
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Enforcing Integrability by Error Correction
Using l1-Minimization

Dikpal Reddy, Amit Agrawal, Rama Chellappa

TR2009-044 September 2009

Abstract

Surface reconstruction from gradient fields is an important final step in several applications in-
volving gradient manipulations and estimations. Typically, the resulting gradient field is non-
integrable due to linear/non-linear gradient manipulations, or due to presence of noise/outliers in
gradient estimation. In this paper, we analyze integrability as error correction, inspired from re-
cent work in compressed sensing, particulary l0-l1. We propose to obtain the surface by finding
the gradient field which best fits the corrupted gradient field in l1 sense. We present an exhaus-
tive analysis of the properties of l1 solution for gradient field integration using linear algebra and
graph analogy. We consider three cases: (a)noise, but no outliers (b) no-noise but outliers and (c)
presence of both noise and outliers in the given gradient field. We show that l1 solution performs
as well as least squares in the absence of outliers. While previous l0 -l1 equivalence work has
focused on the number of errors (outliers), we show that the location of errors is equally impor-
tant for gradient field integration. We characterize the l1 solution both in terms of location and
number of outliers, and ouline scenarios where l1 solution is equivalent to l0 solution. We also
show that when l1 solution is not able to remove outliers, the property of local error confinement
holds: i.e., the errors do not propagate to the entire surface as in least squares. We compare with
previous techniques and show that l1 solution performs well across all scenarios without the need
for any tunable parameter adjustments.
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Abstract

Surface reconstruction from gradient fields is an impor-
tant final step in several applications involving gradient ma-
nipulations and estimation. Typically, the resulting gradient
field is non-integrable due to linear/non-linear gradient ma-
nipulations, or due to presence of noise/outliers in gradient
estimation. In this paper, we analyze integrability as error
correction, inspired from recent work in compressed sens-
ing, particulary �0 − �1 equivalence. We propose to obtain
the surface by finding the gradient field which best fits the
corrupted gradient field in �1 sense. We present an exhaus-
tive analysis of the properties of �1 solution for gradient
field integration using linear algebra and graph analogy.

We consider three cases: (a) noise, but no outliers (b)
no-noise but outliers and (c) presence of both noise and out-
liers in the given gradient field. We show that �1 solution
performs as well as least squares in the absence of outliers.
While previous �0−�1 equivalence work has focused on the
number of errors (outliers), we show that the location of er-
rors is equally important for gradient field integration. We
characterize the �1 solution both in terms of location and
number of outliers, and outline scenarios where �1 solution
is equivalent to �0 solution. We also show that when �1 so-
lution is not able to remove outliers, the property of local
error confinement holds: i.e., the errors do not propagate to
the entire surface as in least squares. We compare with pre-
vious techniques and show that �1 solution performs well
across all scenarios without the need for any tunable pa-
rameter adjustments.

1. Introduction

Surface reconstruction from gradient fields is an impor-
tant final step in many vision and graphics applications in-
volving gradient domain processing. These can be broadly
classified as (a) manipulating gradients and/or (b) estimat-
ing gradients before integration. Methods such as Photo-
metric Stereo (PS) [25] and Shape from Shading (SfS) [13]
estimate the gradient field of the surface from captured

images. Applications such as image editing [19], stitch-
ing [18], HDR compression [9] etc. first apply local/global
manipulations to the gradient field of single/multiple im-
ages. The final image is then reconstructed from the mod-
ified gradient field. The reader is referred to the recent
course [2] for more details.

Typically, the resulting gradient field is non-integrable
due to linear/non-linear gradient manipulations, or due to
presence of noise/outliers in gradient estimation (figure 1).
For a reconstruction algorithm, two important considera-
tions are (a) robustness or ability to handle outliers and (b)
local error confinement (LEC) [1]. Robustness means that
surface features are well reconstructed in presence of out-
liers. A related property is LEC, which ensures that distor-
tions in the integrated surface are confined spatially close to
the errors in the underlying gradient field.

It is well-known that least squares estimate is not robust
in presence of outliers. While several integration techniques
have been proposed before, we analyze robust surface inte-
gration as an error correction problem. We are inspired from
recent work in compressed sensing [5], particularly �0 − �1
equivalence. We propose to obtain the surface by finding
the gradient field which best fits the corrupted gradient field
in the �1-norm sense. While minimizing the �1-norm is
not new as a robust statistic, we analyze the properties of
�1 solution and provide new insights using linear algebra
and graph analogy. We compare with existing techniques
and show that �1 solution performs well across all scenarios
without the need for any tunable parameter adjustments.

1.1. Contributions
• We analyze robust gradient integration as error correc-

tion by utilizing ideas from sparse signal recovery lit-
erature.

• We show that the location of errors is as important as
the number of errors for gradient integration, which is
not typically explored when considering �0−�1 equiv-
alence.

• We exhaustively analyze the properties of �1 solution
in terms of robustness and LEC for various outlier pat-
terns and noise in given gradient field.



1.2. Related work

Enforcing integrability: The simplest approach is to
find an integrable gradient field (or the surface) which best
fits the given gradient field, by minimizing the least squares
cost function. This amounts to solving the Poisson equa-
tion [24]. Frankot & Chellappa [11] project the given gra-
dient field onto integrable functions using Fourier basis to
enforce integrability. Cosine basis functions were proposed
in [12], while Kovesi [17] proposed shapelets as a redun-
dant set of basis functions. Petrovic et al. [21] used a loopy
belief propagation algorithm to find the corresponding inte-
grable field. Methods based on �2-norm cannot handle large
outliers in the gradient field.

Robust estimation: There has been large body of
work on robust parametric estimation using RANSAC [10],
which becomes combinatorial in nature as the number of pa-
rameters increases. For gradient integration on N ×N grid,
there are N2 unknowns (pixel values) and 2N2 observa-
tions (x and y gradients). Thus, RANSAC is computation-
ally prohibitive [3]. M-estimators modify the least squares
cost function to reduce the influence of outliers. Several
such influence functions such as Huber, Tukey, etc. have
been proposed [14, 22].

Agrawal et al. [3] proposed a general framework for ro-
bust gradient integration by gradient transformations, such
as anisotropic weighting and affine transformations. The
diffusion algorithm in [3] solves a modified Poisson equa-
tion by applying edge preserving affine transformations to
the gradient field. To calculate the local surface edge direc-
tion, the algorithm uses gradient values in a neighborhood.
We show that it performs poorly when the neighborhood of
an edge is corrupted by outliers.

Our approach instead minimizes the �1-norm of gradi-
ent errors. Minimizing the �1-norm has been shown to be
effective in correcting outlier errors and recovering sparse
signals [8, 15, 18]. Traditionally, �1-norm is not preferred
since the cost function is not analytically differentiable and
minimization is computationally expensive. However, there
has been a renewed interest in using �1 cost functions due
to �0 − �1 equivalence for sparse reconstructions under the
restricted isometry property (RIP). We use RIP to show that
for gradient integration, the location of outliers is as impor-
tant as their number. In addition, we use the expander graph
structure of gradient-curl pairs to understand the distribu-
tion of outliers which can be corrected.

Graph based approach: To avoid the combinatorial na-
ture of RANSAC, a greedy graph based technique was pro-
posed in [1]. This approach treats the underlying 2D grid
as a graph, gradients as edges and unknown surface val-
ues as nodes. The outlier gradients are heuristically deter-
mined by thresholding the curl values over the graph and
the corresponding edges are removed. If the graph remains
connected, surface could be integrated using the remaining

10

20

30

40

50

60

70

p

50

100

150

200

250

300

350

pe

Figure 1. (Left) Ground truth p for Mozart (Right) Outliers along
possible shadow regions in the gradient field obtained from PS.
The magnitude of the outliers is 5 times the largest ground truth
gradient values.

edges (gradients). Else, a minimal set of edges are chosen
to connect the graph by assigning edge weights using gra-
dient magnitude or curl values. However, the underlying
heuristic of using curl values as a ‘goodness’ measure often
fails in presence of noise. We show that [1] performs poorly
in presence of noise and that minimizing the �1-norm effec-
tively handles noise as well as corrects sparsely distributed
outliers in the gradient field. In addition, when the outliers
are concentrated, LEC property is maintained.

Denoising and TV regularization: Image denoising
is a classical problem and several approaches for feature
preserving denoising have been successfully demonstrated.
Anisotropic filtering [20] takes into account the local edge
direction in a PDE based framework. Rudin et al. [23] pro-
posed total variation (TV) regularization, which penalizes
the �1-norm of the gradients of the estimated (denoised)
image. Note that our approach is different: we minimize
the �1-norm of gradient errors, not gradients themselves.
Thus, we do not employ any assumptions on the underly-
ing surface such as natural image statistics (distribution of
gradients is peaked at zero).

2. Gradient integration as error correction
We use terminology from [1]. Let S(y, x) be the desired

surface over a rectangular grid of size H × W . In vector
form, we denote it by s. Let (p, q) denote the given non-
integrable gradient field, possibly corrupted by noise and
outliers. The goal is to estimate S from (p, q). The inte-
grable gradient field of S is given by the forward difference
equations

p0(y, x) = S(y, x + 1) − S(y, x)

q0(y, x) = S(y + 1, x) − S(y, x).
(1)

In vector form (1) can be written as

Ds =
[

p0

q0

]
= g0, (2)

where g0 denotes the stacked gradients and D denotes the
gradient operator matrix. Each row of D has two non-zero
entries: ±1 in pixel positions corresponding to that particu-
lar gradient. The curl of the gradient field can be defined as



loop integrals around a box of four pixels [1]

curl(y, x) = p(y +1, x)− p(y, x)+ q(y, x)− q(y, x+1)

which can be written as

d = C
[

p
q

]
= Cg. (3)

Here, d denotes the vector of stacked curl values and C de-
notes the curl operator matrix. Each row of C has only four
non-zero entries (±1) corresponding to the gradients asso-
ciated with the loop integral.

Since the gradient field g0 is integrable, Cg0 = 0. How-
ever, for the given non-integrable gradient field g, Cg �= 0.
Decomposing g as the sum of g0 and a gradient error field
e, we get

g = g0 + e = Ds + e. (4)

Applying the curl operator on both sides, we obtain

d = Ce (5)

Thus, integrability can also be defined as error correction:
the goal is to estimate the gradient error field e given the
curl d of the corrupted gradient field. Note that in this
formulation, there are M = HW knowns (curl values)
and N = 2HW unknowns (error gradients), leading to an
under-determined system of linear equations. We use ‖ · ‖p

to denote the �p-norm. ‖e‖0 simply counts the nonzero ele-
ments of e.

Poisson solver finds a least squares fit to the gradients
by solving

ê = arg min ‖e‖2 s.t. d = Ce. (6)

The least squares estimate is optimal when the gradient er-
rors obey a Gaussian distribution. If the errors contains out-
liers, then the estimate is skewed leading to severe artifacts
in the reconstructed surface or image. Outliers in the gra-
dient field can be understood as arbitrarily large errors and
could obey any distribution. An example of the errors in
gradients obtained from PS is shown in figure 1.

�0-minimization: An approach to handle outliers is to
combinatorially search for the possible locations of outliers,
estimate them subject to the curl constraint (5) and pick the
combination which satisfies the constraints the best. This
can be written mathematically as

ê = arg min ‖e‖0 s.t. d = Ce. (7)

This problem is NP-hard and hence computationally infea-
sible.

�1-minimization: Instead, we solve a convex relaxation
of (7) by replacing the �0-norm of the gradient error e with
the �1-norm. The conditions under which this equivalence
holds true is described in detail in Sec. 4.

ê = arg min ‖e‖1 s.t. d = Ce. (8)

(8) can be solved using convex optimization algorithms in
polynomial time.

Grid & Curl Gradients & CurlSpanning Tree ST & Errors

Figure 2. (a) Graph with pixels as nodes & gradients as edges. Curl
is calculated along 2×2 loops (b) Spanning tree edges in black (c)
Gradient errors in dashed lines (d) Solid black lines and red curl
loops have expander graph structure

3. Graph based interpretation
In [1], a graph-based interpretation is provided for inte-

grating the gradient field corrupted by outliers. We discuss
this method and borrow its framework to explain our ap-
proach. [1] treats the pixel grid as a graph (G,E), where the
pixels are the nodes of the graph and gradients correspond to
the edges of the graph (figure 2(a)). Let us first assume that
the location of outliers (bad gradients) are known. [1] pro-
poses to remove the corresponding edges from the graph. If
the resulting sub-graph remains connected, then integration
could be done using the remaining edges/gradients. Else,
the graph is connected using a minimal set of edges, by as-
signing edge weights based on gradient magnitude or curl
values. Since in practice, the location of outlier gradients
are not known, [1] thresholds the curl values as a heuristic.

Relationship with �0-minimization: Note that the key
idea is that for integration to be possible, the resulting graph
has to be connected. Thus, the minimal set of gradients re-
quired for integration should correspond to a spanning tree
(ST) [3] as shown in figure 2(b). First, let us assume that the
graph remains connected after removing the edges corre-
sponding to outlier gradients. Then, it is easy to see that [1]
is a greedy algorithm for �0-minimization. This is because
the resulting sub-graph trivially minimizes the �0-norm of
gradient errors.

However, the important point is that even if we know
the location of outliers, it does not guarantee error-free re-
construction, since the resulting sub-graph needs to be con-
nected. For example, it is easy to see that if all 4 edges of
a node are removed, graph does not remain connected (fig-
ure 3, clique-5). On other hand, if the errors are distributed
as shown in figure 3 (right), perfect reconstruction can be
achieved. Thus, even �0-minimization does not guarantee
perfect reconstruction. It can handle up to 25% outliers1,
but can fail for as low as 4 outliers. While recent work in
compressed sensing [5] has focused on the number of er-
rors (outliers), the location of outliers is equally important
for gradient reconstruction problem. Since �0-minimization
can fail depending on spatial distribution of errors, it is im-
portant to consider it while analyzing �0 − �1 equivalence.

RANSAC: In gradient integration, RANSAC would

1In general, �0-minimization can handle up to 50% outliers. For gra-
dient integration, a unique solution can be obtained only for maximum of
25% outliers



search over different realizations of ST and pick the one
which rejects most outliers. As shown in [3], since the num-
ber of parameters are large, RANSAC is computationally
prohibitive.

3.1. Performance under noise
Note that a robust algorithm should also be able to work

well in presence of noise. In [1], a heuristic is used to esti-
mate outlier errors, assuming that the non-zero curl values
are related to outlier gradients. However, this assumption
is well suited only when the gradient field is corrupted by
outliers and fails in presence of noise. Under noise, the
algorithm in [1] confuses correct gradients as outliers and
performs poorly as shown in figure 5.

In presence of noise, gradient error e is non-sparse with
the largest components corresponding to outliers. To handle
noise, the cost function is modified to

ê = arg min ‖e‖1 s.t. ‖d − Ce‖2 ≤ ε (9)

for an appropriate ε.

4. �0 − �1 equivalence

One of the earliest methods in sparse signal recovery by
minimizing the �1-norm is Basis Pursuit [8] but it is recently
that conditions for equivalence between minimizing �0 and
�1-norm have been provided in the compressed sensing lit-
erature [5, 7, 6]. In fact, the gradient error correction prob-
lem is similar to the classical error correction problem ana-
lyzed in [7], but the location of errors is equally important as
discussed in section 3. Continuing the notation, we present
sufficient conditions for �0 − �1 equivalence as described
in [6]. They are

• e is k-sparse (‖e‖0 = k)

• The matrix C obeys RIP with isometry constant δ2k

RIP (with δ2k) is a sufficient condition on a matrix (C)
which guarantees recovery of all k-sparse vectors (e) from
its projection (d) using �0-minimization (if δ2k ≤ 1) or
�1-minimization (if δ2k <

√
2 − 1). This implies that �1-

minimization can recover a k-sparse vector as well as �0-
minimization when δ2k <

√
2 − 1. C is said to satisfy RIP

with isometry constant δ2k, if the eigenvalues of C∗
T CT

2 lie
between (1 − δ2k) and (1 + δ2k) for every submatrix CT ,
formed by choosing 2k columns with index set T . Note
that the condition to recover k-sparse e is actually on 2k
columns of C. This is to ensure that the true k-sparse vector
is not confused with any other k-sparse vector with the same
projection d, thereby ensuring a unique solution. Typically,
dense matrices such as i.i.d. Gaussian or partial Fourier ma-
trices [5] satisfy RIP for large k.

2C∗ is the transpose of C

As discussed in section 3, if all 4 edges of a node are in
error, they can’t be corrected even if we knew their loca-
tions. It implies that the recovery of 4-sparse gradient error
vector e using either �0 or �1-minimization is impossible.
Thus, RIP doesn’t hold for k = 4 and hence for all k > 4.
But, the constant δ2k corresponding to a 2k edge set T does
inform us whether any k gradient errors in T can be cor-
rected using either �0 or �1-minimization

For a 2k edge set T , δ2k < 1 means that C∗
T CT is non-

singular. This implies that the 2D graph remains connected
after removing the corresponding 2k edges T . Conversely,
in figure 3 clique-5, δ2k = 1 since the graph does not remain
connected when all the four edges are in error.

4.1. Spatial distribution of errors
Figure 3 lists several spatial distribution of errors in a

isolated neighborhood. We qualitatively analyze which of
these can be corrected with the help of isometry constant
δ2k. Few of them are described in detail below. For ex-
ample, in clique-2 (2k = 2), δ2k = 0.5 implying clique-
1 (k = 1) can be corrected perfectly by �0-minimization.
However, in practice �1-minimization can also correct the
single outlier although δ2k >

√
2 − 1. Likewise, δ2k = 0.5

in clique-8 (2k = 4) implies clique-6 (k = 2) can be cor-
rected perfectly by both �0 & �1-minimization. This con-
firms that conditions on δ2k are just sufficient. Neverthe-
less, the conditions provide insight into the error locations
that can be corrected.

Since the condition for �1 recovery is stronger than
�0 recovery, there exist outlier distributions which �0-
minimization can correct but �1 cannot. For example, since
δ2k = 0.5 in clique-8, �0-minimization can correct clique-3
but �1 cannot always. Conversely, if �0-minimization can-
not correct a gradient error e then neither can �1. In other
words, �1-minimization corrects less errors compared to �0.

We generalize to other outlier spatial distributions. Let
T denote the indices of some 2k edge locations and T c the
complement edges. If T c is not a connected subgraph, the
matrix C∗

T CT is singular and δ2k = 1. This implies that
there exist k error locations in T , which �0-minimization
cannot correct uniquely. If T c is a connected subgraph,
then the matrix C∗

T CT is non-singular and δ2k < 1 sug-
gesting �0-minimization can correct any k error locations in
T . For sufficiently small k we will have δ2k <

√
2 − 1

and �1-minimization corrects all of them. For example, �1-
minimization can correct outliers distributed as shown in
figure 3 (right).

4.2. Expander graph structure
Unlike typical dense matrices in compressed sensing,

curl matrix C is sparse and hence doesn’t satisfy RIP for
even few edges in error. Each curl value carries informa-
tion about four gradients and each gradient contributes to
two curl values. In the graph obtained by removing the bor-
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T CT .
(Right) Distribution of outliers (red) on 12 × 12 grid which can be corrected perfectly by �0 and �1. Note that the errors are distributed
apart and follow clique-1 structure.

der edges of the grid, the gradients and curl values have
an expander graph relationship where every gradient con-
tributes to two curl values and every curl value has contri-
bution from four gradients. The truncated curl matrix Cint

corresponding to gradients in the interior has the structure of
an adjacency matrix of an expander graph, where the gradi-
ents are the left nodes U and the curl values, the right nodes
V (figure 2(d)). But, each column of Cint has both +1 and
−1 entries unlike the adjacency matrix which has only +1
as both entries.

In the compressed sensing literature, the concept of RIP
has been extended to sparse matrices such as the adjacency
matrix of an expander graph [4]. Theorem 1 in [4] states that
if any matrix Cex of size M × N

′
is the adjacency matrix

of an (k, α) expander G = (U, V,E) with left degree d

such that 1/α, d are smaller than N
′
, then the scaled matrix

Cex/d1/p satisfies the RIPp,k,δ property, for 1 ≤ p ≤ 1 +
1/logn and δ = βα for some absolute constant β > 1.

Although Cint is not truly an adjacency matrix, it fol-
lows the proof of Theorem 1 in [4] for the case p = 1
in a straightforward way with parameters d = 2 and
α ∼ 3/4. α ∼ 3/4 implies a poor expander and hence
�1-minimization fails to correct the errors for even sim-
ple outlier distributions. Nevertheless, the expander graph
structure of the problem provides a nice framework to an-
alyze the error distributions which can be corrected com-
pletely (such as figure 3 (right)) and also opens the door
for greedy algorithms which can correct such error distri-
butions. For example, the standard decoding algorithm for
expander codes with d = 2 and α ∼ 3/4 would first look
for two neighboring curl values which have been affected
by a corrupt edge and then account for that edge in the curl
values and iterate this search. This procedure indicates that
for a decoding algorithm to be successful on the 2D graph
(poor expander), the gradient errors should be distributed
apart as shown in figure 3 (right)).

5. Experiments and Results

We compare the performance of our algorithm with the
Least squares [24], Shapelets [17], Algebraic approach [1]
and the Diffusion algorithm [3]. For shapelets, we use
the default parameters (nscales=6, minradius=1, mult=2).
Shapelets produce a scaled surface with unknown scale,
which is fixed by setting the surface mean to the mean of
the ground truth surface (for synthetic experiments). We as-
sume Neumann boundary conditions for integration, which
results in an unknown additive constant of integration. This
needs to be set for meaningful comparisons among ap-
proaches for which we align the median of the reconstructed
surface values3. Note that although mean square error
(MSE) values in table 1 are indicative of the algorithm per-
formance, it may not be related to the visual performance.

To solve (9), we use the regularized formulation:
arg min μ‖e‖1 + 1/2‖d−Ce‖2

2, since faster software [16]
exists for the latter. μ is the only parameter which we need
to set and to enforce sparsity in the gradient error e, we
found that μ = 10−3 works over a wide range of problems
and outlier distributions.

Effect of noise without outliers: First, we compare the
performance of the algorithms when the the gradient field
is corrupted only by noise. We added Gaussian noise with
σ = 10% of the maximum gradient value to the gradients
of Ramp-peaks synthetic dataset shown in figure 5. �1-
minimization performs as well as Least squares in presence
of noise in the gradient field. Algebraic method performs
poorly due to the simplifying assumptions it makes about
the relationship between curl and gradient error. MSE num-
bers are reported in table 1.

Effect of outliers without noise: To analyze the effect
of outliers, we added outliers to 10% of the ground truth
gradient field. The outliers are salt and pepper noise with a
range five times that of the original gradient field. The re-

3Effective as long as 50% of the surface values remain uncorrupted
after surface reconstruction.



�1-minimization Least Squares Diffusion Shapelets Algebraic
Ramp-peaks Noise only 0.5581 0.2299 0.3980 0.7221 4.5894
Ramp-peaks Outliers only 0.3136 9.9691 2.0221 24.7759 0.2430
Ramp-peaks Noise & Outliers 0.5064 6.8096 1.8382 16.8603 3.1849
Mozart PS 550.1 575.8 521.4 1179.1 708.7

Table 1. MSE of reconstructed surfaces using different methods on Ramp-peaks dataset and PS experiment on Mozart dataset.

constructed surfaces are shown in figure 6. �1-minimization
performs as well as the Algebraic approach as shown in ta-
ble 1. Note that �1-minimization corrects most of the out-
liers and preserves the surface edges and details. It also
confines the errors locally when it fails to correct them.

We also analyze the performance of various algorithms
as the percentage of outliers increase. In figure 4(a), we
vary the percentage of outliers in the Ramp-peaks gradient
field and compute the percentage of surface values in error.
We declare a surface value to be in error if it deviates more
than 5% from the maximum surface value. The plot shows
that the Algebraic approach is the most effective in correct-
ing outliers with similar performance by �1-minimization.
Note that both Least squares and Shapelets fail to preserve
the surface shape even for small percentage of outliers. For
this experiment, we averaged the performance over 200 re-
alizations for every percentage of outliers.

Effect of noise and outliers: The true test of a robust
algorithm is in presence of both noise and outliers. We test
the realistic scenario of both noise and outliers by adding
outliers to 7% of the gradients and Gaussian noise with
σ = 7% of the maximum gradient value. �1-minimization
performs better than all the other methods. It captures the
characteristic of Least squares to handle noise and that of
a combinatorial method such as Algebraic approach to cor-
rect outliers.

Photometric stereo (PS): We perform PS experiment on
Mozart synthetic dataset to simulate the realistic occurrence
of outliers in gradient fields. We first generate images as-
suming Lambertian reflectance model, distant point source
lighting and constant albedo. Then we estimate the surface
normals (nx,ny ,nz) and albedo through PS on images cor-
rupted by random noise (σ = 5% of the maximum inten-
sity). The estimated gradient field is given by p = −nx

nz

and q = −ny

nz
and is corrupted by outliers as shown in fig-

ure 1. Figure 8 shows that our method and the diffusion
algorithm give the best results. Both these methods correct
the outlier errors which corrupt the gradient field during gra-
dient estimation. Although �1-minimization is marginally
less successful compared to the diffusion algorithm in terms
of MSE, note that our method corrects more outliers on the
side of the face and also avoids the pinching artifacts near
the flatter regions of the surface. It should be noted that the
diffusion algorithm introduces artifacts close to sharp edges
corrupted by outliers as illustrated in figure 4(c).

Local error confinement: We show that even when �1-

minimization fails to correct the outliers, it confines the er-
rors locally. In figure 4(b), we add outliers in a 5× 5 region
on a 20 × 20 flat surface. Both �1-minimization and Least
squares fail to correct the errors. However, Least squares
spreads the error globally, while �1-minimization confines
it locally. By further regularizing the gradients themselves
as in TV regularization, these remaining errors could be re-
moved.

6. Discussions
While minimizing �l-norm is computationally expensive

compared to solving the Poisson equation, researchers in
compressed sensing are devising new and better algorithms.
Also, the expander graph structure of the problem opens
avenue to accurate greedy algorithms. For gradient inte-
gration problem, the errors which are not corrected by �1-
minimization result in spikes in the reconstructed surface.
This could be handled by adding small regularization on
the gradient magnitude itself, or by median filtering the fi-
nal result. The benefits of �l-minimization over previous
approaches is that no parameter tuning is required and it
combines the best of least squares and combinatorial search
to handle noise and correct outliers respectively. Further,
even when it fails to correct the outliers, it has the local er-
ror confinement property and preserves sharp edges in the
reconstructed surface.

We showed how robust gradient integration can be ana-
lyzed as error correction. Although �l-minimization is not
new, we provide new insight into the gradient integration
formulation using graph theory and linear systems, by bor-
rowing ideas from compressed sensing and sparse signal re-
covery. We showed that the location of outliers is equally
important for gradient integration. We hope that our analy-
sis will be useful for several other parametric robust estima-
tion problems.
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Figure 6. Reconstructed surface when 10% of the gradient field is corrupted by outliers with no noise. Note that because there is no noise,
Algebraic approach performs best. �1-minimization also reconstructs with high fidelity. Other techniques perform poorly. Even when
�1-minimization can’t correct all the errors, it confines the errors locally and preserves sharp edges in the surface.
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Figure 7. Reconstructed surface when gradient field is corrupted by both outliers (at 7% locations) and noise (Gaussian with σ=7% the
maximum gradient value). �1-minimization performs significantly better with the best characteristic of Algebraic approach for outliers and
Least squares for noise.
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Figure 8. Surface of the Mozart bust reconstructed from gradient field obtained from PS. The gradient errors are shown in figure 1. Both
�1-minimization and Diffusion perform significantly better compared to other methods but the flatter regions of the surface have artifacts
in Diffusion.
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