenarios. The misalignment causes errors in
deconvolution. We refine the alignment using the deblurred fore-
ground f obtained in the previous step. Specifically, we re-blur the
sharp foreground f using the blur kernels hk and find the shift be-
tween the synthetically blurred foreground and blurred foreground
fb

k computed using matting. In this way, all the blurred foreground
fb

k’s can be correlated through deblurring the sharp foreground f
and can be better aligned.

3.5. Segmentation Refinement

Given the initial alpha maps, a binary segmentation of the sharp
object can be computed. Since the linear system is well-posed, de-
blurring the alpha maps using the MID algorithm and then thresh-
olding the result gives us an approximate binary segmentation mk
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Figure 6: Outdoor car sequence. Input blurred photos are automat-
ically rectified using the estimated motion direction. The refined
deblurring recovers sharp features on the car.

of the object. The segmentation can then be refined efficiently. By
using a conservative threshold (0.65 in all of our examples), we ob-
tain an initial segmentation mask m0 smaller than the object size.
For each motion line, we grow the mask pixel by pixel and find
the best estimate that minimizes the difference between the alpha
values computed using matting and those computed by blurring the
sharp mask. Typically, we search within 10 pixels on each side and
this step finishes within 30 seconds in our experiments. Figure 5
(step 6) shows the mask after refinement.

Blurring the refined segmentation gives us refined alpha maps (Fig-
ure 5 (step 7)), which are used to compute new blurred foregrounds
fb

k (Figure 5 (step 8)). The fb
k’s are subsequently deblurred (Fig-

ure 5 (step 9)) using MID. The quality of segmentation and deblur-
ring improves significantly after the first iteration. The refinement
is iterated 1− 2 times for the final result.

4. Implementation and Results
We use PointGrey Flea2 camera with maximum frame rate of 15
fps. Using the SDK provided with the camera, the exposure time for
each frame could be changed easily. For indoor scenes, we placed
the object on a variable speed toy train to capture datasets. In order
to find optimal exposures, we bound each exposure within Tmin and
Tmax to avoid saturation and unusable photos. For numerical stabil-
ity, we enforce that the difference between any two exposure values
is greater than a threshold Tδ = 5 ms. For N = 3, Tmin = 30 ms
and Tmax = 50 ms, our optimized exposures were 30, 35, and 42
ms. We capture at least 2N images to allow PSF estimation.

Figure 6 shows captured photos of a fast moving taxi outdoors.
Since the taxi is far away, it is assumed to be moving parallel to
the image plane. We automatically estimate the motion direction
and magnitude using our technique. Figure 6 also shows the esti-
mated trimap, initial alpha, initial deblurring, refined segmentation
and the final deblurred image of the taxi. Figure 1 shows the de-
blurring result of a similar car. Shadows pose a common problem
in segmentation and background subtraction for computer vision
applications. Since attached shadows move with object, they are
considered to be part of the foreground and show increased noise

Photo 1 Photo 2

DeblurredPhoto 3

Figure 7: Multiple objects. Using k-means (k = 2 in this
case) clustering, complex-shaped objects can be segmented sepa-
rately when creating trimaps. Then, each object can be deblurred
and pasted onto the background independently. Note that view-
dependent effects (highlights) cause artifacts in the final result.

Photo 1 Photo 2

Photo 3 Photo 4

Deblurred

Figure 8: Partial occlusion. Our method allows deblurring object
partially occluded in the input. The user specifies the occluder in
one of the input photos (top left) using scribbles. These pixels are
ignored during deblurring and the object is fully recovered.

due to low SNR. Multiple objects can also be handled as long as
they do not occlude each other (Figure 7).

PSF null-filling can also be achieved using auto exposure bracket-
ing (AEB) feature commonly available on SLR cameras. Figure 2
shows such an example. Since the AEB mode only allows three
frames and the camera does not provide accurate time-stamp infor-
mation, we manually segmented the blurred region and measured
the motion PSF for this example. For AEB mode, the change in ex-
posure is limited to multiples of 1

3
f-stops. Even though this choice

may not be optimal, visual deblurring quality is good as shown by
the recovered text in Figure 2. In our experience, the choice of ex-
posure values is not highly critical for deblurring as long as they are
not close to integer multiples of each other.

Partial Occlusion: Deblurring in presence of partial occlusion us-
ing a single image has been demonstrated in [Raskar et al. 2006]
assuming the size of the occluder is smaller than the blur size. In-
terestingly, it becomes much easier for multiple image deblurring,
since the occluder now occludes different parts of the object in mul-
tiple images. In our system, the user simply marks the occluder us-
ing a scribble in one of the blurred photos as shown in Figure 8.
While deblurring, the pixels on the occluder are ignored in the
weighted least square system. The foreground regions occluded
in every frame are accurately recovered in the deblurred image.

Comparisons: Let Tm be the maximum exposure used in our tech-
nique. We compare our technique with coded exposure and tra-
ditional video having same number of frames at light level cor-
responding to Tm. Since coded exposure loses half the light, it
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Figure 9: Comparison of varying exposure, traditional video (same number of frames) and coded exposure (for light level corresponding to
Tm). The blurred images are generated by adding high speed camera images of a moving resolution chart. Note that the visual quality of
deblurring using our technique is similar to coded exposure and significantly better than traditional video.

needs twice the exposure (2Tm) for the same light level. Figure 9
compares the deconvolution result on a moving resolution chart us-
ing the three techniques. Note that deblurring using varying expo-
sure recovers significantly high spatial frequencies on the resolution
chart compared to the traditional video. The visual quality of the
deblurring is similar to coded exposure output. Coded exposure al-
lows more degrees of freedom in manipulating the PSF (equal to the
code length), while our approach combines box filters of different
widths and thus has less degrees of freedom. Figure 3 (right) shows
that coded exposure performs better than varying exposure for high
spatial frequencies. In general, varying exposure gives 4 − 5 dB
more deconvolution noise than coded exposure.

5. Discussions

While our technique combines box filters to achieve PSF null-
filling, several variations are possible. For motion blur, coded expo-
sure could be combined with our method at the expense of hardware
modification to improve the SNR of the deblurred image. In sev-
eral imaging applications, the captured photo loses high spatial fre-
quency content during the capture process. Without any hardware
modifications, it might be possible to change capture parameters
to preserve different frequencies in different photos and combine
them for invertible deconvolution. For example, coded aperture
techniques can use apertures of different sizes to achieve null-filling
for defocus blur. We hope video cameras can include this feature by
default. For an uninterested consumer, simple normalization of the
photos will show smooth changes in intensity per frame. But mo-
tion blurred photos can be processed afterwards if desired. Since
coded exposure can be used to achieve super resolution [Agrawal
and Raskar 2007], it may be possible to resolve objects at higher
resolution from multiple photos using varying exposure video.

Conclusions: We showed that motion blur in video can be made
invertible by combining non-invertible PSFs that do not have com-
mon zeros. PSF null-filling can be easily achieved on machine vi-
sion cameras as well as off-the-shelf digital SLR’s using exposure
bracketing, without requiring additional hardware or camera mo-
tion. For a complete deblurring solution, segmentation and PSF
estimation are as important as PSF invertibility. We demonstrated
that repeated sequence of varying exposure frames can be used for
automatic PSF estimation and segmentation for challenging object
motion blur scenarios.
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