
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Semi-Supervised Information Extraction
From Variable-Length Web-Page Lists

Daniel Nikovski, Alan Esenther

TR2009-031 May 2009

Abstract

We propose two methods for constructing automated programs for extraction of information from
a class of web pages that are very common and of high practical significance – variable-length
lists of records with identical structure. Whereas most existing methods would require multiple
example instances of the target web page in order to be able to construct extraction rules, our
algorithms require only a single example instance. The first method analyzes the document
object model (DOM) tree of the web page to identify repeatable structure that includes all of the
specified data fields of interest. The second method provides an interactive way of discovering
the list node of the DOM tree by visualizing the correspondence between portions of XPath
expressions and visual elements in the web page. Both methods construct extraction rules in the
form of XPath expressions, facilitating ease of deployment and integration with other information
systems.

International Conf. on Enterprise Information Systems

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part
without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include
the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of
the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or
republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All
rights reserved.

Copyright c©Mitsubishi Electric Research Laboratories, Inc., 2009
201 Broadway, Cambridge, Massachusetts 02139



MERLCoverPageSide2



SEMI-SUPERVISED INFORMATION EXTRACTION FROM
VARIABLE-LENGTH WEB-PAGE LISTS

Daniel Nikovski and Alan Esenther
Mitsubishi Electric Research Laboratories, 201 Broadway, Cambridge, USA

nikovski@merl.com, esenther@merl.com

Akihiro Baba
Mitsubishi Electric Corporation, 5-1-1 Ofuna, Kamakura, Kanagawa 247-8501, Japan

Baba.Akihiro@ab.MitsubishiElectric.co.jp

Keywords: Service oriented architectures, system integration, information extraction, web mining

Abstract: We propose two methods for constructing automated programsfor extraction of information from a class
of web pages that are very common and of high practical significance — variable-length lists of records with
identical structure. Whereas most existing methods would require multiple example instances of the target web
page in order to be able to construct extraction rules, our algorithms require only a single example instance.
The first method analyzes the document object model (DOM) tree of the web page to identify repeatable
structure that includes all of the specified data fields of interest. The second method provides an interactive
way of discovering the list node of the DOM tree by visualizing the correspondence between portions of XPath
expressions and visual elements in the web page. Both methods construct extraction rules in the form of XPath
expressions, facilitating ease of deployment and integration with other information systems.

1 Introduction

Modern information systems integrate, aggregate,
and manage information from a large number of
sources, such as databases, user input, sensors, re-
mote web services provided by other information sys-
tems, etc. Successful integration of all these data
sources depends critically on the existence of data ex-
change protocols and application programmable in-
terfaces (APIs) that have been agreed upon by both
the providers and users of such information.

Service-oriented architectures (SOA) hold
much promise for facilitating the building and
re-configuration of flexible information systems that
integrate many data sources. In order for a data
source to be available for integration in an SOA
application, it is typically converted to a web service:
a software system designed to support interoperable
machine-to-machine operation over a network.
Interoperability is achieved by means of adherence to
web service standards for describing and accessing
the functionality of the service (e.g., WSDL), and
data formats and protocols for transporting the
data between clients and servers (e.g., the SOAP
protocol).

However, most of the content of what is arguably
the largest existing source of information — the
World Wide Web (WWW) — is not accessible by
means of web services. The reason for this is the
intended audience of information published on the
WWW: human readers, and not computers. The vast
majority of existing web pages are intended to be read
by people, and their encoding (HTML) is optimized
for efficient rendering into graphical form by web
browsers. As a result, neither the HTML encoding,
nor the final graphical rendering are easy to interpret
by machines.

There have been several principled attempts to
make such information accessible by machines. One
solution involves representing the information as an
XML file which is either communicated directly to a
remote machine using web-services protocols such as
SOAP, or transformed to an HTML file by means of
suitable presentation templates, such as XSLT files,
and further rendered into graphical form to be read by
humans. Although this is a convenient solution, a very
small percentage of existing web applications provide
their contents in both XML and HTML formats.

One major reason for this is technical — content
in XML format is usually provided by means of a ded-



icated web service which takes time, effort, and re-
sources to develop. Furthermore, apart from the cost
issue, this can be an unsurmountable obstacle in cases
when legacy web applications have to be integrated
into a novel system, and modifications to the exist-
ing application cannot be made. This is, in fact, a
very common situation in system integration projects,
when the developers of the original application have
often left the organization since the time the applica-
tion was deployed.

Consequently, for the purposes of system integra-
tion of legacy IT systems, it is very desirable to find
ways to extract information that is intended to be used
by humans and encoded in HTML format, and present
it to remote machines in a computer-interpretable for-
mat such as XML. This is a problem that has been
under investigation in the field of information extrac-
tion. We review the existing approaches and their lim-
itations in the next section, and propose two novel al-
gorithms for semi-supervised information extraction
from web pages with lists of variable length in Sec-
tion 3. In Section 4, we describe one possible im-
plementation of the proposed methods, and its role in
a system integration solution and method. Section 5
proposes directions for expanding these solutions to a
wider class of web pages, and concludes the paper.

2 Web Information Extraction

The field of information extraction is an area of in-
formation technology that is concerned with extract-
ing useful information from natural language text that
is intended to be read and interpreted by humans.
Such text can be produced either by other humans
(e.g., a classified ad), or generated by machines, pos-
sibly using the content of a structured database (e.g., a
product description page on an e-commerce web site)
(Laender, Ribeiro-Neto, da Silva & Teixeira, 2002).
Although humans do not necessarily make a signif-
icant distinction between these two cases, as far as
their ability to inteprete the text is concerned, the dif-
ference between them has enormous importance as
regards the success of interpretation of such text by
machines. Understanding free-form natural language
that has been generated by humans is a very compli-
cated problem whose complete solution is not in the
foreseeable future. In contrast, if text has been gen-
erated by a machine, using a boiler-plate template for
page layout and presentation (such as an XSLT file),
and a database for actual content, the rate of success
of automated information extraction methods can be
very high. This type of text is often called semi-
structured data, and due to its high practical signifi-

cance, is the focus of this paper.
The usual method for extracting information from

web pages that are output by legacy applications is by
means of programs called wrappers (van den Heuvel
& Thiran, 2003). The simplest approach is to write
such wrappers manually, for example using a general-
purpose programming language such as Java or Perl.
Since this can be difficult, tedious, and error-prone,
various methods have been proposed for automating
the development of wrappers. Although most of these
methods focus on creating extraction rules that are ap-
plied to web pages by an extraction tool, they differ
significantly according to how they apply the induced
rules on web pages, and according to how they actu-
ally induce these rules.

Regarding the first difference, some methods ap-
ply the rules directly to the stream of tokens in the
web page. In such cases, the rules can be encoded as
regular expressions, context-free grammars, or using
more advanced specialized languages. One advantage
of these methods is that they can easily filter out irrel-
evant text, e.g. interstitial ads in web pages. However,
finding the rules that would extract all the needed in-
formation and only the needed information is not a
trivial problem.

Other methods use the fact that a web page en-
coded in HTML is not just a stream of tokens, but
has a tree-like structure. This structure is in fact rec-
ognized by web browsers when they transform the
HTML code into a Document Object Model (DOM)
tree prior to rendering it on screen. When a needed
data item can be found in one of the leaves of the
DOM tree, an extraction rule for its retrieval can be
encoded by means of a standard XPath expression
that specifies the path that has to be traversed in the
DOM tree to reach the respective leaf. Applying such
rules to new web pages in a deployed system is very
straightforward: an embedded web browser is used to
retrieve the web page and create its DOM tree, after
which the XPath expression is applied to retrieve the
data. Fully automated tools such as W4F (Sahuguet &
Azavant, 1999) and XWRAP (Liu, Pu & Han, 2000)
operate on the DOM tree. (Although, they use differ-
ent languages for representing the extraction rules.)

Regarding the second difference among wrapper
construction tools — how extraction rules are induced
— there are several principal approaches. Supervised
methods require explicit instruction on where the data
fields are in a web page, in the form of examples. One
practical way for a human user to do this is to point
to the data items on a rendered web page, for example
by highlighting them by means of a computer mouse,
and after that the corresponding extraction rules are
automatically generated. As noted, when the extrac-



tion rules are encoded using XPath expressions, they
can be readily generated by means of the DOM tree
of the web page.

Supervised method work very well when the web
page has a fixed structure, and only the needed data
items vary between different instances of this web
page. However, when the structure of the DOM tree
itself changes over time, a single example of where
the needed data items are is not sufficient. Exhaus-
tive enumeration of all possible cases is not possible,
either — apart from being very time consuming, it
would result in multiple extraction rules, each with
limited validity.

In contrast, unsupervised methods do not require
explicit labeling of data items within example web
pages. Instead, they require only input of several in-
stances of a web page, after which the methods can
infer from the instances what part of the web page
is data, and what part is formatting and labeling text.
These methods usually compare multiple instances of
a web page, and treat the variable part as data fields
and the non-changing part as a formatting template.
One shortcoming of those methods is that they require
multiple example instances, and it is sometimes not
clear how many examples would be sufficient for cor-
rect rule generation.

3 Information Extraction from
Variable-Length Lists

The practical case we are considering is the ex-
traction of data fields from web pages that contain
lists of records formatted identically, but these lists
can be of variable length. One example of such web
pages are search results for products, articles, ad-
dresses, films, etc. — practically all search engines
return such lists. Another example are tables that con-
tain variable number of rows, such as train schedules,
class rosters, sports rankings, etc. In this case, the ta-
ble is the list, each row in the table is a record, and
each cell in the table is a data field. What is common
between these cases is that the structure of the web
pages varies due to the variable number of records, but
does so in a fairly regular manner: any new records
have the same structure as the previous ones.

Writing extraction rules for this case manually can
be challenging, because the structure of the DOM tree
of the web page is variable. A supervised method
would require labeling of all occurrences of data fields
in a possibly unlimited number of instances of web
pages that contain lists of progressively increasing
length. Unsupervised methods would not need label-
ing, but would still require a dataset of web page ex-

amples of unknown size (possibly very large), and are
also likely to return as data such fields that do change
across page instances, but are not of interest.

To address these deficiencies, we propose two
methods for information extraction from such pages
that require only one instance of a data record to
be labeled explicitly on only one instance of a web
page. Both methods use XPath to encode the extrac-
tion rules, but neither of them requires manual coding
of these extraction rules. The first method is com-
putationally more difficult, but does not require any
familiarity with XPath, whereas the second method is
computationally simpler, but is suitable for users who
are familiar with XPath expressions.

In both cases, a human user uses a web browser
embedded in a wrapper construction application
(WCA) to navigate to a target web page that contains
a list of at least two records, and pinpoints several data
fields on the web page that belong to the same record.
Let the number of records on the web page be denoted
by m, such thatm ≥ 2. If there aren such data fields,
we will denote them byFj, j = 1,n. We assume that
each data fieldFj contains the value of an output vari-
able of interestV j, such that the value of this variable
vi0, j for some recordi0, that is,vi0, j = Fj, j = 1,n. The
goal is to be able to extract all valuesvi, j, i = 1,m,
and j = 1,n, for all web pages wherem varies arbi-
trarily, by using only the pinpointed location of data
field examplesFj, j = 1,n. Two methods for the gen-
eration of extraction rules that can accomplish this are
described below.

3.1 Automated Induction of Rules

The first method starts by determining the absolute
XPath expressions for all data fields. An absolute
XPath expression consists of a sequence of tree nodes
separated by slash signs, where nodes to the left of
a slash sign represent parent nodes, and nodes to
the right of a slash sign represent children nodes in
the DOM tree. For example, the second cell in the
first record of the first table of an HTML document
could be identified by the absolute XPath expres-
sion “/html[1]/body[1]/table[1]/tbody[1]/tr[1]/td[2]”
(see Fig. 1). Let the XPath expression of data field
exampleFj be denoted byE j.

In the second step of the algorithm, the least
common ancestor (LCA) node of all data field
examplesFj, j = 1,n is found. This can be achieved
by traversing all path expressionsE j simultaneously
from left to right, and stopping when a mismatch
between the tags of any two paths is encountered.
The longest portion of all pathsE j that matches is
the path to the LCA node of all data fields in the



Figure 1: A typical DOM tree of an HTML document that
contains a list (table) of variable number of records (rows)
of the same structure (here, three data fields per record).
Information to be extracted is contained in the leaves of the
tree. Each node in the tree, leaf or not, can be identified by
a unique XPath expression.

DOM tree of the HTML document. (It may or may
not correspond to the entire recordi0 that contains all
example data fields.) For instance, if two cells in the
first row of a table were designated as examples, e.g.
“/html[1]/body[1]/table[1]/tbody[1]/tr[1]/td[2]” and
“/html[1]/body[1]/table[1]/tbody[1]/tr[1]/td[4]”,
the path to their LCA node will be
“/html[1]/body[1]/table[1]/tbody[1]/tr[1]”, that
is, the LCA node will be the one that corresponds
to the first row of the table. Let this LCA node be
denoted by L.

In the third step of the algorithm, the sub-tree
whose root is node L is identified and stored in vari-
able S. By definition, it does contain all nodes that
correspond to example data fields, but, as noted, it
does not necessarily correspond to an entire record.

In the fourth step of the algorithm, in order to find
the DOM-tree node that corresponds to the entire list
of records, all ancestors A of node L are traversed in
a bottom up manner (starting from L and moving up
to the root of the DOM tree), while at the same time
matching the tree stored in variable S to all subtrees
whose root nodes are siblings or cousins of L, that is,
they are at the same level as L, and have A as their an-
cestor. The lowest ancestor A where a match is iden-
tified is the node that corresponds to the entire list of
records.

In our example, if the path to L is
“/html[1]/body[1]/table[1]/tbody[1]/tr[1]”, then
all ancestor nodes to L will be examined, starting
with A=“/html[1]/body[1]/table[1]/tbody[1]”. In
this case, the tree S will have a root and N children
denoted by tags “td[1]”, “td[2]”, ”td[3]”, ..., “td[N]”,

whereN is the number of columns in the data table,
N ≥ n. Now, since there is at least one other record
(row) with the same structure (because of the require-
ment thatm ≥ 2), there will be a cousin of the node
L (“/html[1]/body[1]/table[1]/tbody[1]/tr[1]”) which
is the root of a tree with the same structure as S. In
this case, this will be another row in the table, for ex-
ampleL2, “/html[1]/body[1]/table[1]/tbody[1]/tr[2]”.
At this point, a match will be established, and
A=“/html[1]/body[1]/table[1]/tbody[1]” will be
declared the list node.

Note that this method of discovering the list node
is robust to multiple nesting of tags. In this case, there
exists a “tbody” tag between the “table” and “tr” tags
in a table, so the list node will be the one correspond-
ing to the “tbody” tag, and not the one corresponding
to the “table” node. In other words, the list node is
the deepest node in the DOM-tree (respectively, the
rightmost tag in XPath) whose sub-trees correspond
to individual records.

Once this node has been identified, an XPath for
individual data fieldFj can be constructed by sim-
ply omitting the qualifying index in the tag that fol-
lows A in the XPath expressionE j. For example, if
E1 =“/html[1]/body[1]/table[1]/tbody[1]/tr[1]/td[2]”,
then a suitable extraction path for fieldF1 would
be “/html[1]/body[1]/table[1]/tbody[1]/tr/td[2]”. Its
meaning is, as expected, to return the second cell in
any row of the first table of the document.

3.2 Interactive Construction of Rules

The main computational effort in the automated con-
struction algorithm described above is in finding the
list nodeA whose immediate children correspond to
the individual records in the list. For added accuracy
and ease of implementation, this step can be com-
pleted manually by a system integration engineer in
an interactive tool, if this engineer is familiar with
XPath.

In practice, the engineer could select the node in
the XPath expression that corresponds to the entire
record in the web page that contains the data fields
Fj, j = 1,n. To this end, the XPath expressionE j for
one data fieldFj, j = j1 is displayed to the user si-
multaneously with the target web page. Then, when
the user clicks on a node in the XPath expression,
the corresponding visual element of the web page is
highlighted in the web browser. When multiple nodes
correspond to the same visual element, for example
when there is nesting of multiple HMTL tags, the user
should select the highest element in the DOM tree,
i.e., the node that is farthest left in the XPath expres-
sion. The selected tree node that corresponds to the



entire first record will then be an immediate child of
the list nodeA, per our definition. The construction of
the extraction rules can then proceed as in the com-
pletely automated method.

4 Implementation of the Information
Extraction Methods

The proposed idea for information extraction from
web pages has been implemented as an extension of
the Firefox browser. This extension operates by al-
lowing the user to navigate to any web page using
the normal web navigation facilities of the browser,
and designate that page as a target for information ex-
traction. By highlighting individual text elements on
the web page and using a context menu, a set of data
fieldsFj, j = 1,n are designated, and their XPath ex-
pressionsE j are obtained from the DOM tree of the
target web page. All of these XPath expressions are
displayed in the Firefox extension, next to the target
web page.

By placing the mouse over individual tags in any
XPath expression, the corresponding visual element
(cell, row, table, etc.) on the target page is highlighted
using a different background color (Fig. 2). In gen-
eral, the user proceeds over tags right to left, stopping
when the entire list (as opposed to a single record
only) is highlighted. Clicking on the corresponding
tag then identifies the list node A, and extraction rules
can be constructed.

The implemented tool provides a high-quality
method for extracting information from structured
web pages. This is due to the use of XPath for speci-
fication of the information to be extracted; intuitively,
when the data records have been generated from a
specific data schema, the XPath expression generated
by the tool uniquely identifies a field in that schema.
In contrast, character matching methods do not pro-
vide such unique identification, and might result in a
large number of false matches.

5 Related Work

The proposed technique for automated construc-
tion of rules for information extraction from web
pages is based on two main ideas: the use of XPath
for rule specification and execution, and the analysis
of the DOM tree of the HTML document. Individu-
ally, these two ideas have been proposed previously.
Schwartz discussed the use of XPath for information
extraction from web pages, and pointed out that the

main challenge is to build the correct XPath expres-
sion that would remain robust to variations in page
structure (Schwartz, 2007). Liu proposed a variety of
algorithms for learning extraction rules from exam-
ple HTML documents that operate by analyzing the
DOM-tree of these examples (Liu, 2007). Some of
these algorithms even allowed for imperfect matching
between the sub-trees of the individual records. How-
ever, he did not use XPath as the language for encod-
ing of the rules, and furthermore, these algorithms re-
quired multiple examples of web pages, whereas both
algorithm proposed in this paper require only a single
example.

6 Conclusion

We have described two methods that allow easy
construction of wrappers for extracting information
from one of the most frequent and useful sources of
information — web pages with variable number of
records of identical structure. The output of most
search engines falls into this category, as well as most
web-based interfaces for querying databases.

Even though a number of methods for wrap-
per generation have already been proposed (some of
which fairly advanced), most of them do not provide
a very convenient solution to this problem of high
practical importance. Both supervised and unsuper-
vised methods require a large number of examples to
be able to learn the correct extraction rules. In con-
trast, the two methods proposed in this paper would
require only one example web page, and need only
data fields in a single record to be identified. As a re-
sult, the construction of wrappers is not substantially
more difficult than browsing to a web page and high-
lighting the data fields of interest.

Once the data fields have been specified, the first
algorithm proceeds by identifying the node in the
DOM tree that comprises all data fields of interest.
Under the assumption that all other records must in-
clude an identically structured sub-tree, the algorithm
looks for such matching sub-trees elsewhere in the
DOM tree. The node that is the lowest common an-
cestor of all such sub-trees is identified as the list node
of the entire web page.

In contrast, the second proposed method relies on
interactive identification of the list node of the DOM
tree, with the help of a system integration engineer.
The method is intuitive, and requires only basic fa-
miliarity with XPath. List node identification is per-
formed by scanning the XPath expression for any sin-
gle data field in a bottom-up manner, and providing
visual feedback to the engineer as to what visual el-



Figure 2: An interactive tool for construction of extraction rules for information extraction from web pages.

ement in the web page corresponds to the currently
scanned tag. As soon as a tag is found that comprises
the entire list of records, the corresponding DOM-tree
node of this tag is identified as the list node of the web
page. Both algorithms rely on the expressive capabil-
ities and widespread use of the XPath language for
querying XML documents. This also facilitates the
deployment of wrappers when integrating them with
other information systems.

While the described methods are convenient and
handle well web pages of the described type (variable-
length lists with records of fixed structure), there exist
other variations in the structure of web pages that are
of practical interest and could be addressed in the fu-
ture by possible extensions of these algorithms. One
such variation is interstitial ads — advertisements that
appear among items (records) of interest. When such
ads are placed as direct children of the list node of
the DOM-tree, the XPath expression for a data vari-
able can match accidentally some content from the
ad. One possibility for eliminating such erroneous
matches is to include the entire context of a data vari-
able in its XPath expression, so that valid data records
are identified first, and the extraction of individual
data fields occurs only after that. We hope that this
type of matching could possibly be implemented by

modifying the XPath extraction rules in an appropri-
ate manner, to be investigated in the future.

References

van den Heuvel, W.-J. & Thiran, P. (2003). A methodology
for designing federated enterprise models with con-
ceptualized legacy wrappers. InProceedings of the
Fifth International Conference on Enterprise Informa-
tion Systems ICEIS’03 (pp. 353–358).

Laender, A. H. F., Ribeiro-Neto, B. A., da Silva, A. S. &
Teixeira, J. S. (2002). A brief survey of Web data ex-
traction tools.SIGMOD Record (ACM Special Interest
Group on Management of Data), 31(2), 84–93.

Liu, B. (2007). Web Data Mining: Exploring Hyperlinks,
Contents, and Usage Data. Data-Centric Systems and
Applications. Springer.

Liu, L., Pu, C. & Han, W. (2000). XWRAP: An XML-
enabled wrapper construction system for web infor-
mation sources. InProceedings of the International
Conference on Data Engineering (pp. 611–621).

Sahuguet, A. & Azavant, F. (1999). Building light-weight
wrappers for legacy web data-sources using W4F. In
25th Conference on Very Large Database Systems (pp.
738–741). Edingurgh, UK.

Schwartz, R. L. (2007). HTML scraping with XPath.Linux
Magazine, 2007(4).


	Title Page
	Title Page
	page 2


	Semi-Supervised Information Extraction From Variable-Length Web-Page Lists
	page 2
	page 3
	page 4
	page 5
	page 6


