
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Multi-stage Decoding of LDPC Codes

Yige Wang, Jonathan Yedidia, Stark Draper

TR2009-029 July 2009

Abstract
In this paper we present a three-stage decoding strategy that combines quantized and un-
quantized belief propagation (BP) decoders with a mixed-integer linear programming (MILP)
decoder. Each decoding stage is activated only when the preceeding stage fails to converge
to a valid codeword. The faster BP decoding stages are able to correct most errors, yielding
a short average decoding time. Only in the rare cases when the iterative stages fail is the
slower but more powerful MILP decoder used. The MILP decoder iteratively adds binary
constraints until either the maximum likelihood codeword is found or some maximum number
of binary constraints has been added. Simulation results demonstrate a large improvement
in the word error rate (WER) of the proposed multi-stage decoder in comparison to belief
propagation. The improvement is particularly noticeable in the low crossover probability
(error floor) regime. Through introduction of an accelerated ”active-set” version of the quan-
tized BP decoder we significantly speed up the pace of simulation to simulate low density
parity check (LDPC) codes of length up to around 2000 down to a WER of around 10(10)
on the binary symmetric channel. We demonstrate that for certain codes our approach can
efficiently approach the optimal ML decoding performance for low crossover probabilities.

IEEE International Symposium on Information Theory

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in
whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that all
such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi Electric
Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and all
applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall require
a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved.

Copyright c© Mitsubishi Electric Research Laboratories, Inc., 2009
201 Broadway, Cambridge, Massachusetts 02139

Multi-stage Decoding of LDPC Codes
Yige Wang† Jonathan S. Yedidia†, Stark C. Draper∗

† Mitsubishi Electric Research Laboratories, Cambridge, MA02139, USA,{yigewang, yedidia}@merl.com
∗ Dept. of ECE, University of Wisconsin, Madison, WI 53706, USA, sdraper@ece.wisc.edu

Abstract—In this paper we present a three-stage decoding
strategy that combines quantized and un-quantized belief prop-
agation (BP) decoders with a mixed-integer linear programming
(MILP) decoder. Each decoding stage is activated only when the
preceding stage fails to converge to a valid codeword. The faster
BP decoding stages are able to correct most errors, yieldinga
short average decoding time. Only in the rare cases when the
iterative stages fail is the slower but more powerful MILP decoder
used. The MILP decoder iteratively adds binary constraints
until either the maximum likelihood codeword is found or some
maximum number of binary constraints has been added.

Simulation results demonstrate a large improvement in the
word error rate (WER) of the proposed multi-stage decoder in
comparison to belief propagation. The improvement is partic-
ularly noticeable in the low crossover probability (error floor)
regime. Through introduction of an accelerated “active-set”
version of the quantized BP decoder we significantly speed upthe
pace of simulation to simulate low density parity check (LDPC)
codes of length up to around 2000 down to a WER of around
10

−10 on the binary symmetric channel. We demonstrate that for
certain codes our approach can efficiently approach the optimal
ML decoding performance for low crossover probabilities.

I. I NTRODUCTION

Low-density parity-check (LDPC) codes [1] were first pro-
posed by Gallager in 1960s. They have received significant
attention since the 1990s due to near-Shannon limit error
performance. LDPC codes are usually decoded using belief
propagation (BP). Feldman et al. [2], [3] introduce an alternate
decoding algorithm suitable for binary codes. By relaxing
the binary constraints of maximum likelihood (ML) decoding
a linear program (LP) is obtained. LP decoding has some
attractive features that BP does not. An LP decoder deter-
ministically converges and when it outputs a binary solution,
it is guaranteed to be the ML solution. When the output is
non-binary, a well-defined pseudo-codeword has been found.

When the LP’s solution is non-binary, one is motivated
to tighten the original LP relaxation. The goal is to pro-
duce a modified LP that eliminates the (formerly) optimum
pseudo-codeword without eliminating any binary vertexes,
hopefully yielding the ML solution. A number of proposals
add additional linear constraints, e.g., redundant parity-checks
(RPCs) [3], [4], [5], [6], or “lift and project” [2]. An alternate
approach is to add a small number of integer (actually binary)
constraints [7], [8], giving a mixed integer linear program
(MILP). In [8] we use this approach to find the ML decoding
performance of a (155,64) LDPC code introduced in [9].

Unfortunately, LP decoding is at first sight more complex
than BP decoding. One powerful approach to reducing the
computational load, that we use here and in [8], is theadaptive

linear programming (ALP) decoder introduced by Taghavi and
Siegel [4], [10]. Even with the speed-up of ALP decoding,
however, LP decoding remains far slower than BP decoding.

To extend the benefits of MILP decoding to realistic block
lengths and the low crossover probability (error floor) regime,
one needs a very fast decoder, much faster than our previous
MILP decoder. Therefore, in this paper we design a combined
quantized BP, standard BP, and MILP decoder which is on
average nearly as fast as a pure quantized BP decoder and
performs at least as well as a pure MILP decoder. In [11]
we presented initial ideas in this vein, using a first-stage
BP decoder to tackle most errors, and using a second-stage
MILP decoder only when the first stage fails to converge.
In this paper, we take this philosophy significantly further
by presenting a combined decoder that pipelines a quantized
BP decoder [12], [13] (called “Algorithm E” in [12]), with
standard BP and MILP decoders. The MILP decoder is not
activated unless the BP decoder fails to decode, and the BP
decoder is not activated unless Algorithm E fails. A different
combination of LP and BP decoders wherein an initial LP
decoder seeds a BP decoder is discussed in [14].

We further introduce a fast version of Algorithm E appro-
priate for simulations on the binary symmetric channel (BSC).
In this “active-set” decoder, outgoing messages from variable
and check nodes are only updated when incoming messages
have been changed. Nodes whose messages require updating
constitute the set of active nodes. We assume, as is legitimate
for simulations of linear codes over the BSC, that the all-zeroes
codeword is transmitted. When the crossover probability is
small only a tiny fraction of messages from variable and check
nodes will be in the incorrect non-zero state. Thus, decoding
requires only a small fraction of the computation compared to
an ordinary implementation of Algorithm E, and this enables
us to simulate word error rates (WERs) down to nearly10−10

for LDPC codes with length up to around 2000.
The rest of the paper is organized as follows. In Section II

we present our multi-stage decoding architecture. In Sec-
tion III, we review the constituent sub-decoders and introduce
our active-set version of Algorithm E. And in Section IV, we
give numerical results for several LDPC codes.

II. M ULTI -STAGE DECODING ARCHITECTURE

The multi-stage decoder introduced in this paper is a com-
bination of a (fast) Algorithm E decoder, a BP decoder, and
a MILP decoder as shown in Fig. 1. When the Algorithm E
decoder fails to decode, the BP decoder is activated. When BP
decoding fails, the MILP decoder is activated. Our general

failure

number binary
constraints

 If fail (pseudo−codeword),
add another binary constraint

Fast active−set
Algorithm E

received
sequence

or reach maxBP MILP

successsuccess

failure

E−BP

success

E−BP−MILP

Fig. 1. Structure of an E-BP-MILP decoder.

goal is for the multi-stage decoder to perform as well as a
powerful but slow MILP decoder with an average throughput
approaching that of the fast algorithm E decoder.

We will want to discuss the incremental decoding perfor-
mance of a subset of the decoding stages. Thus, we refer to
the combination of the Algorithm E and BP decoders as an
E-BP decoder and to the full decoder, i.e., the combination
of E-BP with MILP, as an E-BP-MILP decoder. Further, we
denote an E-BP-MILP decoder using amaximum of t binary
constraints as a E-BP-MILP(t) decoder. Ift = 0, we refer to
the full decoder as an E-BP-LP decoder, because in that case
the MILP decoder is actually equivalent to an LP decoder.

We note that in our discussion “decoding failure” indicates
that the specified algorithm fails to output a valid codeword.
For example, the BP algorithm may fail to converge, or the
LP decoder may yield a pseudo-codeword. If the algorithm
outputs a valid, but incorrect codeword, this is a decoder
“success”, and does not trigger the use of the next stage.
Of course, decoding “successes” that do not agree with the
transmitted codeword contribute to the word error rate (WER).

A simple analysis can be used to approximate the average
throughput of any multi-stage decoder. If we assume that a
given decoder takes a processing time ofT per block, has a
word error rate of WER, and that nearly all errors are decoding
failures, then a multi-stage E-BP-MILP decoder will have an
approximate average processing time per block of

TE

(

1 + WERE
TBP

TE
+ WERE−BP

TMILP

TE

)

. (1)

Thus, so long as WERE ≪ TE/TBP and WERE−BP ≪
TE/TMILP, the average throughput will be approximately the
same as that of Algorithm E, even while the performance is
at least as good as the MILP decoder.

III. D ECODING ALGORITHMS

In the following subsections we discuss the details of each
algorithm in turn. In Section III-A we present background
on Algorithm E. In Section III-B we describe our accelerated
Algorithm E. In Section III-C we briefly discuss LP and MILP
decoding (a detailed discussion can be found in [8]). Since the
sum-product BP algorithm we use is completely standard, we
do not devote space to a discussion of it.

We use the following notation. Consider a binary length-
N linear codeC. A codewordc ∈ C is transmitted over a
BSC and the destination observesy, where we assume binary
phase shift keying wherein each 0 symbol maps to 1 and each

1 symbol maps to−1 so yn ∈ {−1, 1}. Let H = [Hmn]
be theM by N parity check matrix of an LDPC code. We
denote the set of variable nodes that participate in checkj
by N (j) = {k : Hjk = 1} and the set of checks in which
variablek participates asQ(k) = {j : Hjk = 1}. We also
denote usingN (j)\k the setN (j) with codeword symbolk
excluded, andQ(k)\j the setQ(k) with checkj excluded.

A. Algorithm E

Algorithm E was proposed and analyzed in [12], [13]. It
quantizes BP messages into−1, 0, or +1 values. Messages
and beliefs associated with theith iteration are denoted as

• u
(i)
mn: message from check nodem to variable noden

• v
(i)
mn: message from variable noden to check nodem

• v
(i)
n : belief of variable noden

For the BSC Algorithm E is carried out as [12, pp. 606-607]:

Initialization: Set i = 1 and the maximum number of
iteration toImax. For eachm, n, setv(0)

mn = yn.
Step 1: For 1 ≤ m ≤ M and eachn ∈ N (m), process

u(i)
mn =

∏

n′∈N (m)\n

v
(i−1)
mn′ .

Step 2: For 1 ≤ n ≤ N and eachm ∈ Q(n), process

v(i)
mn = sgn



w(i) · yn +
∑

m′∈Q(n)\m

u
(i)
m′n



 ,

where sgn(x) = −1 if x < 0, sgn(x) = 0 if x = 0, and
sgn(x) = 1 if x > 0, and wherew(i) is a weight chosen to
optimize performance. For example, in [12], the authors
show thatw(1) = 2 andw(i) = 1 for i ≥ 2 optimize the
decoding threshold for a regular(3, 6) LDPC code.

v(i)
n = sgn



w(i) · yn +
∑

m′∈Q(n)

u
(i)
m′n



 .

Step 3: Createĉ(i) = [ĉ
(i)
n] such thatĉ(i)

n = 1 if v
(i)
n < 0,

ĉ
(i)
n = 0 if v

(i)
n > 0 and flip a coin to decidêc(i)

n if v
(i)
n =

0. If Hĉ(i) = 0 or i = Imax, stop the decoding iteration
and output̂c(i) as the decoded codeword. Otherwise, set
i := i + 1 and return to Step 1.

B. Active-set Algorithm E

In a standard implementation of Algorithm E, all messages
from check nodes and variable nodes are updated at each
iteration. Updating is not needed by the nodes for which the
incoming messages have not changed since the last iteration. In
fact, at low crossover probabilities, most messages never need
to be updated during decoding because the channel only flips
a few symbols. Algorithmic complexity can thus be reduced
significantly by updating messages only when necessary.

In simulations wherein one can assume that the same
codeword (normally the all-zeroes codeword) is transmitted for
each block, there is an important additional speed-up possible
at initialization. Whenever a block is decoded successfully, the

initialization step for the next block takes onlyO(Np) time
to record the positions of the newly flipped bits, wherep is
the crossover probability of the channel. It would otherwise
necessarily takeO(N) time if we allowed arbitrary codewords
to be transmitted as all received symbols would need to be
initialized to+1 or −1 with equal probability. In our case, we
assume that the all-zeroes codeword is transmitted.

To describe active-set Algorithm E, we defineAv andAc as
theactive sets of variable nodes and check nodes, respectively.
The active sets contain the nodes for which the outgoing
messages need to be updated. The algorithm is described as:

Initialization: Seti = 1, Ac = ∅ and the maximum number
of iteration to Imax. For eachm, n, set v(0)

mn = 1. For
eachn, setv(0)

n = yn. If yn = −1, setv(0)
mn = −1 for all

m ∈ Q(n) and add thesem into Ac.
Step 1: Set Av = ∅. For eachm ∈ Ac and n ∈ N (m),

process

u(i)
mn =

∏

n′∈N (m)\n

v
(i−1)
mn′ .

Add all thesen into Av.
Step 2: Set Ac = ∅. For eachn ∈ Av and m ∈ Q(n),

process

v(i)
mn = sgn



w(i) · yn +
∑

m′∈Q(n)\m

u
(i)
m′n



 .

If v
(i)
mn 6= v

(i−1)
mn , addm into Ac.

v(i)
n = sgn



w(i) · yn +
∑

m′∈Q(n)

u
(i)
m′n



 .

Step 3: Createĉ(i) = [ĉ
(i)
n] such thatĉ(i)

n = 1 if v
(i)
n < 0,

ĉ
(i)
n = 0 if v

(i)
n > 0 and flip a coin to decidêc(i)

n if
v
(i)
n = 0. If Hĉ(i) = 0 or i = Imax is reached, stop

the decoding iteration and outputĉ(i) as the decoded
codeword. Otherwise, seti := i+1 and return to Step 1.

Table I shows the average number of updates required by a
standard implementation of Algorithm E and the fast active-
set implementation of Algorithm E for a length-1908 rate-8/9
LDPC code obtained from [15]. In Table I, “variable updates”
represents the average number of variable nodes processed
in Step 2 for each block and “check updates” means the
average number of check nodes processed in Step 1 for each
block. These statistics are obtained by averaging over105

transmissions of the all-zeroes codeword.
Table I shows that the fast active-set Algorithm E becomes

increasingly effective as the crossover probability decreases.
This is especially useful for investigation of the error floor of
a code.

C. LP and adaptive LP decoding

The derivation of LP decoding starts with the ML decoding
problem:

minimize γT ĉ subject to ĉ ∈ C (2)

Algorithm Stnd E Fast E Stnd E Fast E

Crossover probability 0.003 0.001
Resulting WER 0.15 0.00055
Variable updates 17694 11924 2000 362
Check updates 1966 1518 222 15

TABLE I
COMPARISON OF THE NUMBER OF UPDATES NECESSARY FOR STANDARD

AND FAST IMPLEMENTATIONS OFALGORITHM E FOR A LENGTH-1908
RATE-8/9 LDPCCODE OBTAINED FROM[15].

whereγ is the known vector of negative log-likelihood ratios
defined whosenth entry is defined as

γn = log

(

Pr[yn|cn = 0]

Pr[yn|cn = 1]

)

.

When the channel is BSC,γn = log[p/(1−p)] if the received
BPSK symbolyn = −1, and γn = log[(1 − p)/p] if the
received BPSK symbolyn = 1.

The variables and constraints in (2) are binary. In [3] a
relaxed version of the problem is proposed. Each symbol
ĉn is relaxed to a corresponding variableb̂n which can take
values between 0 and 1. Each parity check is replaced by
a number of local linear constraints that the codewords must
satisfy. The intersection of these constraints defines a polytope
over which the LP solver operates. The binary vertexes of the
polytope correspond to codewords inC. When the LP optimum
is at such a vertex, (2) is satisfied and the ML solution is
found. Non-integer solutions are termed pseudo-codewords.
For a more explicit description of the linear constraints used
to implement LP decoding see [3] and for more details on the
adaptive LP decoder see [4] and [8].

D. Mixed integer LP (MILP) decoding

When the LP decoding yields a non-binary pseudo-
codeword, the MILP decoder we use sequentially introduces
integer constraints to tighten the LP relaxation. In particular,
we identify the symbol whose value is closest to0.5. For this
index,n∗ = argminn |b̂n − 0.5|, we add the binary constraint
b̂n∗ ∈ {0, 1} and re-run the LP decoder. Since many LP solvers
can accommodate integer constraints (we use GLPK [16]
managed by a Python script) these constraints are easy to
add. The integration of this strategy with ALP decoding is
discussed in full in [8].

IV. SIMULATION RESULTS

In this section we present performance results for the decod-
ing algorithms discussed in this paper for several LDPC codes
over the binary symmetric channel (BSC). In Algorithm E and
BP we set the maximum number of iterations toImax = 50
and use weightsw(1) = 2 andw(i) = 1 for i ≥ 2.

A. Decoding Performance

First of all, our simulations show that a combined decoder
always performs at least as well as its constituent sub-
decoders. In Fig. 2 we plot the WER of the length-1057 rate-
0.77 LDPC code obtained from [15]. Notice that standard BP
decoding and E-BP have nearly the same performance. This
means that for this code using the fast active-set Algorithm

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016
10

−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Crossover probability

W
E

R

BP
E−BP
LP
E−BP−LP
E−BP−MILP(1)
E−BP−MILP(3)
E−BP−MILP(6)
E−BP−MILP(10)
Estimated ML lower bound

Fig. 2. WER performance of a length-1057 rate-0.77 LDPC codeobtained
from [15] using BP, LP, E-BP, and E-BP-MILP decoding algorithms.

E as a first stage decoder prior to BP does not significantly
change the overall decoding performance, while it speeds
up simulations considerably. Similarly, E-BP-LP performs
slightly better than standard LP decoding. As we shall see
below, for other codes the combined E-BP-LP decoder has
a more significant performance improvement compared to
standard LP decoding, while also being faster.

In Fig. 2 we also plot the performance of E-BP-MILP(t)
decoder as a function of the maximum number of MILP
binary constraintst and compare to a lower bound on the
ML performance for comparison. We find that fort = 10,
the performance of the E-BP-MILP(10) decoder is close to
the ML lower bound, and at low crossover probabilities,
the performance of the E-BP-MILP(t) is quite close to the
estimate even for smaller values oft. Our lower bound on ML
decoding performance is estimated by counting the number of
non-all-zeroes codewords decoded by E-BP-MILP that have
higher likelihood than the transmitted all-zeroes codeword, and
dividing by the total number of processed blocks.

Figure 3 depicts the WER performance of a rate-1/2 girth-
10 regular (3,6) quasi-cyclic (QC) LDPC code of block-length
1056 constructed using the hill-climbing girth-maximizing
algorithm described in [17]. For this code, we found 33 ML
errors at crossover probability0.035. This is sufficient to
estimate a lower bound on ML decoding performance and
provides an upper bound of24 on the minimum distance of
the code. Again the WER of E-BP-MILP(10) approaches the
optimal (ML) performance for low crossover probabilities.

In Fig. 3 we also observe that E-BP slightly out-performs
standard BP, while E-BP-LP rather significantly out-performs
pure LP decoding. It appears that, for this code, E-BP-LP
decoding performs better because the set of blocks that cause
the BP and the LP failures are, to some extent, disjoint sets.

Figure 4 plots the WER of a length-1908 rate-8/9 LDPC
code from [15]. For this code BP and E-BP again have similar

0.035 0.04 0.045 0.05 0.055
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Crossover probability

W
E

R

LP
BP
E−BP
E−BP−LP
E−BP−MILP(1)
E−BP−MILP(2)
E−BP−MILP(6)
E−BP−MILP(10)
Estimated ML lower bound

Fig. 3. WER performance of a length-1056 rate-1/2 QC-LDPC code using
LP, BP, E-BP and E-BP-MILP decoding algorithms.

0.001 0.002 0.003 0.004 0.005
10

−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Crossover probability

W
E

R

LP
BP
E−BP
E−BP−LP
E−BP−MILP(1)
E−BP−MILP(5)
E−BP−MILP(8)
E−BP−MILP(10)

Fig. 4. WER performance of a length-1908 rate-8/9 LDPC code obtained
from [15] using BP, LP, E-BP, and E-BP-MILP decoding algorithms.

performance. LP is slightly worse than BP at high, but better
at low, crossover probabilities. No ML errors were observed
during simulation. In addition, E-BP-MILP(t) decoding per-
formance improves consistently ast increases. At a crossover
probability of 0.001, the WER of E-BP-MILP(10) is four
orders of magnitude lower than BP, and our simulations are
fast enough to estimate the WER down to nearly10−10.

Figure 5 shows the WER performance of a length-1000 rate-
1/2 random LDPC code. This code was intentionally designed
to have a prominent error floor (girth-6 cycles that give rise
to trapping sets were introduced), but its minimum distance
appears to have remained large as no undetected errors were
found. For this code the LP and combined decoders improve
performance very significantly at low crossover probabilities
where the BP decoder suffers from an error floor.

0.035 0.04 0.045 0.05 0.055 0.06 0.065 0.07
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Crossover probability

W
E

R

LP
BP
E−BP
E−BP−LP
E−BP−MILP(1)
E−BP−MILP(2)
E−BP−MILP(3)

Fig. 5. WER performance of a length-1000 rate-1/2 random LDPC code
using BP, E-BP, and E-BP-MILP decoding algorithms.

Nbin 1 2 3 4 5 6 7 8 9 10

3.86 9.47 19.2 35.5 57.6 93.8 164.6 230.6 363.4 617.4

TABLE II
MILP PROCESSING TIME PER BLOCK IN SECONDS. Nbin IS THE NUMBER

OF BINARY CONSTRAINTS REQUIRED TO DECODE SUCCESSFULLY.

B. Processing Time

The above simulations show that typically the E-BP-MILP
decoder significantly out-performs a standard BP decoder.
In this sub-section, we discuss the processing times for our
decoders. The most important point is that, as is suggested by
the analysis given in equation (1), the average processing time
of the E-BP-MILP decoder is indeed often only slightly longer
than that of its fastest component (the active-set Algorithm
E decoder), although the worst case for a single block is
controlled by the processing time of its slowest component
(the MILP decoder).

In our implementations, the E-BP and standard BP decoders
are programmed in C and the MILP subroutine is programmed
in Python, calling the C-language GLPK [16] linear program-
ming library. All the processing time statistics are obtained
using the same machine (a mini-mac).

To illustrate, we take data from the simulation of the length-
1908 LDPC code. As mentioned, theworst-case processing
time per block is dominated by the processing time of the
MILP decoder. This worst-case time grows rapidly with the
number of binary constraints required to decode as shown
in Table II. There we tabulate for the length-1908 code at
crossover probability of 0.002, the average MILP decoder
processing time for blocks that required a given numberNbin

of binary constraints before MILP decoding is successful.
On the other hand, the average processing time of E-BP-

MILP(10) is nearly the same as active-set Algorithm E. In
Table III we tabulate the processing times for the variety of

Crossover fast-E BP LP MILP(10) E-BP E-BP-MILP(10)

0.001 0.000332 0.0095 0.16 0.65 0.000337 0.000338
0.002 0.0011 0.118 0.80 8.68 0.0014 0.0019

TABLE III
AVERAGE PROCESSING TIME PER BLOCK IN SECONDS FOR FAST

ALGORITHM E, BP, LP,PUREMILP(10), E-BP,AND E-BP-MILP(10).

decoders discussed in this paper. As a sample calculation con-
sider the BSC with crossover probability 0.001. The average
processing time per block using E-BP is0.000337 seconds.
Since the WER of E-BP at crossover probability 0.001 is
2× 10−6, and assuming each of these errors is detectable, on
average two blocks out of each million blocks will be fed to the
MILP decoder. Through simulation we find that the average
processing time per block of the MILP(10) decoder is0.65
seconds. Thus, the average processing time per block using E-
BP-MILP is (2×0.65+106×0.000337)/106 = 0.000338 sec-
onds. Hence, at low enough crossover probabilities the average
throughput of the E-BP-MILP(10) will approach that of Al-
gorithm E.

REFERENCES

[1] R. G. Gallager,Information Theory and Reliable Communication. John
Wiley and Sons, 1968.

[2] J. Feldman, “Decoding error-correcting codes via linear programming,”
Ph.D. dissertation, Mass. Instit. of Tech., 2003.

[3] J. Feldman, M. J. Wainwright, and D. Karger, “Using linear program-
ming to decoding binary linear codes,”IEEE Trans. Inform. Theory,
vol. 51, pp. 954–972, Mar. 2005.

[4] M.-H. N. Taghavi and P. H. Siegel, “Adaptive linear programming
decoding,” inProc. Int. Symp. Inform. Theory, Seattle, USA, July 2006,
pp. 1374–1378.

[5] A. Tanatmis, S. Ruzika, H. Hamacher, M. Punekar, F. Kienle, and
N. Wehn, “A separation algorithm for improved LP-decoding of linear
block codes,” inProc. Int. Symp. Turbo Codes and Related Topics,
Lausanne, Switzerland, Sept. 2008.

[6] M. Miwa, T. Wadayama, and I. Takumi, “A cutting plane method based
on redundant rows for improving fractional distance,” inProc. Int. Symp.
Turbo Codes and Related Topics, Lausanne, Switzerland, Sept. 2008.

[7] K. Yang, J. Feldman, and X. Wang, “Nonlinear programmingapproaches
to decoding low-density parity-check codes,”IEEE J. Select. Areas
Commun., vol. 24, pp. 1603–1613, Aug. 2006.

[8] S. C. Draper, J. S. Yedidia, and Y. Wang, “ML decoding via mixed-
integer adaptive linear programming decoding,” inProc. Int. Symp.
Inform. Theory, Nice, France, July 2007.

[9] R. M. Tanner, D. Sridhara, and T. Fuja, “A class of group-structured
LDPC codes,” inProc. ICSTA, Ambleside, UK, 2001.

[10] M.-H. N. Taghavi and P. H. Siegel, “Adaptive methods forlinear
programming decoding,”IEEE Trans. Inform. Theory, vol. 54, no. 12,
pp. 5396–5410, Dec. 2008.

[11] S. C. Draper and J. S. Yedidia, “Complexity scaling of mixed-integer
linear programming decoding,” inUCSD Workshop Inform. Theory
Apps., San Diego, Jan. 2008.

[12] T. J. Richardson and R. Urbanke, “The capacity of low-density parity-
check codes under message-passing decoding,”IEEE Trans. Inform.
Theory, vol. 47, pp. 599–618, Feb. 2001.

[13] M. Mitzenmacher, “A note on low density parity check codes for
erasures and errors,” SRC Technical Note, Tech. Rep. 1998-017, 1998.

[14] M. Lunglmayr, J. Berkmann, and M. Huemer, “Combined linear pro-
gramming/belief propagation decoder,”Electron. Lett., vol. 44, no. 12,
pp. 751–752, June 2008.

[15] D. J. C. MacKay, “Encyclopedia of sparse graph codes,” Available at
http://www.inference.phy.cam.ac.uk/mackay/codes/data.html.

[16] “GNU Linear Programming Kit,” http://www.gnu.org/software/glpk.
[17] Y. Wang, J. S. Yedidia, and S. C. Draper, “Construction of high-girth

QC-LDPC codes,” inProc. Int. Symp. Turbo Codes and Related Topics,
Lausanne, Switzerland, Sept. 2008.

	Title Page
	page 2

	/projects/www/html/publications/docs/TR2009-029.pdf
	page 2
	page 3
	page 4
	page 5

