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Abstract—Relay selection for cooperative communications has
attracted considerable research interest recently. While several
criteria have been proposed for selecting one or more relays and
analyzed, mechanisms that perform the selection in a distributed
manner have received relatively less attention. In this paper,
we analyze a splitting algorithm for selecting the single best
relay amongst a known number of active nodes in a cooperative
network. We develop new and exact asymptotic analysis for
computing the average number of slots required to resolve the
best relay. We then propose and analyze a new algorithm that
addresses the general problem of selecting the best Q ≥ 1 relays.
Regardless of the number of relays, the algorithm selects the best
two relays within 4.406 slots and the best three within 6.491 slots,
on average. Our analysis also brings out an intimate relationship
between multiple access selection and multiple access control
algorithms.

I. INTRODUCTION

A large body of research work in the area of cooperative
communication uses dedicated relays to forward the message
from the source to the destination [1]. Depending on the
cooperation scheme, this is done using either one relay or
multiple relays, which are selected from the many available
relays according to some suitability criterion or metric. Several
criteria for selecting the single best relay or the best Q
relays have been proposed and analyzed in the literature, and
shown to result in significant performance gains [2]–[11]. For
example, [2] showed that for a decode and forward scheme,
selecting the best relay achieves full diversity. In [5], criteria
for selecting multiple relays were proposed to minimize data
transmission time. In [8], two-relay selection was used to
improve a diversity-multiplexing trade-off of an amplify-and-
forward protocol. In [9], multiple relay selection was opti-
mized for cooperative beamforming.

The design of the mechanism that physically selects the best
relay(s) (as per the selection or suitability criteria) is therefore
an important problem in cooperative communications. It is
desirable that the mechanism be distributed since typically
the knowledge of the suitability metric is initially available
only locally at the relay. A centralized polling mechanism, for
example, is not desirable for selection since it would require
resources that increase linearly with the number of available
relays.

In fact, the problem applies just as well to cellular systems,
in which the scheduler exploits multi-user diversity by choos-
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ing which mobiles transmit or receive. In sensor networks,
node selection helps improve network lifetime. If the nodes are
energy harvesting, selection helps improve the energy neutral
operating region [12].

A decentralized back-off timer-based scheme for single
(best) relay selection was proposed in [2]. In it, each node
transmits a short message when its back-off timer expires. The
timer value is set to be inversely proportional to the metric.
Therefore, the node that first transmits is the best node. While
this scheme is elegant and simple, the timers can expire such
that messages from different nodes overlap with each other
and collide at the sink. Consequently, the algorithm does not
necessarily scale well as the number of relays increases.

Another approach is to consider time-slotted systems, in
which each active node locally decides whether or not to
transmit in a certain time slot. Here, splitting algorithms
are the method of choice. They have been applied in both
multiple access control problems [13] and multiple access
selection problems [14], [15]. Note that multiple access control
and multiple access selection serve different purposes, and
are therefore evaluated differently. Multiple access control
attempts to serve all nodes and is evaluated, for example, by
the maximum traffic it can handle with finite delay. On the
other hand, multiple access selection is evaluated by how fast
it can select the best node(s) [15], [16].

For multiple access selection, Qin and Berry [14] developed
a splitting-based algorithm that could find the best node within
2.507 slots, on average. Remarkably, this holds regardless of
the number of nodes in the system. In the algorithm, only
those nodes with their metric lying between two thresholds
transmit. The nodes update the thresholds (independently) in
each slot based on the outcomes of the previous slots.

In this paper, we generalize the Qin-Berry splitting algo-
rithm by introducing a contention load parameter pe (which
is explained in detail later). We then derive novel and simple
expressions for the asymptotic behavior of this generalized
algorithm as the number of relays increases. The involved
analysis in [14] was limited to the specialized case of pe = 1
and primarily led to an upper bound expression that was in
the form of an infinite series. Our analysis shows that the
parameter choice of [14] can be improved upon. Furthermore,
the analysis also leads to a much simpler upper bound and
an accurate approximation for the average number of slots
required to select the best relay.

The analysis also brings out an intimate relationship be-
tween the generalized splitting algorithm and the First Come
First Serve (FCFS) multiple access control algorithm [13].



Based on this we derive an alternate non-recursive asymptotic
expression. This, in turn, yields good unimodal lower bounds
and, more importantly, motivates a novel scalable and fast
algorithm for the general problem of selecting Q ≥ 1 relays.

The paper is organized as follows. The system model and
the basic node selection algorithm are described in Sec. II.
The analysis for single node selection is developed in Sec. III.
The algorithm for selecting best Q ≥ 1 nodes is developed in
Sec. IV. We conclude in Sec. V. Some mathematical details
are relegated to the Appendix.

II. SYSTEM MODEL

Consider a time-slotted system with n active nodes and a
sink, as shown in Fig. 1. We use the generic term ‘sink’ to
refer to the source or access point or base station, as the
case may be, that needs to select the best node/relay. We
shall use the terms ‘node’ and ‘relay’ interchangeably. Each
node i has a suitability metric ui, which is known only to
that specific node. The goal is for the sink to select the node
with the highest metric. The metrics are assumed to be i.i.d.
with complementary CDF (CCDF) Fc(u) = Pr(ui > u). We
assume that the metric remains constant during the process
of selection, which is very reasonable given the short time
required by the algorithm to select the best node.

In the Qin-Berry selection algorithm, at the beginning of
each slot, each node determines whether to transmit or not in
a distributed manner as detailed below. At the end of each slot,
the sink broadcasts one of three outcomes to all the nodes: (i) 0
if the slot was idle (when no node transmitted), (ii) 1 if the
outcome was a success (when exactly one node transmitted),
and (iii) e if the outcome was a collision (when multiple nodes
transmitted).1

The algorithm runs independently in each of the contending
nodes. It basically determines two thresholds, HL(k) and
HH(k), for each time slot k. Only those nodes whose metric
u satisfies HL(k) < u < HH(k) transmit in slot k.2 It also
specifies another variable Hmin(k), which is the largest value
of the metric known up to slot k above which the best metric
surely lies. The algorithm terminates when the outcome is a
success (1).

Formally, the algorithm can be defined as follows. Let
split (a, b) = F−1

c

(
Fc(a)+Fc(b)

2

)
. The split function makes

sure that on average half of the nodes involved in the last
collision transmit in the next slot.3 In the first slot, the
parameters are initialized as follows: HL(1) = F−1

c (1/n),
HH(1) = ∞, and Hmin(1) = 0. Then, the algorithm in the
(k + 1)th slot proceeds as follows [14]:

1) If feedback (of the kth slot) is an idle (0) and no colli-
sions has occurred so far, then set HH(k + 1) = HL(k),

1The sink can distinguish between these outcomes using, for example, the
strength of the total received power [15].

2The case where two nodes have exactly the same metric occurs with
probability 0, and does not need to be accounted for. In practice, the algorithm
can be terminated after some time if it fails to select the best node.

3In [17], a faster but complex splitting technique was presented, improve-
ment due which can be shown to be less than 0.5%, and hence is not
considered here.
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Fig. 1. A relay selection system consisting of a sink and n relays/nodes,
with a node i possessing a suitability metric ui.

HL(k + 1) = F−1
c (k+1

n + O( 1
n2 ))4 and Hmin(k + 1) =

Hmin(k).
2) If feedback is a collision (e), then set

HH(k + 1) = HH(k), Hmin(k + 1) = HL(k) and
HL(k + 1) = split (HL(k),HH(k)).

3) If feedback is an idle (0) and a collision has occurred in
the past, then set HH(k + 1) = HL(k), Hmin(k + 1) =
Hmin(k) and HL(k + 1) = split (Hmin(k),HL(k)).

We will call the duration of the algorithm before the first non-
idle slot as the idle phase, and after as the collision phase.

III. SINGLE RELAY SELECTION

A. Asymptotic Analysis and Optimal Thresholds

We consider a simple generalization of the Qin-Berry algo-
rithm by introducing the contention-load parameter pe. During
the idle phase, the minimum metric threshold for transmission
HL(k) = F−1

c (kpe/n) at slot k. It is easy to see that the
original algorithm, described in Sec. II, corresponds to pe = 1.
Using pe = 1 greedily maximizes probability of success in
each slot of the idle phase. However, as we shall see from our
asymptotic analysis, this is not optimal.

First we find the expression for the average number of slots
required by the algorithm for n nodes and parameter pe.

Lemma 1: The average number of slots, mn(pe), required
to select the best node is given by,

mn(pe) =
q∑

i=1

n∑
k=1

(
n

k

)(pe

n

)k
(

1 − ipe

n

)n−k

(E [Xk] + i)

+
(
1 − qpe

n

)n

(E [Xn] + q + 1), (1)

where q =
⌈

n
pe

⌉
− 1, �.� is the ceil function, E [X1] = 0 and

E [Xk] =
0.5k(∑k−1

l=2 (k
l)E[Xl])+1

1−0.5k−1 ; ∀ k ≥ 2.
Proof: The proof is given in Appendix A.

The above expression is quite complex and does not directly
reveal the scalable nature of the algorithm. For pe = 1, it was
proved in [14] that limn→∞ mn(1) � m∞(1) ≤ 2.507. The
theorem below provides an exact and new expression for the
asymptotic case for a general pe.

4We shall henceforth ignore the O(1/n2) term that arises in setting the
thresholds as its effect is known to be quite negligible even when the number
of nodes is as low as 7.



Theorem 1:

m∞(pe) =
1

epe − 1

∞∑
k=1

E [Xk] pk
e

k!
+

1
1 − e−pe

. (2)

Proof: Let node i have metric ui with CCDF Fc(u). Let
xi = Fc(ui). Then, xi are i.i.d. and uniformly distributed
in [0, 1].5 Further, let yi = nxi. Clearly, yi are i.i.d. and
are uniformly distributed in [0, n]. Sorting the {xi}n

i=1 and
{yi}n

i=1 in ascending order, we get x[1] ≤ x[2] ≤ x[3].... ≤ x[n]

and y[1] ≤ y[2] ≤ y[3].... ≤ y[n], where [i] is the index of the
relay with the ith largest metric.

Given yi, we can define a point process M(t) as
M(t) = sup

{
k ≥ 1 : y[k] ≤ t

}
. Since the {yi}n

i=1 are uni-
formly distributed, M(t) has a binomial distribution with
number of trials as n and the probability of success equal
to t

n . As n → ∞, it can be shown that M(t) forms a Poisson
point process with rate 1 [18].

The probability that the first non-idle slot is the ith slot and
k ≥ 1 nodes are involved is therefore equal to the probability
that x[1], . . . , x[k] lie between (i − 1)pe/n and ipe/n, and
x[j] > ipe/n, for k + 1 ≤ j ≤ n. This probability then equals

Pr
(
x[1] > (i − 1)

pe

n
, (i − 1)

pe

n
< x[k] < i

pe

n
, x[k+1] > i

pe

n

)
= Pr (M((i − 1)pe) = 0) Pr (M(ipe) = k |M((i − 1)pe) = 0)

= e−(i−1)pe e−pe
pk

e

k!
= e−ipe

pk
e

k!
.

Let E [Xk] denote the expected number of slots required
to resolve a collision among k nodes. Thus, if the first non-
idle slot is the ith slot and k ≥ 1 nodes are involved, then
E [Xk] + i slots are required to find the best node. Also, as
n → ∞, qpe/n → 1. Hence, we get

m∞(pe) =
∞∑

i=1

∞∑
k=1

e−ipe
pk

e

k!
(E [Xk] + i) ,

=
∞∑

k=1

pk
e

k!

(
E [Xk]

∞∑
i=1

e−ipe +
∞∑

i=1

ie−ipe

)
.

Simplifying the above expression yields the desired result.
A key insight of the analysis above is its Poisson point

process interpretation. In effect, in the asymptotic regime, what
the selection algorithm does is to run the FCFS algorithm [13]
on the Poisson process, M(t), where t is interpreted as time.
However, unlike FCFS, the selection algorithm stops as soon
as it finds the first (best) node. This interpretation enables the
use of an approach similar to that in [13, Chp. 4], and leads to
an alternate and novel expression for m∞(pe) and also better
lower bounds. As we shall see, it also motivates the Q node
selection algorithm in the next section. Instead of indexing on
number of nodes involved in the first non-idle slot, as done in
Theorem 1, the alternate derivation below, in effect, indexes
on the number of slots required after the first non-idle slot.

5Note that higher value of ui implies lower value of xi since the CCDF is a
monotonically decreasing function. Thus, selecting the node with the highest
ui is equivalent to selecting the node with the lowest xi.
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Fig. 2. Average number of slots required to select the best node (m∞(pe))
as a function of the contention load parameter pe.

Theorem 2:

m∞(pe) =
1

1 − e−pe
+

∞∑
i=1

p(i), (3)

where p(i) = (1 − P0)
∏i−1

j=1(1 − Pj), P0 = pee−pe

1−e−pe ,

Pi = Gie
−Gi (1−e−Gi )

1−(1+Gi−1)e
−Gi−1

, ∀ i ≥ 1, and Gi = 2−ipe.
Proof: The proof is given in Appendix B.

Figure 2 plots the average number of slots required to select
the best node as a function of pe as obtained from analysis
and from Monte Carlo simulations. It can be seen that the
asymptotic expression is accurate for even a small number of
nodes (e.g., 10). Furthermore, the optimal value of pe is 1.088,
and the minimum value of m∞(pe) is 2.467. This being said,
setting pe as 1, as used in [14], is not a bad choice since it is
close to the optimal value.

B. Bounds and Approximation

Both the formulae derived thus far for m∞(pe) involve an
infinite series. It is, therefore, desirable to simplify them.

Upper bound: We now derive a simple upper bound and
an accurate approximation for m∞(pe), both of which capture
the behavior of the exact formula well and do not involve any
infinite series. As we shall see, they are also convex, which
is desirable since it enables the use of well-developed and
computationally efficient numerical algorithms to optimize the
system.

Corollary 1:

m∞(pe) ≤ pe

k0 loge(2)
+ log2(2k0/e) +

1
1 − e−pe

, (4)

for any k0 > 0.
Proof: The proof is given in Appendix C.

Putting k0 = 2, we get the following upper bound:

m∞(pe) ≤ pe

2 loge(2)
+ (2 − log2(e)) +

1
1 − e−pe

. (5)

Lower bound: Since the expressions derived in Theorems 1
and 2 both involve an infinite series of positive terms, lower
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Fig. 3. Upper and lower bounds and an approximation for the average number
of slots required to select the best node.

bounds can be obtained by considering only the first few terms
of the series. Figure 3 compares the lower bounds obtained
using the first 4 terms. It can be seen that Theorem 2 leads to
lower bounds that better exhibit the same unimodal property
of the exact expression, than Theorem 1.

Approximation: It can be easily verified that
E [Xk] ≈ log2(k) + 0.6 tracks E [Xk] better than the
upper bound log2(k) + 1. (The figure showing the accuracy
of the approximation is not shown here for lack of space.)
This leads to the following approximation:

m∞(pe) ≈ pe

2 loge(2)
+ (1.6 − log2(e)) +

1
1 − e−pe

. (6)

The upper bound (with k0 = 2) and the approximation are
plotted in Fig. 3. Being convex, they both have a unique
minimum and follow the behavior of the exact expression well
in the region of interest of pe. The approximation is quite
accurate for pe as large as 2.5.

IV. BEST Q RELAY SELECTION ALGORITHM

We now propose a new algorithm for selecting not just the
single best relay but Q ≥ 1 relays in general.

A. Algorithm Definition

We first state the algorithm, and then describe the logic
behind its steps. For this, we adopt the notation of FCFS, as
it is more convenient.

As in Sec. III-A, let yi = nFc(ui). The algorithm spec-
ifies T (k), α(k), and σ(k), for each slot k. (T (k), T (k) +
α(k)) represents the allocation interval for slot k, i .e.,
all the nodes with yi ∈ (T (k), T (k) + α(k)) transmit
in slot k. (Equivalently, HH(k) = F−1

c (T (k)/n) and
HL(k) = F−1

c ((T (k) + α(k)) /n).) σ(k) ∈ {L,R} indicates
whether the kth slot interval is the left half or the right half
of the previously split interval. In addition, S(k) tracks how
many nodes have been selected before slot k. For the first slot,
the variables are initialized as follows: T (1) = 0, α(1) = pe,
S(1) = 0, and σ(1) = L. In the (k + 1)th slot (k ≥ 1):

1) If feedback is a collision (e), then T (k + 1) = T (k),
α(k + 1) = α(k)/2, and σ(k + 1) = L.

2) If feedback is a success (1) and σ(k) = L, then
T (k + 1) = T (k) + α(k), α(k + 1) = α(k), and
σ(k + 1) = R.

3) If feedback is an idle (0) and σ(k) = L, then
T (k + 1) = T (k) + α(k), α(k + 1) = α(k)/2, and
σ(k + 1) = L.

4) If feedback is an idle (0) or a success (1) and σ(k) = R,
then T (k + 1) = T (k) + α(k), α(k + 1) = pe, and
σ(k + 1) = R.

5) Increment S(k + 1) by 1 if feedback is a success (1).
Terminate if S(k + 1) reaches Q.

The generalized algorithm of Sec. III is a special case of
the aforementioned algorithm when Q = 1. It is similar to
FCFS, except that it stops after the Qth success.6 Briefly, the
logic behind the algorithm is as follows. When a collision
occurs, the allocation interval for the next slot is always the
left (L) half of that of the present slot. When a success follows
a collision, the allocation interval for the next slot is the right
half (R) of the previously split interval. When an idle follows
a collision, it implies that the previous rightmost interval
contains at least two nodes, which is why it is split next into
two equal halves. When there is no collision to be resolved,
the algorithm moves to the adjacent allocation interval of size
pe. As mentioned above, the algorithm terminates after Q
successes.

B. Algorithm Analysis

Let m
(Q)
∞ (pe) be the average number of slots required to

select the best Q nodes. (Thus, the symbol m∞(pe) , which
was used in the previous section on single relay selection,
is equivalent to m

(1)
∞ (pe).) Let E

[
X

(Q)
k

]
denote the average

number of slots required to select the best Q nodes after k

nodes collide. Then, the exact expression for m
(Q)
∞ (pe) is given

by the following theorem.
Theorem 3: As n → ∞, the average number of slots

required to select the best Q > 1 nodes is

m(Q)
∞ (pe) =

1
epe − 1

∞∑
k=1

E
[
X

(Q)
k

]
pk

e

k!
+

1
1 − e−pe

, (7)

where,

E
[
X

(Q)
k

]
= (1 − 0.5k−1)−1

(
0.5k

( k−1∑
i=2

(
k

i

)
E
[
X

(Q)
i

]

+ k
(
1 + E

[
X

(Q−1)
k−1

]))
+ 1

)
, ∀ k ≥ 3, (8)

6Note that there does exist one difference between FCFS and the proposed
algorithm. The initial contention resolution interval duration of FCFS can be
smaller if the difference between the current time and the time of the last
resolved interval is small. In our algorithm, however, the contention interval
in step (4) is always incremented by pe as nodes know their metrics a priori.
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Fig. 4. Average number of slots required to select the best two
nodes (m

(2)
∞ (pe)) as a function pe.

TABLE I
OPTIMUM pe AND THE AVERAGE NUMBER OF SLOTS REQUIRED TO

SELECT THE BEST Q NODES

Q Optimum pe Optimum m
(Q)
∞ (pe) (slots)

1 1.088 2.467

2 1.221 4.406

3 1.214 6.491

4 1.231 8.537

5 1.236 10.592

6 1.241 12.645

E
[
X

(Q)
2

]
= m

(Q−2)
∞ (pe) + 3, ∀ Q > 2, E

[
X

(2)
2

]
= 3, and

E
[
X

(Q)
1

]
=m

(Q−1)
∞ (pe).

Proof: The proof is given in Appendix D.
Figure 4 plots m

(2)
∞ (pe) as a function of pe using the

expression of Theorem 3 and verifies it using Monte Carlo
simulations (with n = 100). The lowest average number of
slots required to select two nodes is 4.406, which occurs
at pe = 1.221. This is an improvement of 21.4% over the
algorithm that applies single relay selection twice to select
two nodes and takes 2 × 2.467 = 4.934 slots.

Notice that the optimum value of pe that minimizes the
average selection time increase from 1.088, for single relay
selection, to 1.221 for two relay selection. This can be under-
stood as follows. The time taken to select two nodes given
that they are involved in a collision is E

[
X

(2)
2

]
= 3.0 slots.

Whereas, the number of slots required to select two nodes,
given that the previous slot was idle, increases by 46% to 4.4
slots. Consequently, setting pe > 1 is beneficial since it is
faster to resolve a collision than to avoid it.

The optimum values of pe and the average number of slots
as a function of the number of relays that need to be selected
is given in Table I. We can see that selecting the three best
nodes takes 6.491 slots, on average, and is achieved when
pe = 1.214. The decrease in the optimal value of pe (from
1.221 to 1.214) when Q increases from 2 to 3 can be explained

as follows. The time taken to select three nodes after a collision
among two nodes is E

[
X

(3)
2

]
= 5.484 slots. However, the

number of slots required to select three nodes after an idle slot,
is 6.49 slots, which is just 17.8% more than 5.484. Therefore,
the optimum pe decreases since the selection times after idle
and collision phases are not as unequal as for Q = 2. As
Q → ∞, the optimum value of pe increases to 1.266, which
is also the optimum value for FCFS [13]. In this case, 0.487
nodes per slot get selected on average.

V. CONCLUSIONS

We presented a generalized splitting algorithm for multiple
access selection, and optimized it for single best relay selec-
tion. Furthermore, we extended the algorithm for selecting the
best Q ≥ 1 relays. Regardless of the total number of relays in
the system, on average, only 2.467 slots are required to select
the best relay. And, each additional relay can be selected in
even less additional time. In our analysis, a key Poisson point
process interpretation of the dynamics of the algorithm was
used to derive a simple asymptotic result for computing the
average number of slots. Such an asymptotic result can be
applied to obtain an accurate approximation even when the
number of relays is small. As Q increased, the optimal value
of the contention load parameter mostly increased and finally
approached 1.266, which is the maximum expected number of
packets in the initial contention window in the FCFS multiple
access control algorithm. Our analysis thus shows an intimate
relationship between multiple access selection and multiple
access control (e.g., FCFS) algorithms.

APPENDIX

A. Proof of Lemma 1

It can be easily seen that the idle phase can consist of a
maximum of q =

⌈
n
pe

⌉
− 1 slots. Let Xk be the number of

slots required to resolve a collision among k nodes. Given that
the first non-idle slot is the ith slot and k nodes are involved,
the average number of slots required to find the best node is
E [Xk] + i. (The expression for E [Xk] is given in [14, (6)].)
The probability that the first non-idle slot is the ith slot and k

nodes transmit in it equals
(
n
k

) (
pe

n

)k (1 − ipe

n

)n−k
, for i ≤ q.

For the (q+1)th slot, the probability that it is the first non-idle
slot and k nodes are involved in it is (1 − qpe

n )n, for k = n,
and is 0 otherwise. Hence, the result follows.

B. Proof of Theorem 2

Let the random variable I denote the first non-idle slot.
Then, from the Poisson process interpretation of Theorem 1,
we can show that Pr (I = i) = e−(i−1)pe(1−e−pe). Therefore,
E [I] =

∑∞
i=1 ie−(i−1)pe(1 − e−pe) = 1

1−e−pe .
Now, we find average number of slots required after the first

non-idle slot. Consider the state transition diagram of Figure 5,
where the state is the number of slots, Y , required after the
first non-idle slot to select the best node. The node goes to
state S whenever success occurs, and the algorithm terminates.
It can be shown that the transition probability from state i to



0 21
1−P1

S

P2P0 P1

1−P0

Fig. 5. State transition diagram for the number of slots required to select
the best node after the first non-idle slot.

S is dependent only on i. We henceforth denote it by Pi.
Therefore, this is a Markov chain.

The average number of slots required (after the first non-
idle slot) to select the best node is E [Y ] =

∑∞
i=1 iPr(Y = i),

which can be shown to be equal to
∑∞

i=1 Pr(Y ≥ i). Using
the fact that each state is visited at most once, we can show
that E [Y ] =

∑∞
i=1 p(i), where p(i) is the probability that

the ith state is visited. Consequently, from the state transition
diagram, we get p(i) = (1 − P0)

∏i−1
j=1(1 − Pj) . Here, P0 is

the probability that the first non-idle slot is a success. It is the
probability that in a slot of size pe only one node transmits
given that at least one node transmits in that slot. Hence, it
equals pee−pe

1−e−pe . Similarly, the expressions for Pi, ∀ i ≥ 1,
can also be derived [13, Chap. 4, (4.23)]. Finally, the desired
result follows from m∞(pe) = E [I] + E [Y ].

C. Proof of Corollary 1

Since log2(x) is concave with respect to x, a tangent to it
at any point (k0, log2(k0)) is an upper bound. This leads to
the inequality log2(k) ≤ k−k0

k0 loge(2) +log2(k0). From [14], we
have E [Xk] ≤ log2(k)+1 and E [X1] = 0. Substituting these
results in Theorem 1 and using the inequality epe − 1− pe ≤
epe − 1 leads to the desired result.

D. Proof of Theorem 3

Given that the first non-idle slot is the ith slot and k ≥ 1
nodes are involved, the average number of slots required to
select the best Q nodes is E

[
X

(Q)
k

]
+ i. The probability that

the first non-idle slot is the ith slot and k ≥ 1 nodes are
involved is e−ipepk

e/k!. Hence, we get

m(Q)
∞ (pe) =

∞∑
i=1

∞∑
k=1

e−ipe
pk

e

k!

(
E
[
X

(Q)
k

]
+ i
)

,

simplifying which yields equation (7).
If only one node transmits (success) in the first non-

idle slot, then selecting the remaining Q − 1 nodes will
take m

(Q−1)
∞ (pe) slots, on average. (This follows from the

independent increments property of the Poisson process [18].)
Thus, E

[
X

(Q)
1

]
= m

(Q−1)
∞ (pe). Also, if two nodes transmit

in the first non-idle slots, E
[
X

(2)
2

]
= E

[
X

(2)
1

]
+ 1 = 3 slots

are required, on average, to select both of them. Selecting the
remaining Q − 2 nodes takes another m

(Q−2)
∞ (pe) slots, on

average. Thus, E
[
X

(Q)
2

]
= E

[
X

(2)
2

]
+ m

(Q−2)
∞ (pe). When

k > 3 nodes transmit in the first non-idle slot, the following

three cases are possible for the next slot: (i) Collision among
i nodes: E

[
X

(Q)
i

]
more slots would then be required, on

average. (ii) Idle: E
[
X

(Q)
k

]
more slots are required, on

average. (iii) Success: The next slot would surely involve a
collision among k − 1 nodes. E

[
X

(Q−1)
k−1

]
slots, on average,

would be required after that. The probability that i nodes
transmit in the next slot is 0.5k

(
k
i

)
. Thus,

E
[
X

(Q)
k

]
= 0.5k

(((
k

0

)
+
(

k

k

))(
1 + E

[
X

(Q)
k

])

+
(

k

1

)(
1 + E

[
X

(Q−1)
k−1

]
+ 1
)
+

k−1∑
i=2

(
k

i

)(
1 + E

[
X

(Q)
i

]))
.

Further simplifications result in (8).
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