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Abstract

In this paper, we present a novel methodology for tracking performance evaluation. Considering
the continuity of the image sequences in a video, we define a new measurement called track-
ing difficulty which incorporates the local sequence information among a small image sequence
centered at each frame. We subsequently use a reflective model to formulate tracking difficulty.
Tracking difficulty curves can not only illustrate at which parts of the video one tracking algo-
rithm performs well or poor, but also provides a way to compare the performance of different
tracking algorithms. We further add perturbation analysis to the reflective model to examine
how sensitive the tracking algorithm is to noise. Results on data sets are presented to show the
effectiveness of our evaluation method.
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ABSTRACT and time reversed Markov chain is used in [7] to evaluate the

In this paper, we present a novel methodology for trackinéracl\ljlmgtpefzrtfrmange. K the f based inf
performance evaluation. Considering the continuity of the im-. ost ot the previous work uses the frame-based informa-

age sequences in avideo, we define a new measurement caltbca] fas evatluauoln C:'t?”a'k'.'e' u5|?g the 'nfor?:ﬁt'?? ata c_lt_arr]-
tracking difficultywhich incorporates the local sequence in- ainframe fo evaluate fracking performance atthatframe. 1he

formation among a small image sequence centered at eaI:Eth is that the videos are continuous, and the performance of

frame. We subsequently use a reflective model to formulatgaCkmg algorithms at each frame also depends on the char-

tracking difficulty. Tracking difficulty curves can not only _a(itel’lS'iI_CS ?f the nearby frames. Tgere;ore, it will be Torﬁ. h
illustrate at which parts of the video one tracking algorithm!n eresting fo use some sequence-based measurement whic

performs well or poor, but also provide a way to compare thénc_orporates all of the information among a small segment
performance of different tracking algorithms. We further addOf |ma?e Sthudenceslgentfredlat e?hCh fratm?.thMorgover%tthe
perturbation analysis to the reflective model to examine how €Nt methods could not explore the rest of the video atter

sensitive the tracking algorithm is to noise. Results on datd complete loss of tracking occurs and cannot tell the over-

sets are presented to show the effectiveness of our evaluatigH performan_ce on the video. Furthermore, we would al_so
method wish to examine the robustness of tracking algorithms against

noise, i.e. whether the tracking could still be recovered after
Index Terms— Tracking performance evaluation, reflec- the tracker made an error at one frame.

tive model, perturbation analysis. In this paper, we propose tracking difficulty as a novel
measurement to assess the performance of tracking algo-
1. INTRODUCTION rithms. Different from other measurement which utilizes the

Visual object tracking is one of the most important tasks inffame-based information, tracking difficulty incorporates the
computer vision. The applications include video surveillancelocal sequence information among a small image sequence
traffic management, vehicle control systems, robotics, aug:entered at each frame. We set up a novel reflective model
mented reality, etc. to formulate tracking difficulty. The implementation of this

By far, a |arge number of a|gorithms are presented for VimOdel involves multi-directional traCking along forward and
sual object tracking in real applications, such as particle filterackward paths. Tracking difficulty curves can not only il-
[1], mean-shift tracker [2], covariance tracker [3], etc. How-lustrate at which parts of the video one tracking algorithm
ever, it would be premature to claim that a single techniqué@erforms well or poor, but also provide a way to compare
can handle successfully any real world conditions. There ardie performance of different algorithms. We further add
unfortunately many natural reasons to fail a tracker includingP€rturbation analysis to the reflective model to examine the
irregular and fast object motion, partial and full occlusions Sensitivity of tracking algorithms against noise.

object appearance changes, drastic pose and size transforma-
tions. 2. TRACKING PERFORMANCE EVALUATION

Therefore, it is a natural question to ask how to evaluat§ye define interested objects as the objects we want to track
the performance of tracking algorithms. Absolute error [1]iy the video. It usually includes the moving objects and ex-
and root mean squared error between ground truth and the,des the objects which belong to the background. Since the
tracking results at each frame are the most commonly us&flgeo is continuous, i.e. all the interested objects in the video
evaluation criteria. In [4] pseudo synthetic video is used tthaye their past and future. Therefore, under the assumption
evaluate tracking performance. Algorithms are proposed ifhat all the interested objects in the video are casual, tracking
[5] to match ground truth tracks and system generated trackgficulty at framek (Q,) describes the average effort which
and compute performance metrics based on these correspayys to make in order to get the accurate trajectories for all the

dences. In [6], several performance evaluation metrics werterested objects among a small sequence centered at frame
presented for detection and tracking. Tracking along forward.



N . T ETRS s [ TP imately to zero. Otherwise, if the tracking performs poor on

| Rt i mcker o225 R o Resternevincker L this small sequence)y, is large.
Q/'>¢/\O/\f\ § When there are multiple objects in the video, the exten-
LT R RS i sion of (1) depends on the description of the objects. If a
L,'3%5,"9,‘3?fﬂi":ft,,J“ia;'cim"a}a};d{i,,%: 77777 Xf~FowdpmthXm jointly description is used, where a large joint veckqris
Frame ko Frame i S used to describe all the objects within frare(1) does not
need to be changed. However, the computational complexity
. ] ) ) ] of tracking algorithms will grow exponential with the num-
Fig. 1. Reflective model for single object tracking. ber of objects. Nowadays, the distributed framework [8] to
describe multiple objects gains popularity in tracking algo-
2 1. Reflective Model rithms, because of the linear increase of the complexity along

L . , . with the number of objects. Therefore, in this paper, we con-
For simplicity reason, we start from single object tracking. Inine o expression under the distributed framework, where

order to access the tracking difficulty from framhe- m 10 o50h ghject is tracked by a distributed tracker. We denote
k+m centered at framk, wherem is an integer usually very the state of the’” object in thek' frame asx., wherei =

small, the common method is to run tracking from frglerte 1,2, ...,m. ThenQy could be expressed as
framesk + m respectively and compare the tracker informa-
tion, e.g. color histogram. However, it is more reasonable to 1 m o .
reflect the output ak — m andk + m to framek and make ~ Qr = —(ay > D%, %) + (1= ap) > Di(xi, %),
comparisons at framie The reasons are as follows. First, the i=1 i=1

information in the tracker may change with time, e.g. appear- 2

ance change, which causes the comparison unfair. Second . . L
: : : - where we use the average distances over all objects within in
because we are interested in the tracking difficulty at fré&me

the comparison is better performed at frakne one frame as the tracking difficulty for that frame.

Therefore, a detailed description of the reflective model is Th? ph|lo§ophy of our trackl_ng Filfﬂculty can be consid
. N : : ered similar with that in communication systems, where chan-
given in Fig. 1.x; is the state at framg, known as input. : . .
: . . nel refers to the medium used to convey information from a
The purpose of the reflector is to send back the information it

! ) . sender to a receiver and in order to assess the properties of
receives. The implementation of the reflector could be doné : . T ;
channel, the information at the receiver is compared with

by registering the new tracker based on the tracking results %e information at the sender by asking the receiver to send

framesk +m andk —m. We call the tracking path from frame the received signal back, as our trackings along forward and
k,k+1,...,k+mandthenback + m,k+m —1,... k 9 ' 9 9
backward paths.

as theforward path where the reflection occurs at frarhe-

m. Thereforef(£ is the tracking result of the forward path. 2 2. Error Measure

Similarly, thebackward paths the tracking path from frame . . i i

Py 1y e and ?hen back - m kg_pm Y1 g Thedistance functions; (xj, %1y and D, (xi, x") capture

9 PR 9 P S . ; . ) ~1.b

where the reflection occurs at frarhe- m. X, is the output  the distance of the statg and the returned estimates’, x; _

of the backward path. respectively. Besides the spatial distance, we could also incor-
The differences betweex, and the returneot£ andx’ porate some feature distance. Therefore, the distance function

describe the effort which has to make in order to get the adS defined as
curate trajectories for the interested object amdmgmages
centered at framg, i.e. tracking difficulty at framé:. There-
fore, we defingracking difficulty at frame: (Qx) as the linear where ¢ — f or b Dsi(X};,X};q) and Dfi(X};,f(Zq) denote

combination of the distance of the input and two reflected out{h tial and feature dist tivelyis th P
puts in both forward and backward paths, i.e. € spatial and teature distances respectiveiys the coetll-

cient of the spatial distance. We find out by experiments that
Qr = oy D (X, g{) + (1 — ay)D(X, 22)7 (1) the spatial distance is more reliable than the feature distance,
because the background may have the similar features to the
wherea; is the coefficient for the forward path(x;, x])  objects. Thereforey, is usually larger than/2.
and D(x;, ) measure the error betweeq ands/, %5 re- A good example of feature distandef;(x;,x;") is the
spectively, which will be defined later. Usually, because ofBhattacharyya distance of color histogram. For the spatial
the identical impact of error measurement for forward andlistanceDs;(x;, X;*), we use a sigmoid function which con-
backward paths, we set; = % From (1), we can see that Sists of two segments depending on whettjeandx; ? over-
if a tracking algorithm performs pretty good on a video seg4ap or not. The non-overlapping ratiois defined as =
ment centered at franig then the reflected tracking estimates 1 — Sy; gi.0/Sy; 5i-0, Where the operatafy, is defined as
should be pretty close to the input. Therefagk, is approx- the number of pixels belong to regi@. As shown in Fig. 2,

m

Di(Xe, %07) = wy D (X5, %0) 4 (1 — wg) D fi(x5, %37),
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Fig. 2. Spatial distancés; (x:, x’;'f)_

Ds;(xi,%x77) is defined as

Dsq;(xz,f(};q) — { flr) 0<r<1, Fig. 4. Sample images from sequences used in the experi-
g(do) r=1, mental tracking evaluation.

where f(r) = 0.7071r%, g(do) = do/\/1+d3, dy =

d/dmin; d andd,,;, are the actual distance and minimum dis-  IntheCampussequence, we run the tracking using mean-
tance of the centers of, andx; ? respectively. Whem and  shift tracker and particle filters. The boy in the video speeds
)A(z’q are overlapping, i.e0 < r < 1, Dsi(xf€7 )A(Z’q) is afunc- up atframel44, and then slows down. The tracking difficulty

tion of . While when they are non—overlappin@,si(x};,xzq) curves are shown in Fig. 5 (a). The root mean ;quared er-
is a function of the normalized distance of the centersiof ror between the tracking results and ground truth is shown in
and qu It is easy to see thalei(x};,X};’q) e [0,1] and is Fig. _5 (b). I_:rom Fig. 5_ (a), we can see that in general parti-
continuous and monotonic increasing. cle filters with 300 particles perfprms better than. mean-shift
Given the ground truth date,, tracking difficulty curves tracker, the same as shown in Fig. 5 (b). Erom Fig. 5 (a), we
can not only illustrate at which parts of the video one track°2" S€€ that around frame 144 mean-shift tracker performs

ing algorithm performs well or poor, but also provide a wameCh worse than other parts of the video, which is verified by

to compare the performance of different tracking algorithmsFhe loss of tracking shown in Fig. 5 (b). Moreover, another

The main steps to obtaif), are summarized as follows: advantage of our method is that Fig. 5 (a) can still evaluate
1. For each frame, obtaid, from the ground truth the performance for the rest of the video after complete loss

2. Track along the forward path till framie+ m, re-register of tracking, as shown by mean-shift tracker in Fig. 5 (a).

trackers using tracking results at frafe- m, and track back We use a set of particle filters with different number of
to framek to obtainD; (x, )A(Zf)_ particles while keeping other parameters unchanged to run the
oi,b

3. Track along backward path to obtdin (x:., X: g%gkiﬁlg task on some (IZA\fIAFSjgeque;ces. The energy of trr:e
4. Get(, as shown in (2). ifficulty curves are calcu ated in Table 1. We can see t_ e
more particles are use, the better performance of the particle
filters. And the performance improvement is not linear with
the increase of the number of particles.
In order to examine whether the tracking could still be re-  We further use perturbation analysis on fa@nt se-
covered after the tracker made an error at one frame, we imjuence. For fair comparisons, we keep the shift after initial-
corporate perturbation analysis [9] to the reflective modelization constant for all frames for all comparative tracking
As shown in Fig. 3, after we initialize a tracker based onmethods. The error ratios of tracking algorithms are shown in
the ground truthxi, we add a small shift to the input, i.e. Table 2. We can see that the order of robustness against noise
X; = X¢ + Ax. The error ratior defined as is PF (n=50)> PF (n=30)> Mean-shift. Also, the smaller
r= LT (3 Bl 1 Bl

is used to show how robust the tracking algorithm is against

) similarly.

2.3. Perturbation Analysis

noise. Table 1. Energy of tracking difficulty curves on CAVIAR
data sets using particle filters. We can see tracking with more
3. EXPERIMENTS particles outperforms tracking with fewer particles.
We use several test sequences with ground truth to demon- _NUMber of particles| 10 30 50
strate the effectiveness of our evaluation method. Fig. 4 gives Sequence | 0.4909| 0.3602 | 0.3088
a few sample images from the sequences used in the experi- Sequence |l 0.8853| 0.7049| 0.5968
mental tracking evaluation. Sequence Il 3.0264 | 2.2521| 1.6894
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Fig. 5. Results on th€ampus sequence. (a) Tracking diffi-
culty curves obtained by mean-shift tracker and particle filter
with 300 particles. (b) The root mean squared error between

the tracking results and ground truth.

Table 2. Error ratios of perturbation analysis on tReont

seguence.
Size of shift || Mean-shift| PF n=30| PF n=50
(0.5,0.5) 10.0625 | 5.5796 | 5.3595
1,1 5.0515 2.7921 | 2.6821
(1.5,1.5) 3.3806 1.8630 | 1.7896

noisy shift will cause larger error ratio, which implies that
tracking algorithms are more sensitive to small noises.

The choice ofm decides the resolution of the difficulty
curves. The largem is, the more complete information it
represents. However, large will cause delay and a waste
of computational resources. In the experiments above, we
choosemn = 6.

4. CONCLUSION

In this paper, we propose a novel tracking performance eval-
uation method based on a reflective model and perturbation
analysis. Tracking difficulty is proposed as a hew measure-
ment which incorporates the local sequence information cen-
tered at each frame and is formulated using a reflective model.
Perturbation analysis is applied to examine how the tracking
algorithm performs against noise. Experimental results show
the effectiveness of our evaluation method. Our method can
tell (1) at which parts of the video the tracking algorithm per-
forms well or poor. (2) how one tracking algorithm performs
compared with other algorithms. (3) how sensitive one algo-
rithm is against noise.
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