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Abstract

In this paper, we present a novel methodology for tracking performance evaluation. Considering
the continuity of the image sequences in a video, we define a new measurement called track-
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how sensitive the tracking algorithm is to noise. Results on data sets are presented to show the
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ABSTRACT

In this paper, we present a novel methodology for tracking
performance evaluation. Considering the continuity of the im-
age sequences in a video, we define a new measurement called
tracking difficultywhich incorporates the local sequence in-
formation among a small image sequence centered at each
frame. We subsequently use a reflective model to formulate
tracking difficulty. Tracking difficulty curves can not only
illustrate at which parts of the video one tracking algorithm
performs well or poor, but also provide a way to compare the
performance of different tracking algorithms. We further add
perturbation analysis to the reflective model to examine how
sensitive the tracking algorithm is to noise. Results on data
sets are presented to show the effectiveness of our evaluation
method.

Index Terms— Tracking performance evaluation, reflec-
tive model, perturbation analysis.

1. INTRODUCTION

Visual object tracking is one of the most important tasks in
computer vision. The applications include video surveillance,
traffic management, vehicle control systems, robotics, aug-
mented reality, etc.

By far, a large number of algorithms are presented for vi-
sual object tracking in real applications, such as particle filters
[1], mean-shift tracker [2], covariance tracker [3], etc. How-
ever, it would be premature to claim that a single technique
can handle successfully any real world conditions. There are
unfortunately many natural reasons to fail a tracker including
irregular and fast object motion, partial and full occlusions,
object appearance changes, drastic pose and size transforma-
tions.

Therefore, it is a natural question to ask how to evaluate
the performance of tracking algorithms. Absolute error [1]
and root mean squared error between ground truth and the
tracking results at each frame are the most commonly used
evaluation criteria. In [4] pseudo synthetic video is used to
evaluate tracking performance. Algorithms are proposed in
[5] to match ground truth tracks and system generated tracks
and compute performance metrics based on these correspon-
dences. In [6], several performance evaluation metrics were
presented for detection and tracking. Tracking along forward

and time reversed Markov chain is used in [7] to evaluate the
tracking performance.

Most of the previous work uses the frame-based informa-
tion as evaluation criteria, i.e. using the information at a cer-
tain frame to evaluate tracking performance at that frame. The
fact is that the videos are continuous, and the performance of
tracking algorithms at each frame also depends on the char-
acteristics of the nearby frames. Therefore, it will be more
interesting to use some sequence-based measurement which
incorporates all of the information among a small segment
of image sequences centered at each frame. Moreover, the
current methods could not explore the rest of the video after
a complete loss of tracking occurs and cannot tell the over-
all performance on the video. Furthermore, we would also
wish to examine the robustness of tracking algorithms against
noise, i.e. whether the tracking could still be recovered after
the tracker made an error at one frame.

In this paper, we propose tracking difficulty as a novel
measurement to assess the performance of tracking algo-
rithms. Different from other measurement which utilizes the
frame-based information, tracking difficulty incorporates the
local sequence information among a small image sequence
centered at each frame. We set up a novel reflective model
to formulate tracking difficulty. The implementation of this
model involves multi-directional tracking along forward and
backward paths. Tracking difficulty curves can not only il-
lustrate at which parts of the video one tracking algorithm
performs well or poor, but also provide a way to compare
the performance of different algorithms. We further add
perturbation analysis to the reflective model to examine the
sensitivity of tracking algorithms against noise.

2. TRACKING PERFORMANCE EVALUATION

We define interested objects as the objects we want to track
in the video. It usually includes the moving objects and ex-
cludes the objects which belong to the background. Since the
video is continuous, i.e. all the interested objects in the video
have their past and future. Therefore, under the assumption
that all the interested objects in the video are casual, tracking
difficulty at framek (Qk) describes the average effort which
has to make in order to get the accurate trajectories for all the
interested objects among a small sequence centered at frame
k.



Fig. 1. Reflective model for single object tracking.

2.1. Reflective Model

For simplicity reason, we start from single object tracking. In
order to access the tracking difficulty from framek − m to
k+m centered at framek, wherem is an integer usually very
small, the common method is to run tracking from framek to
framesk ±m respectively and compare the tracker informa-
tion, e.g. color histogram. However, it is more reasonable to
reflect the output atk − m andk + m to framek and make
comparisons at framek. The reasons are as follows. First, the
information in the tracker may change with time, e.g. appear-
ance change, which causes the comparison unfair. Second,
because we are interested in the tracking difficulty at framek,
the comparison is better performed at framek.

Therefore, a detailed description of the reflective model is
given in Fig. 1. xk is the state at framek, known as input.
The purpose of the reflector is to send back the information it
receives. The implementation of the reflector could be done
by registering the new tracker based on the tracking results at
framesk+m andk−m. We call the tracking path from frame
k, k + 1, . . . , k + m and then backk + m, k + m− 1, . . . , k
as theforward path, where the reflection occurs at framek +
m. Therefore,̂xf

k is the tracking result of the forward path.
Similarly, thebackward pathis the tracking path from frame
k, k− 1, . . . , k−m and then backk−m, k−m + 1, . . . , k,
where the reflection occurs at framek −m. x̂b

k is the output
of the backward path.

The differences betweenxk and the returned̂xf
k and x̂b

k

describe the effort which has to make in order to get the ac-
curate trajectories for the interested object among2m images
centered at framek, i.e. tracking difficulty at framek. There-
fore, we definetracking difficulty at framek (Qk) as the linear
combination of the distance of the input and two reflected out-
puts in both forward and backward paths, i.e.

Qk = αfD(xk, x̂f
k) + (1− αf )D(xk, x̂b

k), (1)

whereαf is the coefficient for the forward path;D(xk, x̂f
k)

andD(xk, x̂b
k) measure the error betweenxk and x̂f

k , x̂b
k re-

spectively, which will be defined later. Usually, because of
the identical impact of error measurement for forward and
backward paths, we setαf = 1

2 . From (1), we can see that
if a tracking algorithm performs pretty good on a video seg-
ment centered at framek, then the reflected tracking estimates
should be pretty close to the input. Therefore,Qk is approx-

imately to zero. Otherwise, if the tracking performs poor on
this small sequence,Qk is large.

When there are multiple objects in the video, the exten-
sion of (1) depends on the description of the objects. If a
jointly description is used, where a large joint vectorxk is
used to describe all the objects within framek, (1) does not
need to be changed. However, the computational complexity
of tracking algorithms will grow exponential with the num-
ber of objects. Nowadays, the distributed framework [8] to
describe multiple objects gains popularity in tracking algo-
rithms, because of the linear increase of the complexity along
with the number of objects. Therefore, in this paper, we con-
fine our expression under the distributed framework, where
each object is tracked by a distributed tracker. We denote
the state of theith object in thekth frame asxi

k, wherei =
1, 2, . . . , m. ThenQk could be expressed as

Qk =
1
m

(αf

m∑

i=1

Di(xi
k, x̂i,f

k ) + (1− αf )
m∑

i=1

Di(xi
k, x̂i,b

k )),

(2)

where we use the average distances over all objects within in
one frame as the tracking difficulty for that frame.

The philosophy of our tracking difficulty can be consid-
ered similar with that in communication systems, where chan-
nel refers to the medium used to convey information from a
sender to a receiver and in order to assess the properties of
a channel, the information at the receiver is compared with
the information at the sender by asking the receiver to send
the received signal back, as our trackings along forward and
backward paths.

2.2. Error Measure

The distance functionsDi(xi
k, x̂i,f

k ) andDi(xi
k, x̂i,b

k ) capture
the distance of the statexi

k and the returned estimatesx̂i,f
k , x̂i,b

k

respectively. Besides the spatial distance, we could also incor-
porate some feature distance. Therefore, the distance function
is defined as

Di(xi
k, x̂i,q

k ) = ωsDsi(xi
k, x̂i,q

k ) + (1− ωs)Dfi(xi
k, x̂i,q

k ),

where q = f or b; Dsi(xi
k, x̂i,q

k ) andDfi(xi
k, x̂i,q

k ) denote
the spatial and feature distances respectively;ωs is the coeffi-
cient of the spatial distance. We find out by experiments that
the spatial distance is more reliable than the feature distance,
because the background may have the similar features to the
objects. Therefore,ωs is usually larger than1/2.

A good example of feature distanceDfi(xi
k, x̂i,q

k ) is the
Bhattacharyya distance of color histogram. For the spatial
distanceDsi(xi

k, x̂i,q
k ), we use a sigmoid function which con-

sists of two segments depending on whetherxi
k andx̂i,q

k over-
lap or not. The non-overlapping ratior is defined asr =
1 − Sxi

k∩x̂i,q
k

/Sxi
k∪x̂i,q

k
, where the operatorSR is defined as

the number of pixels belong to regionR. As shown in Fig. 2,



Fig. 2. Spatial distanceDsi(xi
k, x̂i,q

k ).

Dsi(xi
k, x̂i,q

k ) is defined as

Dsi(xi
k, x̂i,q

k ) =
{

f(r) 0 ≤ r < 1,
g(d0) r = 1,

where f(r) = 0.7071r2, g(d0) = d0/
√

1 + d2
0, d0 =

d/dmin; d anddmin are the actual distance and minimum dis-
tance of the centers ofxi

k andx̂i,q
k respectively. Whenxi

k and
x̂i,q

k are overlapping, i.e.0 ≤ r < 1, Dsi(xi
k, x̂i,q

k ) is a func-
tion of r. While when they are non-overlapping,Dsi(xi

k, x̂i,q
k )

is a function of the normalized distance of the centers ofxi
k

and x̂i,q
k . It is easy to see thatDsi(xi

k, x̂i,q
k ) ∈ [0, 1] and is

continuous and monotonic increasing.
Given the ground truth dataxi

k, tracking difficulty curves
can not only illustrate at which parts of the video one track-
ing algorithm performs well or poor, but also provide a way
to compare the performance of different tracking algorithms.
The main steps to obtainQk are summarized as follows:
1. For each frame, obtainxi

k from the ground truth.
2. Track along the forward path till framek + m, re-register
trackers using tracking results at framek +m, and track back
to framek to obtainDi(xi

k, x̂i,f
k ).

3. Track along backward path to obtainDi(xi
k, x̂i,b

k ) similarly.
4. GetQk as shown in (2).

2.3. Perturbation Analysis

In order to examine whether the tracking could still be re-
covered after the tracker made an error at one frame, we in-
corporate perturbation analysis [9] to the reflective model.
As shown in Fig. 3, after we initialize a tracker based on
the ground truthxi

k, we add a small shift to the input, i.e.
x̃i

k = xi
k + ∆x. The error ratioτ defined as

τ = 1
m

∑m
i=1(

1
2

‖x̂i,f
k −xi

k‖
‖∆x‖ + 1

2

‖x̂i,b
k −xi

k‖
‖∆x‖ )

is used to show how robust the tracking algorithm is against
noise.

3. EXPERIMENTS

We use several test sequences with ground truth to demon-
strate the effectiveness of our evaluation method. Fig. 4 gives
a few sample images from the sequences used in the experi-
mental tracking evaluation.

Fig. 3. Perturbation analysis of the reflective model.

Fig. 4. Sample images from sequences used in the experi-
mental tracking evaluation.

In theCampussequence, we run the tracking using mean-
shift tracker and particle filters. The boy in the video speeds
up at frame144, and then slows down. The tracking difficulty
curves are shown in Fig. 5 (a). The root mean squared er-
ror between the tracking results and ground truth is shown in
Fig. 5 (b). From Fig. 5 (a), we can see that in general parti-
cle filters with 300 particles performs better than mean-shift
tracker, the same as shown in Fig. 5 (b). From Fig. 5 (a), we
can see that around frame 144 mean-shift tracker performs
much worse than other parts of the video, which is verified by
the loss of tracking shown in Fig. 5 (b). Moreover, another
advantage of our method is that Fig. 5 (a) can still evaluate
the performance for the rest of the video after complete loss
of tracking, as shown by mean-shift tracker in Fig. 5 (a).

We use a set of particle filters with different number of
particles while keeping other parameters unchanged to run the
tracking task on some CAVIAR sequences. The energy of the
difficulty curves are calculated in Table 1. We can see the
more particles are use, the better performance of the particle
filters. And the performance improvement is not linear with
the increase of the number of particles.

We further use perturbation analysis on theFront se-
quence. For fair comparisons, we keep the shift after initial-
ization constant for all frames for all comparative tracking
methods. The error ratios of tracking algorithms are shown in
Table 2. We can see that the order of robustness against noise
is PF (n=50)> PF (n=30)> Mean-shift. Also, the smaller

Table 1. Energy of tracking difficulty curves on CAVIAR
data sets using particle filters. We can see tracking with more
particles outperforms tracking with fewer particles.

Number of particles 10 30 50
Sequence I 0.4909 0.3602 0.3088
Sequence II 0.8853 0.7049 0.5968
Sequence III 3.0264 2.2521 1.6894



(a)

(b)

Fig. 5. Results on theCampus sequence. (a) Tracking diffi-
culty curves obtained by mean-shift tracker and particle filter
with 300 particles. (b) The root mean squared error between
the tracking results and ground truth.

Table 2. Error ratios of perturbation analysis on theFront
sequence.

Size of shift Mean-shift PF n=30 PF n=50
(0.5, 0.5) 10.0625 5.5796 5.3595

(1, 1) 5.0515 2.7921 2.6821
(1.5, 1.5) 3.3806 1.8630 1.7896

noisy shift will cause larger error ratio, which implies that
tracking algorithms are more sensitive to small noises.

The choice ofm decides the resolution of the difficulty
curves. The largerm is, the more complete information it
represents. However, largem will cause delay and a waste
of computational resources. In the experiments above, we
choosem = 6.

4. CONCLUSION
In this paper, we propose a novel tracking performance eval-
uation method based on a reflective model and perturbation
analysis. Tracking difficulty is proposed as a new measure-
ment which incorporates the local sequence information cen-
tered at each frame and is formulated using a reflective model.
Perturbation analysis is applied to examine how the tracking
algorithm performs against noise. Experimental results show
the effectiveness of our evaluation method. Our method can
tell (1) at which parts of the video the tracking algorithm per-
forms well or poor. (2) how one tracking algorithm performs
compared with other algorithms. (3) how sensitive one algo-
rithm is against noise.
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