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Abstract— Interconnect delay has become a limiting factor
for circuit performance in Deep Sub-Micron designs. As the
crosstalk in an on-chip bus is highly dependent on the data
patterns transmitted on the bus, different crosstalk avoidance
coding schemes have been proposed to boost the bus speed and/or
reduce the overall energy consumption. Despite the availability of
the codes, no systematic mapping of datawords to codewords has
been proposed for CODEC design. This is mainly due to the non-
linear nature of the crosstalk avoidance codes (CAC). The lack
of practical CODEC construction schemes has hampered the use
of such codes in practical designs. This work presents guidelines
for the CODEC design of the “forbidden pattern free crosstalk
avoidance code” (FPF-CAC). We analyze the properties of the
FPF-CAC and show that mathematically, a mapping scheme
exists based on the representation of numbers in the Fibonacci
numeral system. Our first proposed CODEC design offers a
near-optimal area overhead performance. An improved version
of the CODEC is then presented, which achieves theoretical
optimal performance. We also investigate the implementation
details of the CODECs, including design complexity and the
speed. Optimization schemes are provided to reduce the size of
the CODEC and improve its speed.

Index Terms— crosstalk, on-chip bus, Fibonacci number,
CODEC

I. INTRODUCTION

As VLSI technology has marched into the Deep Sub-
Micron (DSM) regime, new challenges are presented to circuit
designers. As one of the key challenges, the performance of
bus based interconnects has become a bottleneck to the overall
system performance. In large designs (e.g. SOCs) where long
and wide global busses are used, interconnect delays often
dominate logic delays.

Once negligible, crosstalk has become a major determinant
of the total power consumption and delay of on-chip busses.
The impact of crosstalk in on-chip busses has been studied as
part of the effort to improve the power and speed character-
istics of the on-chip bus interconnects. Figure 1 illustrates a
simplified on-chip bus model with crosstalk. CL denotes the
load capacitance seen by the driver, which includes the re-
ceiver gate capacitance and also the parasitic wire-to-substrate
parasitic capacitance. CI is the inter-wire coupling capacitance
between adjacent signal lines of the bus. In practice, this
bus structure is electrically modeled using a distributed RC
network, after including the parasitic resistance of the wire
as well (not shown in Figure 1). For DSM processes, CI is
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Fig. 1. On-chip Bus model with Crosstalk

much greater than CL [7]. Based on the energy consumption
and delay models given in [1], the energy consumption is a
function of the total crosstalk over the entire bus. The delay,
which determines the maximum speed of the bus, is limited
by the maximum crosstalk that any wire in the bus incurs. It
has been shown that reducing the crosstalk can boost the bus
performance significantly [1][5].

Different approaches have been proposed for reducing
crosstalk by eliminating specific data transition patterns. Some
schemes focus on reducing the energy consumption, while
others focus on minimizing the delay. Certain schemes offer
improvements in both. In this paper, we focus on crosstalk
avoidance for delay reduction.

As the crosstalk is dependent on the data transition patterns
on the bus, patterns can be classified based on the severity
of the crosstalk they impose on the bus. A more detailed
explanation of pattern classification is given in Section II-A.
The general idea behind techniques that improve on-chip bus
speed is to remove undesirable patterns that are associated with
certain classes of crosstalk. Among the proposed schemes,
some are more aggressive than others (they remove more
patterns and achieve higher speed improvements). Different
schemes incur different area overheads since they requires
additional wires, spacing between wires, or both.

As one of the simplest techniques to eliminate the crosstalk
induced delay penalty, passive shielding inserts passive (e.g.
grounded) shield wires between adjacent active data lines [10].
This technique can reduce the bus delay by nearly 50%.
However, it requires doubling the number of wires and hence
incurs a 100% area overhead. Crosstalk can also be exploited
to speed up the bus. Techniques such as active shielding
can reduce the bus delay by up to 75% [8][11] at the price
of 200% or more area overhead.

It has been discovered relatively recently that encoding
the bus can eliminate some classes of data patterns with
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much lower area overhead compared to the shielding tech-
niques [5][6]. These codes are commonly referred to as
Crosstalk Avoidance Codes (CACs). CACs can be further
divided into two categories: memory-less and memory-based.
The memory-based coding approaches generate a codeword
based on the previously transmitted code and the current
dataword to be transmitted [6][9]. On the receiver side, the data
is recovered based on the received codewords from the current
and previous cycles. The memory-less coding approaches use
a fixed code book to generate a codeword to transmit, solely
based on the input data. The corresponding receiver decoder
uses the current received codeword as the only input to recover
the data.

The theoretical lower bound of the area overhead for
memory-based codes is lower compared to memory-less codes.
However, the memory-based CODECs are much more com-
plex and the only known codeword generation method is an
exhaustive search and pruning based method.

Several different types of memory-less CACs have been pro-
posed. The code designs are discussed in [5][4][3][6]. These
codes offer the same degree of delay reduction as the passive
shielding technique, with much less area overhead (ranging
from 44% to 68%). Unfortunately, none of the referred papers
addresses the mapping between datawords and codewords for
the CODECs. So far, all the CODEC design approaches are
based on bus partitioning (which breaks a big bus into a
number of small groups (lanes) and applies CAC coding on
each group independently). Such an approach has to deal with
the crosstalk across the group boundaries. Several different
schemes are proposed to handle this inter-group crosstalk, such
as group inversion and bit overlapping [5][4]. In all cases,
more wires are needed and therefore the overall area overhead
is higher than the theoretical lower bound.

In this work, we offer a systematic CODEC construction
solution for the forbidden-pattern-free crosstalk avoidance
code (FPF-CAC). The mapping scheme we propose is based
on the representation of numbers in the Fibonacci numeral
system. We show that all datawords can be represented
in the Fibonacci-based numeral system with FPF vectors.
We propose several different coding schemes that allow the
CODECs to be constructed for any arbitrary bus size. With
such a systematic mapping, the CODEC for a wider bus is
constructed by a simple extension of the CODEC for a smaller
bus. The first CODEC proposed in the paper is proven to
have near-optimal area overhead performance. We further offer
an improved coding scheme that achieves optimal overhead
performance. We also propose modifications to our near-
optimal CODEC that will reduce the complexity and improve
the delay performance of the CODEC.

The key contributions of this paper include:
• We define a deterministic mapping scheme for the FPF-

CAC based on the Fibonacci-based binary numeral sys-
tem.

• Based on the mapping scheme, we propose coding al-
gorithms that allow systematic CODEC constructions so
that the CODEC for a wider bus is obtained as an
extension of the CODEC for smaller bus.

• We show that the CODEC gate count grows quadratically

with bus size as opposed to the exponential growth for
the existing approaches.

The remainder of the paper is organized as follows: Sec-
tion II first provides some background on delay and power
analysis of the bus in the presence of crosstalk. The classifi-
cation of crosstalk is given in Section II-A. In Section II-C, the
forbidden-pattern-free cross avoidance code is defined and its
performance is discussed, including codeword generation and
overhead computation. A lower bound of the area overhead
is established. Section III focuses on the construction of the
CODEC for FPF-CAC. We give the mathematical basis for the
CODEC construction and discuss the overhead performance of
different CODECs. In Section IV, we investigate the circuit
implementation details of the proposed CODECs. Experimen-
tal results are also presented. Conclusions are drawn in Section
V.

Notation: For clarity, throughout this paper, unless spec-
ified otherwise, an n bit bus is represented by a vector
bnbn−1...b2b1, with bn being the most significant bit and b1

the least significant bit.

II. FORBIDDEN PATTERN BASED CAC

A. Crosstalk classification

As stated in the previous section, the degree of crosstalk in
an on-chip bus is dependent on data transition patterns on the
bus. Based on the model shown in Figure 1, the delay τj of
the jth wire in a data bus is given as [1]:

τj = abs(k ·CL ·∆Vj +k ·CI ·∆Vj,j−1+k ·CI ·∆Vj,j+1) (1)

where k is a constant determined by the driver strength and
wire resistance, ∆Vj is the voltage change on the jth line
and ∆Vj,k = ∆Vj − ∆Vk is the relative voltage change
between the jth and kth line. Since on-chip busses are
generally full-swing binary busses, we can assume that
the two output voltage levels are Vdd and 0V and hence
∆Vj ∈ {0,±Vdd} and ∆Vj,k ∈ {0,±Vdd,±2 · Vdd}. If we let
λ = CI

CL
, Equation 1 can be rewritten as:

τj = k · CL · Vdd · abs(δj + λ · δj,j−1 + λ · δj,j+1) (2)

Here δj ∈ {0, 1} is the normalized voltage change on jth

line. δj,j±1 ∈ {0,±1,±2} is the normalized relative voltage
change on jth line (relative to the j +1th or j−1th line). The
δj term corresponds to the intrinsic delay and the remaining
two terms correspond to the crosstalk induced delay. Since
λ À 1, the first term has negligible contribution to the delay.

If we define Ceff,j as the effective total capacitance of the
driver of jth line, we have:

Ceff,j = CL · abs(δj + λ · δj,j−1 + λ · δj,j+1) (3)

and

τj = k · Vdd · Ceff,j (4)
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From Eq. 4, we get min(Ceff,j) = CL and max(Ceff,j) =
(1 + 4 · λ)CL depending on the transition pattern on the wire
of interest as well as its immediate neighbors on either side.
Crosstalk patterns are classified as 0C, 1C, 2C, 3C and 4C
patterns respectively as shown in Table I. The last column in
Table I gives example transition patterns on three adjacent bits
of the bus bj+1bjbj−1.

Class Ceff Transition patterns
0C CL 000 → 111
1C CL(1 + λ) 011 → 000
2C CL(1 + 2λ) 010 → 000
3C CL(1 + 3λ) 010 → 100
4C CL(1 + 4λ) 010 → 101

TABLE I
CLASSES OF CROSSTALK

The speed of the data bus is determined by max{Ceff,j}
over all bits in the bus. An uncoded bus that transmits
random data experiences max{Ceff,j} = (1 + 4λ)CL and
therefore the speed of such bus must be designed to
accommodate the 4C crosstalk delay. Based on Table I
and Equation 4, when λ À 1, by eliminating 4C crosstalk
on ALL lines in the bus, we can increase the maximum
speed of the bus by ∼ 33%. If we can eliminate the 3C
AND 4C crosstalk on all lines, the bus can be sped up by
∼ 100%. This has been verified by experiments in [5].

B. Energy consumption of busses with crosstalk

The focus of this paper is on crosstalk avoidance code that
speeds up the busses, we shall, however, point out that the
crosstalk also impacts the average bus power consumption.
A detailed discussion is given in [1] and the overall energy
consumption for a given bus transition is

Etotal =
n∑

j=1

EL
j + λ

n∑

j=1

EI
j

=
n∑

j=1

(1 + Ceff,j · λ)CL ·∆Vj · Vj (5)

where Ceff,j is the effective capacitance on the jth wire
defined earlier.

Equation 5 shows that the bus energy is the summation
of the energy consumption of each given bit and that the
crosstalk also has effect on energy consumption. Therefore
avoiding crosstalk could result in reduction of the overall
energy consumption of a bus as we show later.

C. Forbidden pattern based Crosstalk Avoidance

The forbidden pattern based crosstalk avoidance code was
first proposed in [5]. The forbidden patterns are defined as
3-bit patterns ”101” and ”010”. A code is forbidden pattern
free (FPF) if there is no forbidden pattern in any three
consecutive bits. As examples, 1101110 is not forbidden

pattern free; 1100110 is FPF. It has been shown in [5] that
for a code that contains only FPF codewords, the bus that
transmits only these codewords will experience maximum
crosstalk of no greater than 2·C. Therefore, by encoding the
datawords to FPF codewords, we can speed up the bus by
∼ 100%. This type of code is referred herein as forbidden
pattern free crosstalk avoidance code (FPF-CAC).

The FPF-CAC can be generated using an inductive proce-
dure [5]. Let Sm be the set of m-bit FPF-CAC codewords,
an m-bit vector V i

m = bmbm−1..b1 is a codeword. Any
codeword V i

m ∈ Sm can be considered as concatenating
V i

m−1 = bm−1bm−2..b1 with bit bm, where V i
m−1 ∈ Sm−1.

The following is the inductive procedure that generates FPF
codewords, where ”·” is the concatenation operator:

Algorithm 1 FPF codeword generation
S2 = {00, 01, 10, 11}
for m ≥ 3 do

Sm = {};
for ∀V i

m−1 ∈ Sm−1 do
if bi

m−1b
i
m−2 = 00 or 11 then

add 0 · V i
m−1 and 1 · V i

m−1 to Sm;
else if bi

m−1b
i
m−2 = 01 or 10 then

add bi
m−1 · V i

m−1 to Sm;
end if

end for
end for

Table II lists the codewords of the 3,4 and 5 bit FPF-CACs
generated by Algorithm I.

2-bit 3-bits 4-bits 5 bit
00 000 0000 00000 10000
01 001 0001 00001 10001
10 011 0011 00011 10011
11 100 0110 00110 11000

110 0111 00111 11001
111 1000 01100 11100

1001 01110 11110
1100 01111 11111
1110
1111

TABLE II
FPF-CAC CODEWORDS FOR 2,3,4 AND 5 BIT BUSSES

From Algorithm I, we can see that for each m − 1 bit
codeword V i

m−1 ∈ Sm−1 with last two digits bi
m−1 = bi

m−2,
two m-bit codewords can be generated. For V i

m−1 with the
last two digits bi

m−1 6= bi
m−2, only one m-bit codeword can

be generated. The total number of FPF-CAC codewords can
be computed based on the following equations:

Definition 1: For an m-bit vector bmbm−1...b2b1, we define
the following quantities:
• T (m) is the total number of distinct m-bit vectors.
• Tg(m) is the total number of FPF vectors.
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• Tb(m) is the total number of non FPF vectors.
• Tgg(m) is the number of FPF vectors satisfy

bi
m = bi

m−1.
• Tgb(m) is the number of FPF vectors satisfy bi

m 6= bi
m−1

For the base case, a 3-bit bus: (m = 3)

• Tg(3) = 6;
• Tb(3) = 2;
• Tgg(3) = 4;
• Tgb(3) = 2;

For busses with more than 3-bits: (m > 3)

Tg(m) = 2× Tgg(m− 1) + Tgb(m− 1) (6)
Tgg(m) = Tgg(m− 1) + Tgb(m− 1) (7)
Tgb(m) = Tgg(m− 1) (8)

Based on Algorithm I and the definitions of Tg , Tgg and
Tgb, we get:

Tg(m) = Tgg(m) + Tgb(m) (9)
Tgg(m) = Tg(m− 1) (10)

Equation 6 can be re-written as:

Tg(m) = 2× Tgg(m− 1) + Tgb(m− 1)
= (Tgg(m− 1) + Tgb(m− 1)) + Tgg(m− 1)
= Tg(m− 1) + Tg(m− 2)

(11)

The relationship shown in Equation 11 is the same as the
relationship of elements in the Fibonacci sequence. ( A more
detailed discussion about Fibonacci sequence will be given in
Section III.) With the initial conditions Tg(2) = 2 · f3 and
Tg(3) = 2 · f4, we have:

Tg(m) = 2 · fm+1 (12)

where fm is the mth element in the Fibonacci sequence.
Tg(m) gives the maximum cardinality of the m-bit FPF-

CAC code. To encode an n-bit binary bus into FPF-CAC
code, the minimum number of bits needed mopt is the smallest
integer m that satisfies Equation 13. We can also compute the
lower bound of the area overhead OH(n), which is defined
as the ratio between the additional area required for the coded
bus and the area of uncoded bus.

n ≤ blog2(2 · fm+1)c (13)
OH(n) = m−n

n (14)

For the Fibonacci sequence, ϕ = lim
k→∞

fk+1

fk
= 1.618, also

known as the golden ratio, is the asymptotic ratio of two
consecutive elements of the sequence [12]. Hence lim

k→∞
fk =

cϕk where c is a constant. Therefore, for large busses, the
lower bound of the overhead is:

OHmin ≥ 1
log2ϕ

− 1 ≈ 44% (15)

Fig. 2. CODEC gate count, reprinted from [4] with permission from the
authors. CopyrightrIEEE

III. FPF-CAC CODEC DESIGN

As discussed in the previous section, the 3C and 4C
crosstalk classes can be avoided if the bus is encoded using the
FPF code. We provided the recursive procedure for generating
the codewords and showed how to compute the total number
of codewords and the lower bound for the area overhead.
However, the mapping scheme between the input datawords
and the output codewords was not discussed, nor was it shown
how a CODEC for the FPF-CAC can be constructed.

Conceptually, the mapping between the datawords and the
codewords is flexible, provided it can be reversed by the
decoder. In the case when the size of the code book is not
a power of two, a 1-to-1 mapping is not required. A 1-to-
many mapping for certain datawords may reduce the CODEC
complexity further.

When the data bus width is small, the CODEC can be
implemented and the mapping flexibility can be exploited to
optimize the speed and/or the area of the CODEC. However,
as the data bus width increases, the CODEC size grows
exponentially. Figure 2 shows the number of 2-input gates
required for CODECs of data bus widths varying from 3 to
121. The total number of mapping permutations also grows
rapidly. For example, to encode the 8-bit data to an 11-bit CAC
bus, there are over 6 × 106 possible mapping permutations.
In addition, the CAC codes are non-linear and therefore it is
difficult to extend a mapping scheme for smaller busses to
larger busses.

Several different schemes have been proposed for CODEC
construction for FPF-CAC or other memory-less CACs
[5][4][6]. These schemes are all based on bus partitioning,
which breaks up a wide bus into smaller groups or lanes
(typically 3 to 5 bits) and exhaustively searches for the optimal
mapping that yields the most efficient CODEC for the groups.
Unfortunately, in order to handle crosstalk across the group
boundaries, these schemes all inevitably suffer from additional
area overhead.

1Even though the CODEC is for a slightly different crosstalk avoidance
code, we feel that the results can be used as a benchmark.
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In this section, we propose two coding schemes that allow
us to encode data to the FPF-CAC without partitioning the
bus. These coding schemes allow us to systematically con-
struct the FPF-CAC CODECs for busses of arbitrary size.
By ”systematically”, we mean that the CODEC for a larger
size bus is extended from the CODEC of a smaller bus. The
gate counts of the proposed CODEC implementation roughly
grow quadratically with respect to the bus size, instead of
exponentially for previous approaches [4] . Both our schemes
are based on the Fibonacci numeral system.

A. Fibonacci-based binary numeral system

The Fibonacci binary numeral system was first used
in CAC designs in [3] for crosstalk avoidance coding.
The paper proposed an inductive codeword generations
algorithm for a type of CAC called self-shielding code2.
The inductive algorithm is similar to the ones proposed in
[5][6]. However, none of these papers address the mapping
scheme and CODEC designs as we do in the rest this
section.

A numeral system is “a framework where numbers are
represented by numerals in a consistent manner” [13]. The
most commonly used numeral system in digital design is
the binary numeral system, which uses powers of two as
the base. A number’s binary representation is defined in
Equation 16. The binary numeral system is complete and
unambiguous, which means that each number has one and
only one representation in the binary numeral system.

Definition 2:

v =
n∑

k=1

bk · 2k−1 bk ∈{0,1} (16)

=
m∑

k=1

dk · fk dk ∈{0,1} (17)

The Fibonacci-based numeral system N(Fm, {0, 1}) is the
numeral system that uses Fibonacci sequence as the base. The
definition of the Fibonacci sequence is given in Equation 18. A
number v is represented as the summation of some Fibonacci
numbers and no Fibonacci number is in the summation more
that once as indicated in Equation 17.

Definition 3:

fm =





0 if m = 0,

1 if m = 1,

fm−1 + fm−2 if m ≥ 2.

(18)

Similar to the binary numeral system, the Fibonacci-based
numeral system is complete and therefore any number can
be represented. However, the Fibonacci-based numeral system
is ambiguous. As an example, there are six 7-digit vectors
in the Fibonacci numeral system for the decimal number 19:
{0111101, 0111110, 1001101, 1001110, 1010001, 1010010}.
For clarity, we refer to a vector in the binary numeral system
as a binary vector or binary code; a vector in the Fibonacci
numeral system as a Fibonacci vector or Fibonacci code. All

2In some literatures, this type of code is also called forbidden transition
free code

the Fibonacci vectors that represent the same value are defined
as equivalent vectors.

A very important property of the Fibonacci sequence that
is used in the following discussions is given in Equation 19.

fm =
m−2∑

k=0

fk + 1 (19)

The n-bit binary vector has the range of [0, 2n − 1] and
a total of 2n values can be represented by n-bit binary
vectors. From Equation 19, we know that the range of a m-
bit Fibonacci vector is [0, fm+2 − 1], where minimum value
0 corresponds to all the bits dk being 0 and the maximum
value corresponds to all dk being 1. Therefore a total of fm+2

distinct values can be represented by m-bit Fibonacci vectors.

B. Near-Optimal CODEC

We first propose a coding scheme that converts the input
data to a forbidden pattern free Fibonacci vector. The code is
near-optimal since the required overhead is no more than 1 bit
more than the theoretical lower bound given in Equation 15.

Theorem 1: ∃dmdm−1...d2d1 = v, dmdm−1...d2d1 ∈
N(Fm, {0, 1}) and is FPF, ∀v ∈ [0, fm+2 − 1]

Theorem 1 states that for any number v ∈ [0, fm+2 −
1], there exists at least one m-bit Fibonacci vector
dmdm−1...d2d1 = v that represents this number and is
forbidden pattern free.

In order to prove Theorem 1, we first derive the following
corollaries:

Corollary 1: The following two m-bit Fibonacci vectors
are equivalent: dmdm−1...d301 and dmdm−1...d310. In other
words, dmdm−1...d301 ≡ dmdm−1...d310.

Proof: Since f2 = f1 = 1, it is obvious that the last two
digits are interchangeable.

Corollary 2: For an m-bit Fibonacci vector dmdm−1..d2d1,
if three consecutive bits dkdk−1dk−2 have a value 100, replac-
ing them with 011 produces an equivalent vector.

Proof: This can be proven based on the definition of
Fibonacci sequence given in Equation 18.

Corollary 3: For an m-bit Fibonacci vector dmdm−1..d2d1,
if a number of consecutive bits (slice) in the vector
dkdk−1...dk−n have a pattern of 0101...0100 (alternating 0
and 1 except the last two bits), replacing the slice with the
pattern 0011...1111 (all bits are 1 except the first two bits)
produces an equivalent vector.

Proof: From the right to left, we can recursively replace
100 with 011 (Corollary 2) until dk−1dk−2dk−3 has been
replaced.

Corollary 4: For an m-bit Fibonacci vector dmdm−1..d1,
if a slice in the vector dkdk−1...dk−n has a pattern of
1010...1011 (alternating 1 and 0 except the last two bits),
replacing the slice with the pattern 1100...0000 (first two bits
are 1s and the other bits are 0s) produces an equivalent vector.



6

Proof: From the right to left, we can recursively replace
011 with 100 (Corollary 2) until dk−1dk−2dk−3 has been
replaced.

The proof of Theorem 1 is given as follows:
Proof:

• ∃dmdm−1..d1 = v, dmdm−1..d1 ∈ N(Fm, {0, 1}),
∀v ∈ [0, fm+2−1].
In other words, for any number v ∈ [0, fm+2−1], there
exists at least one m-bit Fibonacci vector dmdm−1..d1.
This follows from the completeness of the Fibonacci
number system.

• If the vector dmdm−1..d1 is not FPF, we can produce
at least one equivalent vector that is FPF by performing
some or all of the following procedures:

– If the vector ends with a forbidden pattern (101 or
010), there exists an equivalent vector that ends with
110 or 001 (Corollary 1).

– If any slice in the vector contains forbidden pattern,
they can be replaced with a pattern that is forbidden
pattern free using Corollary 3, 4.

By proving Theorem 1, we show the existence of an FPF
Fibonacci vector for any number v in the range [0, fm+2−1].
The coding algorithm that encodes a given number v to an
FPF Fibonacci vector is given in Algorithm 2:

Algorithm 2 Near-Optimal FPF-CAC Encoder
FPF-CAC(v)
\\ MSB stage:
if v ≥ fm+1 then

dm = 1;
rm = v − fm;

else
dm = 0;
rm = v;

end if
\\ other stages:
for k = m-1 to 2 do

if rk+1 ≥ fk+1 then
dk = 1;

else if rk+1 < fk then
dk = 0;

else
dk = dk+1;

end if
rk = rk+1 − fk · dk;

end for
\\LSB
d1 = r2;
return (dmdm−1...d1);

Algorithm 2 shows that an m-bit FPF vector is generated
in m stages. Each stage outputs one bit of the output vector
(dk) and the remainder (rk) that is the input to the following
stage. In the kthstage, the input rk+1 is compared to two
Fibonacci numbers fk+1 and fk. If rk+1 ≥ fk+1, dk is coded
as 1; If rk+1 < fk, dk is coded as 0; If the value rk+1 is in

between, dk is coded to the same value as dk+1. The remainder
is computed accordingly based on the value of dk. We shall
refer the ranges [fk+1, fk+2), (fk, fk+1) and [0, fk) as the
force-1 zone, gray zone and force-0 zone of the kth stage
respectively. The most significant bit (MSB) stage is slightly
different from other stages since no bit proceeds it. It encodes
dm by comparing the input v with only one Fibonacci number
fm+1.

The decoder is a straightforward implementation of Equa-
tion 17, which converts the Fibonacci vector back to the binary
vector. Figure 3 shows the encoder and decoder structures
based on Algorithm 2.

v

≥ fm

fm

fm−1

dm−1

dm
≥ fm+1

∑

≥ f4
< f3

≥ f3
< f2

Encoder Decoder

v

d2

d1

d3

r3

rm−1

rm

d4

r4

dm

dm−1

d3

d2

d1

f3

< fm−1

Fig. 3. CODEC structure (Based on Algrithm-2)

The correctness of Algorithm 2 can be proven by showing
that if after the kth stage, the partially generated output vector
dm...dk+1dk is FPF, adding the output of the (k− 1)th stage,
dk−1 will not introduce a forbidden pattern.

We first recognize that if dk = dk+1, no forbidden pattern
will be produced regardless of the value of dk−1. Therefore
we only need to show that when dk 6= dk+1, dk−1 will
satisfy dk−1 = dk. Based on Algorithm 2, dk 6= dk+1 occurs
only when dk is forced to be 0 or 1. The proof is reduced to
proving that when dk is forced to one particular value, dk−1

will be coded the same value as dk. The proof is given as
follows:

Proof:

• If dk = 1 and dk 6= dk+1 [dk in force-1 zone]
⇒ rk+1 ≥ fk+1 and rk = rk+1 − fk

⇒ rk ≥ fk+1 − fk

⇒ rk ≥ fk−1 [dk−1 not in force-0 zone]
⇒ dk−1 = 1

• If dk = 0 and dk 6= dk+1 [dk in force-0 zone]
⇒ rk+1 < fk and rk = rk+1
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⇒ rk < fk [dk−1 not in force-1 zone]
⇒ dk−1 = 0

In Table III the complete 6-bit codewords generated using
Algorithm 2 are listed as CODE-1. As stated earlier, the MSB
stage is different from other stages since there is no preceding
bit and, for the values in the gray zone, dm−1 can be coded to
be either value. In Algorithm 2, we arbitrarily choose to code
the MSB (dm) to be 0 when the input value is in the gray zone.
If we code dm to be 1 for all values in the gray zone, we end
up with a different set of codewords as listed in CODE-2 in
the table. All codewords in both CODE-1 and CODE-2 are
FPF. For clarity, we only list codewords in CODE-2 that are
different from codewords in CODE-1.

Input CODE-1 CODE-2
Decimal f6 f5 f4 f3 f2 f1 f6 f5 f4 f3 f2 f1

value 8 5 3 2 1 1 8 5 3 2 1 1
20* 1 1 1 1 1 1
19* 1 1 1 1 1 0
18* 1 1 1 1 0 0
17* 1 1 1 0 0 1
16* 1 1 1 0 0 0
15 1 1 0 0 1 1
14 1 1 0 0 0 1
13 1 1 0 0 0 0
12 0 1 1 1 1 1 1 0 0 1 1 1
11 0 1 1 1 1 0 1 0 0 1 1 0
10 0 1 1 1 0 0 1 0 0 0 1 1
9 0 1 1 0 0 1 1 0 0 0 0 1
8 0 1 1 0 0 0 1 0 0 0 0 0
7 0 0 1 1 1 1
6 0 0 1 1 1 0
5 0 0 1 1 0 0
4 0 0 0 1 1 1
3 0 0 0 1 1 0
2 0 0 0 0 1 1
1 0 0 0 0 0 1
0 0 0 0 0 0 0

TABLE III
7 BIT CODE BOOK

Based on Equation 19, we can easily see that the total
numbers of codewords in both CODE 1 and CODE-2 are
fm+2, slightly smaller than the maximum cardinality of 2 ·
fm+1 given in Equation 14. Since fm+2 < 2 · fm+1 < fm+3,
we know for a given size input data vector n, the number
of bits needed for the proposed CODEC is no more than 1
bit more than the minimum number of bits required, mopt.
Table IV lists the number of bits needed to encode the binary
data from 3 to 32 bits: nin denotes the number of bits for
the input binary bus; mopt the number of bits required for the
optimal code; mno the number of bits needed for the proposed
CODEC and ∆(m) the difference between the two.

nin mopt mno ∆(m) nin mopt mno ∆(m)
3 4 4 0 18 26 26 0
4 5 6 1 19 27 28 1
5 7 7 0 20 29 29 0
6 8 9 1 21 30 30 0
7 10 10 0 22 31 32 1
8 11 12 1 23 33 33 0
9 13 13 0 24 34 35 1
10 14 15 1 25 36 36 0
11 16 16 0 26 37 38 1
12 17 17 0 27 39 39 0
13 18 19 1 28 40 41 1
14 20 20 0 29 42 42 0
15 21 22 1 30 43 43 0
16 23 23 0 31 44 45 1
17 23 23 1 32 46 46 0

TABLE IV
OVERHEAD COMPARISON

C. Optimal CODEC

A quick examination shows that ALL the valid FPF-CAC
codewords are actually listed in Table III: there are a total
of (fm+1 − fm) codewords in CODE-2 that are not included
in CODE-1. The total number of codewords in CODE-1 is
fm+2. Therefore the total number of distinct codewords in
both CODE-1 and CODE-2 is:

Tg(m) = fm+2 + fm+1 − fm

= fm+1 + fm + fm+1 − fm

= 2 · fm+1

(20)

We can see that the reason that the near-optimal codes do
not reach the maximum cardinality is due to the redundant
FPF Fibonacci vectors for the values in the gray zone. For a
coding scheme to reach the optimal overhead performance, we
need to remove this redundancy.

Table V shows how such modification is done. We simply
move the codewords in the CODE-2 gray zone to the top of
CODE-1. In doing so, the values these codewords represent
are shifted by fm+2 − fm = fm+1. The MSB stage of the
CODEC is modified to reflect this value shift in the new
mapping scheme:





dm = 1, rm = v − fm+2 if v ≥ fm+2,

dm = 1, rm = v − fm if fm+2 > v ≥ fm+1,

dm = 0, rm = v if v < fm+1

(21)

The decoder is modified accordingly:

v =

{∑m−1
k=0 dk · fk + fm+1 if bmbm−1=10,∑m−1
k=0 dk · fk otherwise

(22)

Table V gives the codewords based on the optimal CODEC
and the value each codeword represents. We can consider the
codewords as having an extra bit as shown in the second
column (XB) in the table. This bit is not transmitted on the
bus since its value can be recovered by the decoder based on
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the values of dm and dm−1.

Input XB OPT ENC Encoder 2
Decimal f7 f6 f5 f4 f3 f2 f1 f6 f5 f4 f3 f2 f1

value 13 8 5 3 2 1 1 8 5 3 2 1 1
25* 1 1 0 0 1 1 1
24* 1 1 0 0 1 1 0
23* 1 1 0 0 0 1 1
22* 1 1 0 0 0 0 1
21* 1 1 0 0 0 0 0
20* 0 1 1 1 1 1 1
19* 0 1 1 1 1 1 0
18* 0 1 1 1 1 0 0
17* 0 1 1 1 0 0 1
16* 0 1 1 1 0 0 0
15 0 1 1 0 0 1 1
14 0 1 1 0 0 0 1
13 0 1 1 0 0 0 0
12 0 0 1 1 1 1 1 1 0 0 1 1 1
11 0 0 1 1 1 1 0 1 0 0 1 1 0
10 0 0 1 1 1 0 0 1 0 0 0 1 1
9 0 0 1 1 0 0 1 1 0 0 0 0 1
8 0 0 1 1 0 0 0 1 0 0 0 0 0
7 0 0 0 1 1 1 1
6 0 0 0 1 1 1 0
5 0 0 0 1 1 0 0
4 0 0 0 0 1 1 1
3 0 0 0 0 1 1 0
2 0 0 0 0 0 1 1
1 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0

TABLE V
CODE BOOK FOR OPTIMAL CODEC

The overhead performance of the optimal coding scheme
reaches the theoretical lower bound given in Equation 15.
Compared to the CODEC with near-optimal overhead perfor-
mance, the optimal CODEC has added complexity. Using the
optimal CODEC does not offer additional gain in overhead in
the example here as the total number of distinct codewords
increases from 21 to 26. As shown in Table IV, only when
fm +2 < 2n < 2 · fm+1 does the optimal coding offer saving
of one bit.

IV. IMPLEMENTATION AND EXPERIMENTAL RESULT

The encoder and decoder based on Algorithm 2 can be
implemented using the structure illustrated in Figure 3. The
encoder converts a n-bit binary vector v = bn..b1 to an m-bit
vector dmdm−1..d1.

The encoder consists of m stages. Figure 4 depicts the
details inside the kth stage, where k < m. The inputs of the
stage are outputs from the previous stage: dk+1 and rk+1. and
the outputs are dk and rk. There are subtractors and a 2-to-1
MUX.

For the near optimal encoder, the MSB stage is simpler than
the other stages. For CODE-2, the MSB stage requires only

fk
rk

dk+1

SUB

SUB SEL

dk

rk+1

fk+1

Fig. 4. Internal logic of the kth block

one subtractor and one selector. The MSB stage of the near-
optimal CODEC can be modified to further simplify the logic.
Let bnbn−1...b1 be the binary input vector, if we let dm = bn

and rm be bn−1bn−2...b1. The mathematical expression of this
mapping is:

v = bn · 2n−1 +
m−1∑

k=1

dk · fk (23)

This modification is to simply code the output MSB bit to
the input MSB bit. The outputs are still FPF codes because to
code a n-bit binary code to an m-bit Fibonacci code, n and
m satisfy: 2n < fm+2 and we have:

2n ≤ fm+2 < 2 · fm+1

=⇒2n−1 < fm+1

(24)

Therefore the n bit input binary data can be broken into
the MSB bit and a (n − 1) bit vector. We simply construct
an encoder for the n− 1 bit vector. The MSB bit controls the
output bit value when the (n−1) bit input value is in the gray
zone.

Figure 5 shows the modified CODEC with the simplified
MSB stage. On the encoder side, the MSB of the input bn is
mapped directly to the MSB of the output dm. The rest of the
input vector bn−1bn−2...b1 becomes the input of the (m−1)th

stage. On the decoder side, the first input of the summation
stage is dm · 2n−1, instead of dm · fm as in Figure 3.

≥ fm
< fm−1

2n−1

fm−1

dm

∑ v

dm−1

bn

dm−2

fm−2

dm−1

dm

bn−1...b1
rm−1

Fig. 5. CODEC structure with MSB optimization

To evaluate the complexity of the CODECs, we imple-
mented the near-optimal CODEC in both an FPGA (Xilinx
XC4VLX15-12 [15]) and ASIC (both a TSMC 90nm process
[16] and a TSMC 130nm process). Figure 6 plots the resource
and delay of the FPGA implementation and Figure 7 plots the
equivalent gate counts of the encoder for input bus widths from
8 to 32 implemented using a TSMC 90 nm process [16]. For
a input data width of 12 bits, the equivalent number of 2-input
gates is 369. This is roughly two orders of magnitude lower
than the gate count reported in Figure 2 [4]. For the input data
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width of 32-bit, the total area is 17865 µm2 and the equivalent
gate count is 2,762. The sizes grow quadratically with the bus
size, as we expected. The gate count for the 130nm are very
close to the 90nm process.

Figure 8 compares the gate count for three different
encoder implementations: a single level Look-up Table
(LUT) implementation using random mapping, a single
level LUT with Fibonacci numeral system mapping and
the staged design proposed in this paper. All the designs
are implemented using the same TSMC 90nm process. We
can see clearly that the size of the LUT-based designs grow
exponentially. The figure shows that the mapping schemes
affect the encoder complexity: on average, a LUT-based
encoder using the Fibonacci mapping is 50% smaller than
a randomly mapped encoder. It also shows that for small
busses, the proposed design is not advantageous compared
with LUT based design. However, for busses with 8 or
more bits, the proposed staged designs offer significant
savings in terms of gate count.

Figure 6 and Figure 7 also show the delays of the encoder.
Understandably, the delay increases as the input bus size goes
up since the total delay is the accumulated delay of all stages.
Unlike the single level implementation, our design allows
pipeline stages to be inserted between stages to mitigate this
problem.

Bus partitioning can also be used to reduce the total
size and improve the speed of the decoder. Our experiment
confirmed that the maximum input-to-output delay of an
non-pipelined m-bit encoder is τ(m) ∝ O(m2). Reducing
the bus in half can improve the bus speed by approximately a
factor of 4. Similarly, the total area has the quadratic relation
with the number of input bits and therefore partitioning the
bus will reduce the total area by ∼ 50%.

The decoder structure is simpler than the encoder and has no
ripple delay. However, as the bus width grows, the summation
stage size goes up and more delay will be incurred. Note
that there is no multiplication or AND operation in the actual
implementation. Since fk is a constant, it is a simple case of
connecting dk to the non-zero bit positions of fk.
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Fig. 6. Resource count and delay of the proposed encoder for different input
bus sizes (FPGA implementation)

Figure IV illustrates a structure where an n-bit input bus
is split into two n

2 -bit groups. Each group is encoded and
decoded independently. The maximum delay of the encoder
and decoder stages are τenc(n/2) and τdec(n/2), instead of
τenc(n) and τdec(n).

The crosstalk that occurs across the boundary must be dealt
with when the bus partitioning technique is employed. In Fig-
ure IV, we simply duplicate the boundary lines. This requires
two extra wires for each added partition. Other approaches that
can be applied to minimize the number of additional wires,
such as group inversion as proposed in [5]. One additional
wire has to be used as an inversion indication. The trade-
off between area/speed and overhead can be balanced to
achieve the required speed while minimizing the additional
area overhead.

The FPF code is originally proposed to improve the bus
speed. However, our simulations show that by applying
the FPF encoding, the bus energy consumption can be
reduced as well. We randomly generated 10,000 input
vectors for 8, 12, 16 and 32 bit data and transmitted
these randomly generated data on an uncoded bus and a
coded bus respectively. For each bus width, a normalized
total energy consumption, Enorm is computed based on
Equation 5 with Vdd and CL both set to 1. Table VI
gives the normalized energy consumption for coded and
uncoded busses. The comparison is technology independent
and is also independent of bus configurations, i.e., bus
length, wire sizing, provided that λ À 1 is guaranteed.
The results indicate that even with ∼ 44% more wires,
coded busses have lower total energy consumption. It is
important to point out that such saving is achieved using
random sequences. For busses that transmit data with
regularity, the results may vary. We also would like to
point out that in our simulation, we do not include the
power consumption of the CODEC.

V. CONCLUSIONS

Crosstalk avoidance codes are shown to be able to reduce
the inter-wire crosstalk and therefore boost the maximum

Fig. 7. Gate count and delay of the proposed encoder for different input bus
sizes (TSMC 90nm implementation)
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bus size Enorm uncoded Enorm coded saving
8 35075 27825 20.7 %
12 55004 44222 19.6 %
16 74999 61456 18.6 %
32 154191 124148 19.5 %

TABLE VI
POWER CONSUMPTION COMPARISON BETWEEN CODED AND UNCODED

BUSSES

speed on the data bus. They have the advantage of consuming
less area overhead than shielding techniques. Even though
several different types of codes have been proposed in the
past few years, no mapping scheme was given which facilitates
the CODEC implementation. Compounded by the non-linear
nature of the CAC, the lack of a solution to the systematic
construction of the CODEC has hampered the wide use of
CAC in practice.

In this work, we give what we believe is the first solution to
this problem. We showed that data can be coded to a forbidden
pattern free vector in the Fibonacci numeral system. We first
give a straightforward mapping algorithm that produces a set
of FPF codes with near-optimal cardinality. The area overhead
of this coding scheme is near the theoretical lower bound. The
CODEC based on this coding scheme is systematic and has
very low complexity. The size of the CODEC grows quadrat-
ically with the data bus size as opposed to exponentially in
a brute forced implementation. Our systemic coding scheme
allows the code design of arbitrarily large busses without
having to resort to bus partitioning.

We further proposed an improved coding scheme which
yield a set of FPF codes with maximum cardinality. The area
overhead of this optimal coding scheme matches the theoret-
ical lower bound. We gave the corresponding modification in
the CODEC design as well.

This paper also discusses issues associated with CODEC
implementations. We proposed a modified coding scheme that

Fig. 8. Gate count comparison for different encoder implementations
in a TSMC 90nm process: a single level Look-Up-Table (LUT) based
implementation using Fibonacci mapping, a single level LUT using random
mapping and the proposed staged encoder

DEC AENC A

ENC B DEC B

n
2 ⇒ m′

n
2 ⇒ m′

db1

dam−1

dam

da1

da1

m′ ⇒ n
2

m′ ⇒ n
2

bn

bn/2+1

bn/2

b1

bn/2

bn/2+1

bn

b1

dbm

dbm−1

dbm

Fig. 9. Bus partition for delay/area improvement

eliminates the MSB stage in the encoder and simplifies the
decoder side as well. The modification reduces the total gate
count and improves the CODEC speed.

We implemented the near-optimal CODEC in both an FPGA
and a 90nm ASIC process. The reported results show that
the size of our CODEC is several orders of magnitude lower
than a previously reported design for a 12-bit bus. We also
investigated the possibility of combining our approach with
bus partitioning in very large busses to address the propagation
delay issue as well as to reduce the total size of the CODEC.

We compared the average bus energy consumption of
uncoded and FPF coded busses in simulation. Our exper-
imental results show that FPF coding offers on average
∼ 20% power saving.

Even though this work is strictly limited to one class of
crosstalk avoidance code (the FPF-CAC), we believe that the
approach can be easily adapted to other varieties of crosstalk
avoidance codes as well.
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