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Abstract
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Abstract. The paper describes a method for predicting climatic time
series that consist of significant annual and diurnal seasonal components
and a short-term stochastic component. A memory-based method for
modeling of the non-linear seasonal components is proposed that allows
the application of simpler linear models for predicting short-term devia-
tions from seasonal averages. The proposed method results in significant
reduction of prediction error when predicting time series of ambient air
temperature from multiple locations. Moreover, combining the statistical
predictor with meteorological forecasts using linear regression or Kalman
filtering further reduces prediction error to typically between 1oC over a
prediction horizon of one hour and 2.5oC over 24 hours.

1 Introduction

Many processes of practical interest in everyday life, such as climate variation
(air temperature and humidity) and electrical power demand have very signif-
icant seasonal components that are driven by natural phenomena such as the
Earth’s rotation around its axis and the Sun. These seasonal components render
the time series non-stationary, and complicate the estimation of suitable pre-
diction models for several major applications such as planning the generation
of electricity and determination of its price, as well as the optimal scheduling
of the operation of air conditioners, heating devices, domestic appliances, etc.
The accurate prediction of such time series would result in efficient utilization
of capital equipment, as well as positive environmental impact.

Due to the high practical significance of this class of problems, many fore-
casting approaches have been tried. Within the classical time series prediction
methodology that is based on auto-regressive moving average (ARMA) models,
a possible method for handling non-stationarity is to difference the time series
as many times as necessary to make the resulting time series stationary [4].
Such models are also known as integrated ARMA (ARIMA) models. However, if
the seasonal component itself is non-linear, after differencing, the resulting time
series might exhibit non-linear dependencies, which would preclude the use of
low-order linear prediction models for modeling.



It has also been discovered that direct application of more advanced machine
learning techniques, such as neural networks, to the prediction of such time se-
ries can often result in poor accuracy, despite their high flexibility and ability
to model dynamic systems [5]. This has been attributed to both numerical op-
timization difficulties, as well as to possible mismatches between the model and
the physical process that generated the time series.

A much more physically realistic approach consists of decomposing a sea-
sonal time series as a sum of explicit seasonal components and a random noise
component, and modeling these components separately. The two models need
not be of the same type: for example, the models of the seasonal component can
be non-linear, while the model for the random deviations can be linear.

This approach corresponds well to the physical nature of some of the phe-
nomena listed above. Using the classical decomposition model, we represent a
time series Xt produced by one of these phenomena by a sum of a seasonal
component st and a random noise component Yt, in the absence of a trend [4]:
Xt = st + Yt. We then hypothesize that for the listed phenomena, the random
noise component Yt is stationary, and can be predicted solely from its past val-
ues Yt−1, Yt−2, . . . , Yt−w for some width w of a window of past values, and that
the seasonal component has a fixed period h: st = st+kh for all integers k. The
problem then reduces to modeling well the two parts of the decomposition, st

and Yt.
In the remainder of the paper, we propose a memory based method for the

estimation of the seasonal component st for the case of seasonal time series with
annual and diurnal components, and present experiments on a number of data
sets for ambient air temperature in multiple parts of the USA. We also describe
how the predictions of the proposed model can be combined with meteorological
forecasts in real time.

2 Memory-Based Modeling of Seasonality

The motivating application for this method is the prediction of ambient temper-
ature at a specific location, for example outside of a residential or commercial
building, from a database of historical readings at that location. This tempera-
ture will determine the actual thermal load that would be experienced by heating
and air conditioning equipment, and is essential for the optimal scheduling of its
operation. Typical prediction horizons of interest are around 24 hours.

In most areas of the world, the ambient temperature is subject to very large
variations due to two cyclical components. The first one is the change of seasons
caused by the rotation of the Earth around the Sun (annual component). The
second one is the change of night and day, caused by the rotation of the Earth
around its axis (diurnal component). In addition to these two seasonal compo-
nents, a random component exists that is caused by meteorological phenomena
such as cold and warm fronts, cloud cover, wind, solar activity, etc. This com-
ponent is irregular, but fairly inert and persistent — such conditions usually
persist for intervals commensurate with the prediction horizon of interest.



In the classical decomposition framework, the two seasonal components would
be modeled separately to produce average annual temperatures and average
daily temperatures, to be subtracted from the original time series in order to
deseasonalize it. For a number of reasons, this approach would not work with
temperature time series.

First, the daily variation of temperatures at a particular location usually
does not depend only on the time of the day, but also on the day of the year.
The reason is that depending on how high the Sun is, some parts of the building
would be in the shadow or not, thus strongly affecting the air temperature there.
(The curve traced by the Sun along the sky at the same time every day for an
entire year is called analemma, and its vertical variation is around 46.878o, or
twice the angular tilt of the Earth.) Because of this, the two seasonal components
should be modeled together, and many prediction methods estimate the average
temperature for a specified combination of date and time of the day. One simple
way to achieve this is to do calendar averaging: for any combination of date and
time of the day, for example 3pm on January 23, compute the average of all
readings from a historical database of temperatures that have been recorded at
3pm on January 23 of any year.

The second reason classical decomposition, including calendar averaging,
would not work well, is that the period of rotation of the Earth around the
Sun is not an integer number of days. Rather, the exact period of rotation is
365.25636042 solar days, also known as a sidereal year, i.e., measured with re-
spect to the background stars. As it is well known, the fractional part of one
quarter of a day is corrected by means of a leap year every four years.

The practical consequence of this is that the concept of average temperature
at a specified combination of date and time of the day does not actually make
sense. It is not correct to speak of the average temperature at 3pm on January
23, because depending on which year this day is in, the Earth might be at
significantly different positions along its orbit around the Sun, and hence the
impact of the Sun on the climate would be different. For example, on January
23, 2009, the Earth’s position with respect to the Sun will be closer to that of
January 24, 2008, rather than to that of January 23, 2008, due to the fact that
2008 was a leap year. (If February 29, 2008 did not exist, January 23, 2009 would
have been dated January 24.) However, it will also be closer to that of January
23, 2005, rather than January 24, 2005.

In order to account for this mechanism, we propose an alternative memory-
based estimation method called sidereal averaging. This method never computes
explicit temperature estimates for a general combination of date and time of
day; rather, it consults the database of historical readings only after a query
time is given on a specific day of a specific year. The algorithm then retrieves
and averages, for each year of data in the database, the temperature on the day
when the position of the Earth along its orbit around the Sun was closest to its
position on the query day, time, and year. In its characteristics, this algorithm
is similar to other memory-based machine learning algorithms, such as k-nearest
neighbors. The novelty in this algorithm is the distance measure used, that is,



the distance between corresponding positions of the Earth along its orbit around
the sun.

We investigated the effect of the sidereal vs. calendar averaging methods in
an experimental study, as described in Section 4. In both cases, we modeled the
random component after deseasonalizing by means of low-order ARMA models.

3 Combining Statistical and Meteorological Forecasts

The methods described in the previous two sections, including the proposed
method for sidereal averaging, are statistical machine learning methods: they use
a database of past examples to build a predictive model, using various machine
learning tools. However, for the case of temperature prediction, there is another
very important source of forecasts: the governmental meteorological agencies in
practically every country of the world. In recent years, detailed forecasts have
been made available in real time using convenient information and communica-
tion infrastructure. For example, the National Weather Service (NWS) of the
United States has been offering weather forecasts for the entire territory of the
country as a standard web service since 2004. Using these forecasts in real-time
prediction would be very desirable.

However, these forecasts have a significant disadvantage: they are produced
for a relatively small number of locations, typically airports, and even the clos-
est location to the target place for prediction might have significantly different
weather patterns. The question, then, is how to combine the local statistical
prediction with the regional meteorological forecast.

This problem has also been subject to intensive research. Kawashima et al.
proposed a curve fitting method based on the high and low temperature of the
forecast [2]. Shaheen and Ahmed extended the method to include the current
temperature as well [3]. Linear regression methods have also been tried, for
example using the form:

Tt = aX̄t + bZt + c, (1)

where Tt is the combined forecast at time t, X̄t is the temperature predicted
by the statistical method, and Zt is the temperature according to the meteoro-
logical forecast, possibly for a fairly different location. The regression coefficients
a, b, and c can be estimated from a relatively small dataset of past values for
the three variables T , X̄, and Z. They can also be continuously re-estimated,
for example from the values immediately preceding the current moment in time.
Another variation includes regression parameters al, bl, cl that are dependent
on the prediction horizon l = 1, L, to account for the varying ratio between the
prediction errors of the statistical and meteorological forecasts that is typically
encountered in practice. Here L is the longest prediction horizon, measured in
time steps.

Another method for combining forecasts is based on a Kalman filter [1]. The
idea is to treat the meteorological forecast as a correction factor for the local
forecast, through a gain matrix Kt that is re-estimated continuously:



Tt = X̄t + Kt(Zt −HX̄), (2)

where H is a selection matrix, and the variables of interest are vectors of
dimensionality L: Tt = [Tt+1, Tt+2, . . . , Tt+L]T , X̄t = [X̄t+1, X̄t+2, . . . , X̄t+L]T ,
Zt = [Zt+1, Zt+2, . . . , Zt+L]T . It can also be shown that the Kalman filter is a
special case of a linear regression method, where the regression coefficients are
estimated differently, and also the statistical dependency between prediction at
different horizons can be modeled, too.

4 Experimental Verification of Prediction Methods

In order to train and evaluate the described prediction methods, hourly temper-
ature data over 13 years (1995-2008) was obtained from the National Climatic
Data Center (NCDC) of the USA for the eastern half of the country, for a to-
tal of 26GB of data. The NCDC data had been recorded at most international
airports and some local airports in the USA, and the National Weather Service
also provides online forecasts for most of the same locations in XML format.
The forecasts are available for the times of the day of 02:00, 05:00, 08:00, 11:00,
14:00, 17:00, 20:00, and 23:00 hours with prediction horizon of the next 5 days.
Updated observations are available hourly.

Since historical data and forecasts were available only at airports, we per-
formed the analysis on pairs of airports, treating one of the airports as the
prediction target location, and the other one as the source of meteorological
forecast (and vice versa). The pairs of airports had a distance of between 30 and
50 miles between each other, in order to represent the typical distance from a
residential or commercial building to the nearest airport. After examination of
the data, four pairs of locations were selected for experimental verification, com-
bining northern/southern latitude and coastal/continental climates. The pairs
are shown in Table 1. The forecasts and the observed temperatures were recorded
into a SQL server over a period of four weeks.

Table 1. Airport pairs for experimental verification

Northern Southern

Coastal
BOS Boston Logan Airport MIA Miami International Airport
OWD Norwood Memorial Airport TMB Kendall Tamiami Airport

Continental
CLE Cleveland Hopkins Airport ATL Atlanta Hartsfield Airport
BKL Burke Lakefront Airport FTY Fulton County Airport

After modeling and subtracting the seasonal component using either calendar
or sidereal averaging, we interpolated the resulting deviations from the seasonal
average at a time interval of ∆t equal to 1 hour, and modeled the resulting time
series of deviations Yt by means of ARMA models. We experimented with models



of order varying from (AR=1,I=0,MA=0) to (AR=3,I=1,MA=1) for fitting the
deviations, using the Time Series package TS in the statistical environment R,
and discovered that even the simplest autoregressive model AR(1) of order one
was very successful at modeling the deviations. For example, its prediction error
for the deviations at Boston Logan Airport after sidereal averaging was only 1.5%
higher than that of the best ARIMA model. Furthermore, for the AR(1) model,
the single regression coefficient r was typically very large for all time series Yt,
around r = 0.98. This suggests that the deviations from normal seasonal average
temperatures typically persist for a fairly long time, and prediction over horizons
of up to 24 hours is indeed practically possible.

As regards the relative performance of sidereal vs. calendar averaging, Figures
1 through 4 show that in all cases sidereal averaging is either much better than
calendar averaging (OWD, TMB, CLE, ATL, BKL), or the same (BOS, MIA).

Figures 1 through 4 also show an interesting pattern — although the predic-
tion error of statistical prediction methods increases with the time horizon, as
expected, the error of the meteorological forecast does not. This can be explained
by the completely different methodology used by meteorological agencies, but
still the accuracy of such forecasts at relatively long prediction horizons is re-
markable. At the same time, their accuracy at short prediction horizons is much
worse than that of the statistical predictors, which is an excellent justification
for methods that attempt to combine statistical and meteorological forecasts.

Regarding the improvements in accuracy that can be achieved by such meth-
ods, Figures 5 through 8 show that in most cases (BIOS, CLE, ATL, BKL) the
combined forecast by either linear regression or a Kalman filter is much more
accurate than either one of the individual forecasts. In some cases (FTY, TMB,
MIA) there is no significant difference for horizons longer than 6 hours, but
still the combined prediction is more accurate for horizons shorter than that,
and there is only one single site (OWD) where the combined predictions are
significantly less accurate than the meteorological forecast. Furthermore, sys-
tematic and significant differences between the performance of linear regression
and Kalman filtering cannot be observed, which means that linear regression
should be preferred in practical systems for its ease of implementation. (In all
of these experiments, only sidereal averaging was used for combination with the
meteorological forecast, since the previous set of experimental results established
its superior performance over calendar averaging.)

In absolute terms, the performance of the combined predictors can be sum-
marized as follows. Accuracy starts around 1oC to 1.5oC for a prediction horizon
of 1 hour, and grows to between 2oC and 2.5oC during the next 3 to 10 hours,
almost never exceeding 3oC over the longest prediction horizon of interest, 24
hours. Compared with the variability of daily and annual temperatures which
span an interval of around 50oC for most climates, this accuracy can be consid-
ered practically very useful.
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Fig. 1. Comparison between seasonal averaging methods in a northern coastal climate.
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Fig. 2. Comparison between seasonal averaging methods in a southern coastal climate.
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Fig. 3. Comparison between seasonal averaging methods in a northern continental
climate.
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Fig. 4. Comparison between seasonal averaging methods in a southern continental
climate.
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Fig. 5. Comparison between forecast combination methods in a northern coastal cli-
mate.
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Fig. 6. Comparison between forecast combination methods in a southern coastal cli-
mate.
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Fig. 7. Comparison between forecast combination methods in a northern continental
climate.
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Fig. 8. Comparison between forecast combination methods in a southern continental
climate.



5 Conclusion and Future Work

We have proposed a novel method for modeling of the annual and diurnal season-
ality of time series, and have demonstrated experimentally that it significantly
improves the accuracy of prediction of the temperature of ambient air when
combined with low-order ARMA models of the deseasonalized time series. The
method is similar to other memory-based machine learning techniques such as
k-nearest neighbors (kNN), and uses as distance function the difference between
pairs of positions of the Earth’s along its orbit around the Sun. (In this case, the
number of neighbors is equal to the number of years for which training examples
have been collected.) Due to this similarity, it might be expected that algorithms
that are counterparts to other memory-based machine learning methods, such
as locally weighted polynomial regression, or kNN with more neighbors might
improve the accuracy of seasonal modeling even further [6]. In practice, this
would mean including observations from more days into the averaging process,
possibly using variable weights. Also note that this experimental analysis does
not prove that the sidereal averaging method is better than the calendar method
for the purposes of modeling of seasonal components; it merely indicates that
the sidereal method is significantly better when followed by low-order ARMA
modeling of the remaining random component.

We have also demonstrated that two linear methods for combining of the
statistical prediction with meteorological forecasts further reduces prediction
error significantly. In these experiments, the meteorological forecast from the
nearest airport was always used, but this approach can be extended in the future
to using forecasts from multiple locations, which might improve accuracy even
further in densely populated areas.

Finally, the described method should also be applicable to other time series
whose dynamics are determined entirely or partly by the motion of the Earth
and the Sun, for example daily light, humidity, electrical power demand, etc.
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