MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Multi-stage Decoding of LDPC Codes

Yige Wang, Jonathan Yedidia, Stark Draper
TR2009-029 July 2009

Abstract

In this paper we present a three-stage decoding strategy that combines quantized and un-
quantized belief propagation (BP) decoders with a mixed-integer linear programming (MILP)
decoder. Each decoding stage is activated only when the preceeding stage fails to converge
to a valid codeword. The faster BP decoding stages are able to correct most errors, yielding
a short average decoding time. Only in the rare cases when the iterative stages fail is the
slower but more powerful MILP decoder used. The MILP decoder iteratively adds binary
constraints until either the maximum likelihood codeword is found or some maximum number
of binary constraints has been added. Simulation results demonstrate a large improvement
in the word error rate (WER) of the proposed multi-stage decoder in comparison to belief
propagation. The improvement is particularly noticeable in the low crossover probability
(error floor) regime. Through introduction of an accelerated ”active-set” version of the quan-
tized BP decoder we significantly speed up the pace of simulation to simulate low density
parity check (LDPC) codes of length up to around 2000 down to a WER of around 10(10)
on the binary symmetric channel. We demonstrate that for certain codes our approach can
efficiently approach the optimal ML decoding performance for low crossover probabilities.

IEFEFE International Symposium on Information Theory

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in
whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that all
such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi Electric
Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and all
applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall require

a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved.

Copyright (© Mitsubishi Electric Research Laboratories, Inc., 2009
201 Broadway, Cambridge, Massachusetts 02139

ISIT 2009, Seoul, Korea, June 28 - July 3, 2009

Multi-stage Decoding of LDPC Codes

Yige Wang Jonathan S. Yedidia Stark C. Draper
t Mitsubishi Electric Research Laboratories, Cambridge, #2439, USA,{yigewang, yedidia@merl.com
* Dept. of ECE, University of Wisconsin, Madison, WI 53706, AlSdraper@ece.wisc.edu

Abstract—In this paper we present a three-stage decoding linear programming (ALP) decoder introduced by Taghavi and
strategy that combines quantized and un-quantized belief wp- Sjegel [4], [10]. Even with the speed-up of ALP decoding,
agation (BP) decoders with a mixed-integer linear programmng yq\vever, LP decoding remains far slower than BP decoding.

(MILP) decoder. Each decoding stage is activated only wherhe . . L
preceding stage fails to converge to a valid codeword. The ster To extend the benefits of MILP decoding to realistic block

BP decoding stages are able to correct most errors, yielding €ngths and the low crossover probability (error floor) negj
short average decoding time. Only in the rare cases when the one needs a very fast decoder, much faster than our previous

iterative stages fail is the slovyer bL.Jt more pOWEIth| MILP de:oqler MILP decoder. Therefore, in this paper we design a combined
used. The MILP decoder iteratively adds binary constraints quantized BP, standard BP, and MILP decoder which is on

until either the maximum likelihood codeword is found or some .
maximum number of binary constraints has been added. average nearly as fast as a pure quantized BP decoder and

Simulation results demonstrate a large improvement in the Performs at Iea@st as _We" as a pure '_V”LP _decode_r. In [11]
word error rate (WER) of the proposed multi-stage decoder in we presented initial ideas in this vein, using a first-stage

comparison to belief propagation. The improvement is parte- BP decoder to tackle most errors, and using a second-stage
ularly noticeable in the low crossover probability (error floor) \iLP decoder only when the first stage fails to converge.

regime. Through introduction of an accelerated “active-s¢& . . . I
version of the quantized BP decoder we significantly speed upe In this paper, we take this philosophy significantly further

pace of simulation to simulate low density parity check (LDRZ) by presenting a combined decoder that pipelines a quantized
codes of length up to around 2000 down to a WER of around BP decoder [12], [13] (called “Algorithm E” in [12]), with

10~ 1% on the binary symmetric channel. We demonstrate that for standard BP and MILP decoders. The MILP decoder is not
certain codes our approach can efficiently approach the opthal activated unless the BP decoder fails to decode, and the BP
ML decoding performance for low crossover probabilities. decoder is not activated unless Algorithm E fails. A diffetre
combination of LP and BP decoders wherein an initial LP
decoder seeds a BP decoder is discussed in [14].
Low-density parity-check (LDPC) codes [1] were first pro- We further introduce a fast version of Algorithm E appro-
posed by Gallager in 1960s. They have received significgniate for simulations on the binary symmetric channel (BSC
attention since the 1990s due to near-Shannon limit ernerthis “active-set” decoder, outgoing messages from bégia
performance. LDPC codes are usually decoded using beligfd check nodes are only updated when incoming messages
propagation (BP). Feldman et al. [2], [3] introduce an altée have been changed. Nodes whose messages require updating
decoding algorithm suitable for binary codes. By relaxingonstitute the set of active nodes. We assume, as is legitima
the binary constraints of maximum likelihood (ML) decodindor simulations of linear codes over the BSC, that the albes
a linear program (LP) is obtained. LP decoding has songedeword is transmitted. When the crossover probability is
attractive features that BP does not. An LP decoder detemall only a tiny fraction of messages from variable and khec
ministically converges and when it outputs a binary soltionodes will be in the incorrect non-zero state. Thus, degpdin
it is guaranteed to be the ML solution. When the output igquires only a small fraction of the computation compaced t
non-binary, a well-defined pseudo-codeword has been foungh ordinary implementation of Algorithm E, and this enables
When the LP’s solution is non-binary, one is motivateds to simulate word error rates (WERs) down to neafly '°
to tighten the original LP relaxation. The goal is to profor LDPC codes with length up to around 2000.
duce a modified LP that eliminates the (formerly) optimum The rest of the paper is organized as follows. In Section I
pseudo-codeword without eliminating any binary vertexege present our multi-stage decoding architecture. In Sec-
hopefully yielding the ML solution. A number of proposalgion IIl, we review the constituent sub-decoders and intisd
add additional linear constraints, e.g., redundant patigcks our active-set version of Algorithm E. And in Section IV, we
(RPCs) [3], [4], [5], [6], or “lift and project” [2]. An altemate give numerical results for several LDPC codes.
approach is to add a small number of integer (actually binary
constraints [7], [8], giving a mixed integer linear program Il. MULTI-STAGE DECODING ARCHITECTURE
(MILP). In [8] we use this approach to find the ML decoding The multi-stage decoder introduced in this paper is a com-
performance of a (155,64) LDPC code introduced in [9]. bination of a (fast) Algorithm E decoder, a BP decoder, and
Unfortunately, LP decoding is at first sight more complea MILP decoder as shown in Fig. 1. When the Algorithm E
than BP decoding. One powerful approach to reducing thecoder fails to decode, the BP decoder is activated. When BP
computational load, that we use here and in [8], isati@ptive decoding fails, the MILP decoder is activated. Our general

I. INTRODUCTION

978-1-4244-4313-0/09/$25.00 ©2009 IEEE 2151

ISIT 2009, Seoul, Korea, June 28 - July 3, 2009

e £ E-BP-MILP 1 symbol maps to-1 soy, € {—1,1}. Let H = [H,,]
sequencd | ! i ! ! ecoss be the M by N parity check matrix of an LDPC code. We
! [Fast active—sdtfailure faillre P — denote the set of variable nodes that participate in check
[Aooribme [8P [T M| umber binar by N(j) = {k : Hjz = 1} and the set of checks in which
fffffff SHOEESS. .\ SueeEss t conans variable k participates agd(k) = {j : Hjx = 1}. We also
acy i (pseudor codeword) denote usingV/(j)\k the setN(j) with codeword symbok
: excluded, and2(k)\j the setQ(k) with check; excluded.

A. Algorithm E

Algorithm E was proposed and analyzed in [12], [13]. It

goal is for the multi-stage decoder to perform as well as®@antizes BP messages intad, 0, or +1 values. Messages
powerful but slow MILP decoder with an average throughp@tnd beliefs associated with thth iteration are denoted as
approaching that of the fast algorithm E decoder. . u%?n message from check node to variable node:

We will want to discuss the incremental decoding perfor- « nos message from variable nodeto check noden
mance of a subset of the decoding stages. Thus, we refer te v,(f): belief of variable node:
the combination of the Algorithm E and_ BP decoders_as Fdr the BSC Algorithm E is carried out as [12, pp. 606-607]:
E-BP decher and to the full decoder, i.e., the Comb'nat'onInitialization: Seti — 1 and the maximum number of
of E-BP with MILP, as an E-BP-M.ILP depoder. Fur'gher, We iteration to1,,,,. For eachm, n, setv®) — Y-
denote an E-BP-MILP decoder usingraximum of ¢ binary Step 1:For 1 < m < M and eachn € A(m), process
constraints as a E-BP-MILB(decoder. Ift = 0, we refer to
the full decoder as an E-BP-LP decoder, because in that case ul) = H Uy(é;l)-
the MILP decoder is actually equivalent to an LP decoder. n’eN(m)\n

We note that in our discussion “decoding failure” indicates
that the specified algorithm fails to output a valid codeword
For example, the BP algorithm may fail to converge, or the
LP decoder may yield a pseudo-codeword. If the algorithm v —sgn| w® .y, + Z u?
outputs a valid, but incorrect codeword, this is a decoder m'€Q(n)\m
“success”, and does not trigger the use of the next stage.
Of course, decoding “successes” that do not agree with the
transmitted codeword contribute to the word error rate (WER

A simple analysis can be used to approximate the average
throughput of any multi-stage decoder. If we assume that a
given decoder takes a processing timelbper block, has a
word error rate of WER, and that nearly all errors are deapdin

Fig. 1. Structure of an E-BP-MILP decoder.

Step 2:For 1 < n < N and eachn € Q(n), process

where sgfe) = —1if 2 <0, sgnz) =0 if x =0, and
sgnz) = 1if = > 0, and whereo(") is a weight chosen to
optimize performance. For example, in [12], the authors
show thatw®) = 2 andw® = 1 for i > 2 optimize the
decoding threshold for a regulés, 6) LDPC code.

failures, then a multi-stage E-BP-MILP decoder will have an 0@ =sgn|w® .y, + Z u'd
approximate average processing time per block of m'€Q(n)
T (1 Tgp TMILP) Step 3: Created® — [A0 g (1)
w1+ WERg=—= + WERE_gp . (1) ep 3:CreateC [en’] such thate,” = 1 if v, <0,
Ty Ty &P = 0if of? > 0 and flip a coin to decide! if v =
Thus, so long as WER < Tg/Tgp and WER;_pp < 0.1f He” =0 ori = Inaz, Stop the decoding iteration

Te/TviLp, the average throughput will be approximately the and outputt!”) as the decoded codeword. Otherwise, set
same as that of Algorithm E, even while the performance is ¢ :=1i+ 1 and return to Step 1.
at least as good as the MILP decoder. B. Active-set Algorithm E

In a standard implementation of Algorithm E, all messages

In the following subsections we discuss the details of eaftom check nodes and variable nodes are updated at each
algorithm in turn. In Section 1lI-A we present backgroundteration. Updating is not needed by the nodes for which the
on Algorithm E. In Section 1lI-B we describe our acceleratethcoming messages have not changed since the last itertion
Algorithm E. In Section I1I-C we briefly discuss LP and MILPfact, at low crossover probabilities, most messages nesex n
decoding (a detailed discussion can be found in [8]). Sihee tto be updated during decoding because the channel only flips
sum-product BP algorithm we use is completely standard, wefew symbols. Algorithmic complexity can thus be reduced
do not devote space to a discussion of it. significantly by updating messages only when necessary.

We use the following notation. Consider a binary length- In simulations wherein one can assume that the same
N linear codeC. A codewordc € C is transmitted over a codeword (normally the all-zeroes codeword) is transihifbe
BSC and the destination obserwesvhere we assume binaryeach block, there is an important additional speed-up plassi
phase shift keying wherein each 0 symbol maps to 1 and eathnitialization. Whenever a block is decoded successftie

IIl. DECODING ALGORITHMS

2152

ISIT 2009, Seoul, Korea, June 28 - July 3, 2009

initialization step for the next block takes ondy(Np) time | Algorithm — | StndE| FastE]] SNdE| Fast B

t d the positions of the newly flipped bits, wherés Crossover probaplltyll 0003 O

0 recor p S y Tipp » WNEres Resuling WER 0.15 0.00055

the crossover probability of the channel. It would otherwis Variable updates || 17694 | 11924 || 2000 | 362

necessarily tak€® (V) time if we allowed arbitrary codewords Check updates 1966 | 1518 222 15

to be transmitted as all received symbols would need to be TABLE |

initialized t0+1 or —1 with equal prOba_blllty' In O-UT case, we COMPARISON OF THE NUMBER OF UPDATES NECESSARY FOR STANDARD

assume that the all-zeroes codeword is transmitted. AND FAST IMPLEMENTATIONS OF ALGORITHM E FOR A LENGTH-1908
To describe active-set Algorithm E, we defidg and A, as RATE-8/9 LDPCCODE OBTAINED FROM[15].

the active sets of variable nodes and check nodes, respectively.)) o)
The active sets contain the nodes for which the outgoiMgerey is the known vector of negative log-likelihood ratios
messages need to be updated. The algorithm is described@g@fined whoseith entry is defined as

Initialization: Seti = 1, A. = () and the maximum number _ Prlyn|cn = 0]
of iteration to I,,,.,. For eachm, n, setv) = 1. For Tn = Prlynlc, =1])
eachn, setvr(lo) = yn. If yp, = —1, setvfﬁ% = —1 for all

When the channel is BSG,, = log[p/(1 —p)] if the received
BPSK symboly,, = —1, and~, = log[(1 — p)/p] if the
received BPSK symba),, = 1.

m € Q(n) and add these: into A..
Step 1:Set.A, = (. For eachm € A. andn € N(m),

process } The variables and constraints in (2) are binary. In [3] a
uﬁffn = H vf,i;/l). relaxed version of the problem is proposed. Each symbol
n’ €N (m)\n ¢, is relaxed to a corresponding varialile which can take
Add all thesen into A,. values between 0 and 1. Each parity check is replaced by
Step 2: SetA. = 0. For eachn € A, andm € Q(n), @& Number of local linear constraints that the codewords must
process satisfy. The intersection of these constraints defines y ok
over which the LP solver operates. The binary vertexes of the
) polytope correspond to codewordsdnWhen the LP optimum

v,(r?n = sgn w® - Yn + Z ugn "
m’€Q(n)\m

is at such a vertex, (2) is satisfied and the ML solution is
found. Non-integer solutions are termed pseudo-codewords
If o8, £ 0850, addm into A.. For a more explicit description of the linear constraintsdis
to implement LP decoding see [3] and for more details on the
adaptive LP decoder see [4] and [8].
o) =sgnlw® .y, + > Wl D. Mixed integer LP (MILP) decoding
meQ(n) When the LP decoding yields a non-binary pseudo-
Step 3: Createt'”) = [ég)] such thate!”) = 1 if o) < ¢, codeword, the MILP decoder we use sequentially introduces
cﬁf) — 0 if o > 0 and flip a coin to decide!? if integer c_onstraints to tighten the LP_ relaxation. In pat&_c
oW = 0. 1f HE® = 0 ori = Ing, is reached, stop WZ |den£|fy the symbol whose valuedlds ﬂoss_si()té. For this
the decoding iteration and outpat” as the decoded index, n* = argmin, |b, —0.5], we add t € binary constraint
codeword. Otherwise, sét— i + 1 and return to Step 1. bn~ € {0,1} and re-run the LP decoder. Since many LP solvers

Table | shows the average number of updates required Sk accommodate integer constraints (we use GLPK [16]

standard implementation of Algorithm E and the fast activélr-]ana@jeOI by a Python script) these constraints are easy to

set implementation of Algorithm E for a length-1908 rat9-8/3.dd' Thed |_ntefg|r|a_t|oré of this strategy with ALP decoding is
LDPC code obtained from [15]. In Table I, “variable updates iscussed in full in [8].

represents the average number of variable nodes processed V. SIMULATION RESULTS

in Step 2 for each block and “check updates” means the|, s section we present performance results for the decod
average number of check nodes processed in Step 1 for g, orithms discussed in this paper for several LDPC sode
block. These statistics are obtained by averaging a¥er yer the binary symmetric channel (BSC). In Algorithm E and

transmissions of the all-zeroes codeword. BP we set the maximum number of iterationsfig,, = 50
Table I shows that the fast active-set Algorithm E becomes,y ;se weights) = 2 andw® = 1 for i > 2.

increasingly effective as the crossover probability dases.

This is especially useful for investigation of the error flad A. Decoding Performance

a code. First of all, our simulations show that a combined decoder
C. LP and adaptive LP decoding always performs at least as well as its constituent sub-
decoders. In Fig. 2 we plot the WER of the lendth7 rate-

8.77 LDPC code obtained from [15]. Notice that standard BP
decoding and E-BP have nearly the same performance. This
minimize ~y’¢ subjectto ¢cC (2) means that for this code using the fast active-set Algorithm

The derivation of LP decoding starts with the ML decodin
problem:

2153

ISIT 2009, Seoul, Korea, June 28 - July 3, 2009

WER

—A—LP
—t+—BP
—C—E-BP E

—+—BP

—C—E-BP

—A—LP 107E

—*—E-BP-LP q —*—E-BP-LP

—#— E-BP-MILP(1) " —A&— E-BP-MILP(1)

—8— E-BP-MILP(3) 10k —B— E-BP-MILP(2)

—¥— E-BP-MILP(6) 4 —%¥— E-BP-MILP(6)

—— E-BP-MILP(10) —— E-BP-MILP(10)

—&— Estimated ML lower bound . —&— Estimated ML lower bound

-10 Il Il Il Il I I L) L L L L L

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 10 0.035 0.04 0.045 0.05 0.055
Crossover probability Crossover probability

Fig. 2. WER performance of a length-1057 rate-0.77 LDPC aultained Fig. 3. WER performance of a length-1056 rate-1/2 QC-LDP@ecosing
from [15] using BP, LP, E-BP, and E-BP-MILP decoding algumits. LP, BP, E-BP and E-BP-MILP decoding algorithms.

E as a first stage decoder prior to BP does not significan 10
change the overall decoding performance, while it spee
up simulations considerably. Similarly, E-BP-LP perform ,
slightly better than standard LP decoding. As we shall s 07
below, for other codes the combined E-BP-LP decoder h
a more significant performance improvement compared
standard LP decoding, while also being faster. 10°
In Fig. 2 we also plot the performance of E-BP-MILP(
decoder as a function of the maximum number of MILI :
binary constraintg and compare to a lower bound on the 0wk
ML performance for comparison. We find that for= 10,
the performance of the E-BP-MILP(10) decoder is close - B
the ML lower bound, and at low crossover probabilities ol A |
the performance of the E-BP-MILB(is quite close to the i o]
estimate even for smaller valuestofOur lower bound on ML 10 oot 002 0008 0002 0005
decoding performance is estimated by counting the number crossoverprobabily
non-all-zeroes codewords decoded by E-BP-MILP that have
higher likelihood than the transmitted all-zeroes codelvand Fig. 4. WER performance of a length-1908 rate-8/9 LDPC cobigioed
dividing by the total number of processed blocks. from [15] using BP, LP, E-BP, and E-BP-MILP decoding aldarits.
Figure 3 depicts the WER performance of a rate-1/2 girth-
10 regular (3,6) quasi-cyclic (QC) LDPC code of block-ldngtperformance. LP is slightly worse than BP at high, but better
1056 constructed using the hill-climbing girth-maximigin at low, crossover probabilities. No ML errors were observed
algorithm described in [17]. For this code, we found 33 Mlduring simulation. In addition, E-BP-MILPY decoding per-
errors at crossover probabilit§.035. This is sufficient to formance improves consistently agncreases. At a crossover
estimate a lower bound on ML decoding performance amdobability of 0.001, the WER of E-BP-MILP(10) is four
provides an upper bound @ff on the minimum distance of orders of magnitude lower than BP, and our simulations are
the code. Again the WER of E-BP-MILP(10) approaches tHast enough to estimate the WER down to neafy '°.
optimal (ML) performance for low crossover probabilities. Figure 5 shows the WER performance of a length-1000 rate-
In Fig. 3 we also observe that E-BP slightly out-performs/2 random LDPC code. This code was intentionally designed
standard BP, while E-BP-LP rather significantly out-pemfer to have a prominent error floor (girth-6 cycles that give rise
pure LP decoding. It appears that, for this code, E-BP-LB trapping sets were introduced), but its minimum distance
decoding performs better because the set of blocks thaecasppears to have remained large as no undetected errors were
the BP and the LP failures are, to some extent, disjoint setound. For this code the LP and combined decoders improve
Figure 4 plots the WER of a length-1908 rate-8/9 LDP@erformance very significantly at low crossover probabiit
code from [15]. For this code BP and E-BP again have similathere the BP decoder suffers from an error floor.

WER

—A—LP
——8P]
—O—E-BP E
—<—E-BP-LP 3
—%—E-BP-MILP(1) |

2154

—A—LP
——8P
—O—E-BP
—x—E-BP-LP
—#%— E-BP-MILP(1)| §
—7— E-BP-MILP(2)

ISIT 2009, Seoul, Korea, June 28 - July 3, 2009

[Crossovef fastE | BP | LP [MILP(10)] E-BP |E-BP-MILP(10)]

0.001 |0.0003370.0095/0.16| 0.65 [0.000337 0.000338
0.002 | 0.0011 | 0.118(0.80| 8.68 0.0014 0.0019
TABLE Il

AVERAGE PROCESSING TIME PER BLOCK IN SECONDS FOR FAST
ALGORITHM E, BP, LP,PUREMILP(10), E-BP,AND E-BP-MILP(10).

decoders discussed in this paper. As a sample calculation co
sider the BSC with crossover probability 0.001. The average
processing time per block using E-BP (900337 seconds.
Since the WER of E-BP at crossover probability 0.001 is
2 x 1075, and assuming each of these errors is detectable, on
average two blocks out of each million blocks will be fed te th
MILP decoder. Through simulation we find that the average

—H— E-BP-MILP(3)

I I I I I 1
0.045 0.05 0.055 0.06 0.065 0.07

Crossover probability

I I
0.035 0.04

processing time per block of the MILP(10) decoder0ig5
seconds. Thus, the average processing time per block using E
BP-

MILP is (2 x 0.65+10° x 0.000337) /10° = 0.000338 sec-

onds. Hence, at low enough crossover probabilities theageer

Fig. 5. WER performance of a length-1000 rate-1/2 random CQi®de
using BP, E-BP, and E-BP-MILP decoding algorithms.

(Mm] T [2 [3] 4][5[6] 789]10]
[[3.86]9.47] 19.2] 35.5] 57.6] 93.8] 164.6] 230.6] 363.4 617.4]

(1]

TABLE Il 2]
MILP PROCESSING TIME PER BLOCK IN SECONDSVy,;,, IS THE NUMBER
OF BINARY CONSTRAINTS REQUIRED TO DECODE SUCCESSFULLY [3]

B. Processing Time (4]

The above simulations show that typically the E—BP—MILP[S]
decoder significantly out-performs a standard BP decoder.
In this sub-section, we discuss the processing times for our
decoders. The most important point is that, as is suggested R‘»]
the analysis given in equation (1), the average processirg t
of the E-BP-MILP decoder is indeed often only slightly longe
than that of its fastest component (the active-set Algorith (7]
E decoder), although the worst case for a single block is
controlled by the processing time of its slowest componerig]
(the MILP decoder).

In our implementations, the E-BP and standard BP decodefs
are programmed in C and the MILP subroutine is programmed
in Python, calling the C-language GLPK [16] linear progran{—
ming library. All the processing time statistics are obéain
using the same machine (a mini-mac). (11]

To illustrate, we take data from the simulation of the lergth
1908 LDPC code. As mentioned, tlvorst-case processing [12]
time per block is dominated by the processing time of the
MILP decoder. This worst-case time grows rapidly with thﬁ_3
number of binary constraints required to decode as shown
in Table Il. There we tabulate for the length-1908 code &l
crossover probability of 0.002, the average MILP decoder
processing time for blocks that required a given numBgg, [15]
of binary constraints before MILP decoding is successful. 6]

On the other hand, the average processing time of E-Bfp
MILP(10) is nearly the same as active-set Algorithm E. In
Table Il we tabulate the processing times for the variety of

2155

throughput of the E-BP-MILP(10) will approach that of Al-
gorithm E.

REFERENCES

R. G. Gallager]nformation Theory and Reliable Communication. John
Wiley and Sons, 1968.

J. Feldman, “Decoding error-correcting codes via limpeogramming,”
Ph.D. dissertation, Mass. Instit. of Tech., 2003.

J. Feldman, M. J. Wainwright, and D. Karger, “Using lingarogram-
ming to decoding binary linear codedEEE Trans. Inform. Theory,
vol. 51, pp. 954-972, Mar. 2005.

M.-H. N. Taghavi and P. H. Siegel, “Adaptive linear pragrming
decoding,” inProc. Int. Symp. Inform. Theory, Seattle, USA, July 2006,
pp. 1374-1378.

A. Tanatmis, S. Ruzika, H. Hamacher, M. Punekar, F. Kderdnd
N. Wehn, “A separation algorithm for improved LP-decodinfglioear
block codes,” inProc. Int. Symp. Turbo Codes and Related Topics,
Lausanne, Switzerland, Sept. 2008.

M. Miwa, T. Wadayama, and I. Takumi, “A cutting plane methbased
on redundant rows for improving fractional distance,Firoc. Int. Symp.
Turbo Codes and Related Topics, Lausanne, Switzerland, Sept. 2008.
K. Yang, J. Feldman, and X. Wang, “Nonlinear programmapgroaches
to decoding low-density parity-check codesEEE J. Sdlect. Areas
Commun., vol. 24, pp. 1603-1613, Aug. 2006.

S. C. Draper, J. S. Yedidia, and Y. Wang, “ML decoding viaead-
integer adaptive linear programming decoding,” Rnoc. Int. Symp.
Inform. Theory, Nice, France, July 2007.

R. M. Tanner, D. Sridhara, and T. Fuja, “A class of growmustured
LDPC codes,” inProc. ICSTA, Ambleside, UK, 2001.

10] M.-H. N. Taghavi and P. H. Siegel, “Adaptive methods fiamear

programming decoding,JEEE Trans. Inform. Theory, vol. 54, no. 12,
pp. 5396-5410, Dec. 2008.

S. C. Draper and J. S. Yedidia, “Complexity scaling ofket-integer
linear programming decoding,” itJCSD Workshop Inform. Theory
Apps., San Diego, Jan. 2008.

T. J. Richardson and R. Urbanke, “The capacity of lowmsity parity-
check codes under message-passing decoditEE Trans. Inform.
Theory, vol. 47, pp. 599-618, Feb. 2001.

] M. Mitzenmacher, “A note on low density parity check esdfor

erasures and errors,” SRC Technical Note, Tech. Rep. 19284998.
M. Lunglmayr, J. Berkmann, and M. Huemer, “Combinedeén pro-
gramming/belief propagation decodeEectron. Lett., vol. 44, no. 12,
pp. 751-752, June 2008.

D. J. C. MacKay, “Encyclopedia of sparse graph codesilable at
http://www.inference.phy.cam.ac.uk/mackay/codes/ial.

“GNU Linear Programming Kit,” http://www.gnu.org/#aare/glpk.

Y. Wang, J. S. Yedidia, and S. C. Draper, “Constructidrhigh-girth
QC-LDPC codes,” irProc. Int. Symp. Turbo Codes and Related Topics,
Lausanne, Switzerland, Sept. 2008.

	Title Page
	page 2

	/projects/www/html/publications/docs/TR2009-029.pdf
	page 2
	page 3
	page 4
	page 5

