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Securing Biometric Data
Anthony Vetro, Stark C. Draper, Shantanu Rane, and JonathanS. Yedidia

Abstract— This chapter discusses the application of distributed
source coding techniques to biometric security. A Slepian-Wolf
coding system is used to provide a secure means of storing
biometric data that provides robust biometric authentication
for genuine users and guards against attacks from imposters.
A formal quantification of the trade off between security and
robustness is provided as a function of the Slepian-Wolf coding
rate. Prototype secure biometric designs are presented forboth
iris and fingerprint modalities. These designs demonstratethat
it is feasible to achieve information-theoretic security while not
significantly compromising authentication performance (mea-
sured in terms of false-rejection and false-acceptance rates)
when compared to conventional biometric systems. The methods
described in this chapter can be applied to various architectures,
including secure biometric authentication for access control and
biometric-based key generation for encryption.

Index Terms— Biometric, security, Slepian-Wolf coding, syn-
drome, iris, fingerprint, error correcting codes, LDPC codes,
belief propagation decoding, statistical model, feature extraction,
feature transformation, minutiae, helper data, fuzzy vault, factor
graph, access control, authentication, encryption, cryptographic
hash, robust hash, false accept rate, false reject rate, equal error
rate.

I. I NTRODUCTION

A. Motivation and Objectives

Securing access to physical locations and to data is of
primary concern in many personal, commercial, governmental
and military contexts. Classic solutions include carryingan
identifying document or remembering a password. Problems
with the former include forgeries while problems with the lat-
ter include poorly-chosen or forgotten passwords. Computer-
verifiable biometrics, such as fingerprints and iris scans,
provide an attractive alternative to conventional solutions.
Biometrics have the advantage that, unlike passwords, theydo
not have to be remembered and, unlike identifying documents,
they are difficult to forge. However, they have characteristics
that raise new security challenges.
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The key characteristic differentiating biometrics from pass-
words is measurement noise. Each time a biometric is mea-
sured, the observation differs, at least slightly. For example,
in the case of fingerprints, the reading might change because
of elastic deformations in the skin when placed on the sensor
surface, dust or oil between finger and sensor, or a cut to the
finger. Biometric systems must be robust to such variations.
Biometric systems deal with such variability by relying on
pattern recognition. To perform recognition in current biomet-
ric systems, the biometric measured at enrollment is stored
on the device for comparison with the “probe” biometric
collected later for authentication. This creates a security hole:
an attacker who gains access to the device also gains access
to the biometric. This is a serious problem since, in contrast
to passwords or credit card numbers, an individual cannot
generate new biometrics if their biometrics are compromised.

The issue of secure storage of biometric data is the central
design challenge that is addressed in this chapter. Useful
insight into desirable solution characteristics can be gained
through consideration of password-based authentication.In
order to preserve the privacy of passwords in the face of a
compromised database or personal computer, passwords are
not stored “in-the-clear”. Instead, a cryptographic “hash” of
one’s password is stored. The hash is a scrambling function
that is effectively impossible to invert. During authentication
a user types in their password anew. Access is granted only if
the hash of the new password string matches the stored hash of
the password string entered at enrollment. Because of the non-
invertibility of the hash, password privacy is not compromised
even if the attacker learns the stored hash. Unfortunately,
the variability inherent to biometric measurement means that
this hashing solution cannot be directly applied to biometric
systems – enrollment and probe hashes would hardly ever
match.

The aim of the secure biometric systems detailed in this
chapter is to develop a hashing technology robust to biometric
measurement noise. In particular, we focus on an approach
that uses “syndrome” bits from a Slepian-Wolf code [1] as a
“secure” biometric. The syndrome bits on their own do not
contain sufficient information to deduce the user’s enrollment
biometric (or “template”). However, when combined with a
second reading of the user’s biometric, the syndrome bits
enable the recovery and verification of the enrollment biomet-
ric. A number of other researchers have attempted to develop
secure biometric systems with similar characteristics, and we
will review some of these proposals in Section II.

B. Architectures and System Security

There are two fundamental applications for secure biometric
technology: access control and key management. In the former,
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the system modulates access through inspection of a candidate
user’s biometric. In the latter, the system objective is to extract
a stable encryption key from the user’s biometric. While
access-control and key-management are different goals, the
syndrome-encoding and recovery techniques we discuss apply
to both. In an access-control application, the recovered biomet-
ric is verified by comparison with a stored hash of the original
in a manner identical to password-based systems. In a key-
management application, the (now recovered) original serves
as a shared secret from which an encryption (decryption) key
can be generated.

While secure biometric technology addresses one security
threat facing biometric systems, it should be kept in mind that
a variety of threats exist at various points in the biometric
subsystem chain. For instance, individual modules can be
forged or tampered with by attackers. Examples include a fake
feature extraction module that produces pre-selected features
that allow an intruder to gain access, or a fake decision-making
entity that bypasses the authentication subsystem altogether. In
remote authentication settings, where biometric measurements
are collected at a remote site, not co-located with the stored
enrollment data, other weak points exist. Dishonest entities
such as servers that impersonate a user or perform data mining
to gather information could be the source of successful attacks.
Furthermore, in remote settings, the communication channel
could also be compromised and biometric data could be
intercepted and modified. Not all these threats are guarded
against with secure biometric templates. Some can be dealt
with using standard cryptographic techniques. But, in general,
system designers need to be aware of all possible points of
attack in a particular system.

In view of the above threats, a few desirable properties
regarding biometric system security are listed as follows:

• Availability: Legitimate users should not be denied access
• Integrity: Forging fake identity should be infeasible
• Confidentiality: Original biometric data should be kept

secret
• Privacy: Database cross-matching should reveal little in-

formation
• Revocability: Revocation should be easy

C. Chapter Organization

The rest of this chapter is organized as follows. In Section II,
related work in this area is described to give readers a sense
for alternative approaches to the secure biometrics problem.
Section III formally quantifies the trade-off between security
and robustness for the class of secure biometric systems
that we consider, and introduces the syndrome-coding-based
approach. In Section IV, we describe a prototype system devel-
oped for iris biometrics. In Sections V and VI, two different
approaches for securing fingerprint data are described. The
first is based on a statistical modeling of the fingerprint data.
The second approach involves transforming the fingerprint
data to a representation with statistical properties that are
well-suited to off-the-shelf syndrome codes. A summary of
this new application of distributed source coding is given
in Section VII, including a discussion on future research
opportunities and potential standardization.

II. RELATED WORK

One class of methods for securing biometric systems is
“transformation-based”. Transformation-based approaches es-
sentially extract features from an enrollment biometric using
a complicated transformation. Authentication is performed by
pattern matching in the transform domain. Security is assumed
to come from the choice of a good transform which masks
the original biometric data. In some cases the transform itself
is assumed to be kept secret and design considerations must
be made to ensure this secrecy. Particularly in the case when
the transform itself is compromised, it is difficult to prove
rigorously the security of such systems. Notable techniques
in this category include cancelable biometrics [2], [3], score
matching-based techniques [4], and threshold-based biohash-
ing [5].

The main focus of this chapter is on an alternative class of
methods that are based on using some form of “helper data.”
In such schemes, user-specific helper data is computed and
stored from an enrollment biometric. The helper data itself
and the method for generating this data can be known and is
not required to be secret. To perform authentication of a probe
biometric, the stored helper data is used to reconstruct the
enrollment biometric from the probe biometric. However, the
helper data by itself should not be sufficient to reconstructthe
enrollment biometric. A cryptographic hash of the enrollment
data is stored to verify bit-wise exact reconstruction.

Architectural principles underlying helper data–based ap-
proaches can be found in the information-theoretic problem
of “common randomness” [6]. In this setting, different parties
observe dependent random quantities (the enrollment and the
probe) and then through finite-rate discussion (perhaps inter-
cepted by an eavesdropper) attempt to agree on a shared secret
(the enrollment biometric). In this context, error correction
coding (ECC) has been proposed to deal with the joint prob-
lem of providing security against attackers, while accounting
for the inevitable variability between enrollment and probe
biometrics. On the one hand, the error correction capability of
a error-correcting code can accommodate variations between
multiple measurements of the same biometric. On the other
hand, the check bits of the error correction code perform much
the same function as a cryptographic hash of a password on
conventional access control systems. Just as a hacker cannot
invert the hash and steal the password, he cannot use the check
bits to recover and steal the biometric.

An important advantage of helper data–based approaches
relative to transformation–based approaches is that the security
and robustness of helper data–based schemes are generally
easier to quantify and prove. The security of transformation-
based approaches are difficult to analyze since there is no
straightforward way to quantify security when the transfor-
mation algorithm itself is compromised. In helper data–based
schemes, this information is known to an attacker, and the
security is based on the performance bounds of error correcting
codes, which have been deeply studied.

To the best of our knowledge, Davida, Frankel, and Matt
were the first to consider the use of ECC in designing a secure
biometrics system for access control [7]. Their approach seems
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to have been developed without knowledge of the work on
common randomness in the information theory community.
They describe a system for securely storing a biometric and
focuses on three key aspects: security, privacy, and robustness.
They achieve security by signing all stored data with a digital
signature scheme and achieve privacy and robustness by using
a systematic algebraic error-correcting code to store the data.
A shortcoming of their scheme is that the codes employed are
only decoded using bounded distance decoding. In addition,
the security is hard to assess rigorously and there is no
experimental validation using real biometric data.

The work by Juels and Wattenberg [8] extends the system
of Davida, et al. [7] by introducing a different way of using
error-correcting codes. Their approach is referred to as “fuzzy
commitment”. In the enrollment stage the initial biometric
is measured and a random codeword of an error correcting
code is chosen. The hash of this codeword along with the
difference between an enrollment biometric and the codeword
are stored. During authentication, a second measurement of
the user’s biometric is obtained, then the difference between
this probe biometric and the stored difference is obtained,and
error correction is then carried out to recover the codeword.
Finally, if the hash of the resulting codeword matches the
hash of the original codeword, then access is granted. Since
the hash is difficult to invert, the codeword is not revealed.
The value of the initial biometric is hidden by subtracting
a random codeword from it, so the secure biometric hides
both codeword and biometric data. This scheme relies heavily
on the linearity/ordering of the encoded space to perform the
difference operations. In reality, however, the feature space
may not match such linear operations well.

A practical implementation of a fuzzy commitment scheme
for iris data is presented in [9]. The authors utilize a
concatenated-coding scheme in which Reed-Solomon codes
are used to correct errors at the block level of an iris (e.g.,
burst errors due to eyelashes), while Hadamard codes are used
to correct random errors at the binary level (e.g., background
errors). They report a false reject rate of 0.47% at a key length
of 140 bits on a small proprietary database including 70 eyes
and 10 samples for each eye. As the authors note, however,
the key length does not directly translate into security andthey
estimate a security of about 44 bits. It is also suggested in [9]
that passwords could be added to the scheme to substantially
increase security.

In [10] Juels and Sudan proposed the fuzzy vault scheme.
This is a cryptographic construct that is designed to work with
unordered sets of data. The fuzzy vault scheme essentially
combines the polynomial reconstruction problem with ECC.
Briefly, a set oft values from the enrollment biometric are
extracted, and a lengthκ vector of secret data (i.e., the
encryption key) is encoded using an (n, k) ECC. For each
element of the enrollment biometric, measurement-codeword
pairs would be stored as part of the vault. Additional random
“chaff” points are also stored with the objective of obscuring
the secret data. In order to unlock the vault, an attacker must be
able to separate the chaff points from the legitimate pointsin
the vault, which becomes increasingly difficult with a larger
number of chaff points. To perform authentication, a set of

values from a probe biometric could be used to initialize a
codeword, which would then be subject to erasure and error
decoding to attempt recovery of the secret data.

One of the main contributions of the fuzzy vault work was
to realize that the set overlap noise model described in [10]can
effectively be transformed into a standard errors and erasures
noise model. This allowed application of Reed-Solomon codes,
which are powerful codes and analytically tractable enoughto
obtain some privacy guarantees. The main shortcoming is that
the set overlap noise model is not realistic for most biometrics
since feature points typically vary slightly from one biometric
measurement to the next rather than either matching perfectly
or not matching at all.

Nonetheless, several fuzzy vault schemes applied to various
biometrics have been proposed. Clancy, et al. [11] proposed
to use theX − Y location of minutiae points of a fingerprint
to encode the secret polynomial, and describe a random point-
packing technique to fill in the chaff points. The authors
estimate 69 bits of security and demonstrate a false reject rate
of 30%. Yang and Verbauwhede [12] also used the minutiae
point location of fingerprints for their fuzzy vault scheme.
However, they convert minutiae points to a polar coordinate
system with respect to an origin that is determined based on
a similarity metric of multiple fingerprints. This scheme was
evaluated on a very small database of 10 fingers and a false
reject rate of 17% was reported.

It should also be noted that there do exist variants of the
fuzzy vault scheme that do not employ ECC. For instance,
the work of Uludag, et al. [13] employs cyclic redundancy
check (CRC) bits to identify the actual secret from several
candidates. Nandakumar, et al. [14] further extended this
scheme in a number of ways to increase the overall robustness
of this approach. On the FVC2002-DB2 database [15], this
scheme achieves 9% false reject rate (FRR) and 0.13% false
accept rate (FAR). The authors also estimate 27-40 bits of
security depending on the assumed distribution of minutiae
points.

As evident from the literature, error-correcting codes indeed
provide a powerful mechanism to cope with variations in
biometric data. While the majority of schemes have been
proposed in the context of fingerprint and iris data, there also
exist schemes that target face, signature and voice data. Some
schemes that make use of multi-biometrics are also beginning
to emerge. Readers are referred to review articles on biometrics
and security for further information on work in this area [16],
[17].

In the sections that follow, the secure biometrics problem is
formulated in the context of distributed source coding. We first
give a more formal description of the problem set-up, and then
describe solutions using techniques that draw from information
theory, probabilistic inference, signal processing and pattern
recognition. We quantify security and robustness and provide
experimental results for a variety of different systems.
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III. OVERVIEW OF SECURE BIOMETRICS USING

SYNDROMES

A. Notation

We denote random variables using sans-serif and random
vectors using bold sans-serif,x and x, respectively. The
corresponding sample values and vectors are denoted using
serifs x and x, respectively. The length of vectors will be
apparent from context or, when needed, indicated explicitly as,
e.g.,xn for then-length random vectorx. The ith element of
a random or sample vector is denoted asxi or xi, respectively.
Sets are denoted using calligraphic font, e.g., the set of sample
values ofx is denotedX , its n-fold productXn, and | · |
applied to a set denotes its cardinality. We useH(·) to denote
entropy; its argument can be either a random variable or its
distribution; we use both interchangeably. For the specialcase
of a Bernoulli-p source we useHB(p) to denote its entropy.
Along the same lines, we useI(·; ·) and I(·; ·|·) to denote
mutual and conditional mutual information, respectively.

B. Enrollment and Authentication

As depicted in Fig. 1, the secure biometrics problem is
realized in the context of a Slepian-Wolf coding framework.
In the following, we describe the system operation in terms
of an access-control application. During enrollment, a user is
selected and their raw biometricb is determined by nature.
The biometric is a random vector drawn according to some
distribution pb(b). A joint sensing, feature extraction, and
quantization functionffeat(·) maps the raw biometric into
the length-n enrollment biometricx = ffeat(b). Next, a
function fsec(·) maps the enrollment biometricx into the
secure biometrics = fsec(x) as well as into a cryptographic
hash of the enrollmenth = fhash(x). The structure of the
encoding functionfsec(·) reveals information aboutx without
leaking too much secrecy. In contrast, the cryptographic hash
function fhash(·) has no usable structure and is assumed to
leak no information aboutx. The access control point storess

andh, as well as the functionsfsec(·) andfhash(·). The access
control point does not storeb or x.

In the authentication phase, a user requests access and
provides a second reading of their biometricb′. We model
the biometrics of different users as statistically independent.
Therefore, if the user is not the legitimate userpb′,b(b

′,b) =
pb(b′)pb(b). On the other hand, ifb′ comes from the legit-
imate userpb′,b(b

′,b) = pb′|b(b
′|b)pb(b), wherepb′|b(·|·)

models the measurement noise between biometric readings.
The features extracted from this second reading arey =
ffeat(b

′). Instead of working withpb′,b(b
′,b), we choose

to work with px,y(x,y). The feature extraction function
ffeat(·) induces the distributionpx,y(x,y) from pb′,b(b

′,b).
Per the preceding discussion, if the user is legitimate
px,y(x,y) = px(x)py|x(y|x), and if the user is illegitimate,
thenpx,y(x,y) = px(x)px(y).1

1We comment that Fig. 1 can be thought of as somewhat specific toa single
observation. If one had multiple observations of the underlying biometric, one
could symmetrize the joint distribution by assuming that each observation
of the underlying biometric (including the enrollment) wasthrough a noisy
channel. The current setting simplifies the model and is sufficient for our
purposes.

The decodergdec(·, ·) combines the secure biometrics with
the probey and either produces an estimate of the enrollment
x̂ = gdec(s, y) or a special symbol∅ indicating decoding
failure. Finally, the storedh is compared tofhash(x̂). If they
match, access is granted. If they do not, access is denied.2

C. Performance Measures: Security and Robustness

The probability of authentication error (false rejection)is

PFR = Pr [x 6= gdec(y, fsec(x))] ,

where Py,x(y,x) = Py|x(y|x)Px(x). As discussed later, we
will find it natural to use a logarithmic performance measure
to quantify authentication failure. We use the error exponent

EFR = −
1

n
log PFR (1)

as this measure.
It must be assumed that an attacker makes many attempts to

guess the desired secret. Therefore, measuring the probability
that a single attack succeeds is not particularly meaningful.
Instead, security should be assessed by measuring how many
attempts an attack algorithm must make to have a reasonable
probability of success. We formalize this notion by defining
an attack as the creation of a list of candidate biometrics.
If the true biometric is on the list, the attack is successful.
The list size required to produce a successful attack with high
probability translates into our measure of security.

Let L = ARsec
(·) be a list of2nRsec guesses forx produced

by the attack algorithmA () that is parametrized by the rate
Rsec of the attack and takes as inputspx(·) py|x(·|·), fsec(·),
fhash(·), gdec(·, ·), s, andh. The attack algorithm does not have
access to a probe generated from the enrollmentx according
to py|x(·|·) because it does not have a measurement of the
original biometric. From the quantities it does know, a good
attack is to generate a listL of candidate biometrics that match
the secure biometrics (candidate biometrics that do not match
s can be eliminated out of hand). That is, for each candidate
xcand ∈ L, fsec(xcand) = s. While the cryptographic hash
fhash(·) is assumed to be non-invertible, we conservatively
assume that the secure biometric encodingfsec(·) is known
to the attacker, and furthermore assume that the attacker can
invert the encoding, and hence the listL can be generated.

Once the listL is created, a natural attack is to test each
xcand ∈ L in turn to check whetherfhash(xcand) = h. If the
hashes match, the attack has succeeded. The system is secure
against attacks if and only if the list of all possible candidate
biometrics matching the secure biometric is so enormous that
the attacker will only have computational resources to compute
the hashes of a negligible fraction of candidate biometrics.
Security thus results from dimensionality reduction: a high-
dimensionalx is mapped to a low-dimensionals by fsec(·).
The size of the total number of candidate biometrics that map
onto the secure biometrics is exponential in the difference in
dimensionality.

2In a data encryption application an encryption key is generated fromx and
the matching decryption key from̂x. A cryptographic hash functionfhash(·)
is not required – if the reconstruction is not exact, then thegenerated key will
not match the one used to encrypt and decryption will fail.



VETRO ET AL.: SECURING BIOMETRIC DATA 5

?

biometric

Probe
biometric

Feature
extraction

Decoder
Feature
extraction

Measurement
noise

Store
and match

Does

Enrollment

b

b′

gdec(s, y)
s s sx

y

fsec(x) h

h h

h

fhash(x) fhash(x̂)

x̂

ffeat(b)

ffeat(b
′)

Fig. 1. Block diagram of Slepian-Wolf system for secure biometrics.

The probability that a rate-Rsec attack is successful equals
the probability that the enrollment biometric is on the at-
tacker’s list,PSA(Rsec) =

Pr
[

x∈ARsec

(

px(·),py|x(·|·),fsec(·),fhash(·),gdec(·,·),h,s
)]

.

The system is said to be “ǫ-secure” to rate-Rsec attacks if
PSA(Rsec) < ǫ.

Equivalently, we refer to a scheme withPSA(Rsec) = ǫ
as havingn · Rsec bits of security with confidence1 − ǫ.
With probability 1 − ǫ an attacker must search a key space
of n · Rsec bits to crack the system security. In other words
the attacker must make2nRsec guesses. The parameterRsec

is a logarithmic measure of security, quantifying the rate of
the increase in security as a function of block lengthn. For
instance, 128-bit security requiresnRsec = 128. It is because
we quantify security with a logarithmic measure that we also
use the logarithmic measure of error-exponents to quantify
robustness in (1).

Our objective is to construct an encoder and decoder pair
that obtains the best combination of robustness (as measured
by PFR) and security (as measured byPSA(Rsec)) as a
function of Rsec. In general, improvement in one necessitates
a decrease in the other. For example, ifPSA(0.5) = ǫ and
PFR = 2−10 at one operating point, increasing the security to
0.75n might yield another operating point atPSA(0.75) = ǫ
andPFR = 2−8. With this sense of the fundamental trade offs
involved, we now define the security-robustness region.

Definition 1: For anyǫ > 0 and anypx,y(x,y) the security-
robustness regionRǫ is defined as the set of pairs(r, γ) for
which an encoder-decoder pair(fsec(·), gdec(·, ·)) exists that
achieves rate-r security with an authentication failure exponent
of γ:

Rǫ =

{

(r, γ)

∣

∣

∣

∣

PSA(r) ≤ ǫ, γ ≥ −
1

n
log PFR

}

.

D. Quantifying security

In this section, we quantify an achievable subset of the
security-robustness regionRǫ. This specifies the trade off be-
tweenPFR andPSA(·) in an idealized setting. Our derivation
assumes thatx and y are jointly ergodic and take values in
finite sets,x ∈ Xn, y ∈ Yn. One can derive an outer bound to
the security-robustness region by using upper bounds on the
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Fig. 2. Example security-robustness regions. The horizontal axis represents
the maximum security rateRsec such thatPSA(Rsec) < ǫ, while the
vertical axis represents robustness. The security-robustness region of the
system corresponding to the solid curve (all points below the curve) dominates
that of the dashed curve.

failure exponent (via the sphere-packing bound for Slepian-
Wolf coding). Since our prime purpose in this section is to
provide a solid framework for our approach, we don’t further
develop outer bounds here.

We use a rate-RSW random “binning” function (a Slepian-
Wolf code [1]) to encodex into the secured biometrics.
Specifically, we independently assign each possible sequence
x ∈ Xn an integer selected uniformly from{1, 2, . . . , 2nRSW}.
The secure biometric is this indexs = fsec(x). Each possible
index s ∈ {1, 2, . . . , 2nRSW} indexes a set or “bin” of
enrollment biometrics,{x̃ ∈ Xn|fsec(x̃) = s}. The secure
biometric can be thought of either as a scalar indexs, or as
its binary expansion, a uniformly distributed bit sequences of
lengthnRSW.

During authentication, a user provides a probe biometric
y and claims to be a particular user. The decodergdec(y, s)
searches for the most likely vectorx̂ ∈ Xn giveny according
to the joint distributionpx,y such that x̂ is in bin s, i.e.,
fsec(x̂) = s. If a uniquex̂ is found, then the decoder outputs
this result. Otherwise, an authentication failure is declared and
the decoder returns∅.

According to the Slepian-Wolf Theorem [1], [18], the
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decoder will succeed with probability approaching 1 asn
increases provided thatRSW > (1/n)H(x|y). Thus, PFR

approaches zero for long block lengths. The theory of er-
ror exponents for Slepian-Wolf coding [19] tells us that
−(1/n) logPFR ≥ ESW(RSW), whereESW(RSW) =

max
0≤ρ≤1







ρRSW −
1

n
log

∑

y

py(y)

[

∑

x

px|y(x|y)
1

1+ρ

]1+ρ






.

(2)
If RSW < (1/n)H(x|y) then ESW(RSW) = 0. For RSW >
(1/n)H(x|y) the error exponentESW(RSW) increases mono-
tonically in RSW. Note that (2) holds for any joint distribu-
tion, not just independent identically distributed (i.i.d.) ones.
However, if the source and channel are memoryless, the joint
distribution is i.i.d., andpx,y(x,y) =

∏n
i=1 px,y (xi, yi). As

a result, the second term of (2) simplifies considerably to

− log
∑

y py (y)
[

∑

x px|y (x|y)
1

1+ρ

]1+ρ

.
Next, we consider the probability of successful attack, i.e.,

how well an attacker can estimatex given the secure biometric
s. According to the asymptotic equipartition property [20],
under the fairly mild technical condition of ergodicity, itcan
be shown that conditioned ons = fsec(x), x is approximately
uniformly distributed over the typical set of size2H(x|s).
Therefore, with high probability, it will take approximately
this many guesses to identifyx. We computeH(x|s) as

H(x|s) = H(x, s)−H(s)
(a)
= H(x)−H(s)

(b)
= H(x)−nRSW,

(3)
where(a) follows becauses = fsec(x), i.e.,s is a deterministic
function of x, and(b) follows from the method of generating
the secure biometric, i.e.,s is uniformly distributed over
length-nRSW binary sequences (in other wordss is a length-
nRSW i.i.d. Bernoulli(0.5) sequence).

Using (2) and (3) we bound the security-robustness region
in the following:

Theorem 1:For anyǫ > 0 as n → ∞, an inner bound to
the security-robustness regionRǫ defined in Definition 1 is
found by taking a union over all possible feature extraction
functionsffeat(·) and secure biometric encoding ratesRSW

Rǫ ⊃
⋃

ffeat(·),RSW

{

r, γ
∣

∣

∣
r <

1

n
H(x) − RSW, γ < ESW(RSW)

}

whereESW(RSW) is given by (2) for thepx,y(·, ·) induced by
the chosenffeat(·).

Proof: The theorem is proved by the random-binning en-
coding and maximum-likelihood decoding construction spec-
ified above. The same approach holds for any jointly ergodic
sources. The uniform distribution of the true biometric across
the conditionally typical set of size2H(x|s) provides security,
cf. (3). As long as the rate of the attackr < 1

n
H(x) − RSW,

then PSA(r) < ǫ for any ǫ > 0 as long asn is suffi-
ciently large. Robustness is quantified by the error-exponent
of Slepian-Wolf decoding given by (2).

Fig. 2 plots an example of the security-robustness region
for a memoryless insertion and deletion channel that shares
some commonalities with the fingerprint channel that we
discuss in Section V. The enrollment biometricx is an i.i.d.

Bernoulli sequence withpx(1) = 0.05. The true biometric is
observed through the asymmetric binary channel with deletion
probability py|x(0|1) and insertion probabilitypy|x(1|0). We
plot the resulting security-robustness regions for two choices
of insertion and deletion probabilities.

We now contrastPSA(·), the measure of security considered
in Theorem 1 and defined in Definition 1, with the probability
of breaking into the system using the classic attack used to cal-
culate the FAR. In the FAR attack,y is chosen independently
of x, i.e.,py,x(y,x) = py(y)px(x). This attack fails unless the
y chosen is jointly typical withx, i.e., unless the pairy and
(the unobserved)x look likely according topy,x(·, ·). Given
that ay is selected that is jointly typical with the enrollment
x, the decoder will then successfully decode tox with high
probability, the hash will match, and access will be granted. To
find such ay when picking according to the marginalpy(y)
takes approximately2I(y;x) = 2H(x)−H(x|y) guesses. We must
setRSW > (1/n)H(x|y), else as discussed above, (2) tells us
that PFR goes to one. This constraint means that (cf. eqn.(3))
H(x|s) < H(x) − H(x|y). Thus, while a FAR-type attack
required2H(x)−H(x|y) guesses, the smarter attack considered
in the theorem required2H(x)−nRSW and thus an FAR-type
attack will almost always take many more guesses than an
attack that makes its guesses conditioned ons.

We again emphasize that an attack that identifies a biometric
x̃ such thatfsec(x̃) = s is not necessarily a successful attack.
Indeed, our security analysis assumes that an attacker can
easily find x̃ that satisfiesfsec(x̃) = s. However, if x̃ 6= x,
thenfhash(x̃) 6= fhash(x) = h and access will not be granted.
Thus, in the bounds on security provided by Theorem 1, it is
assumed that the attacker is limited to guesses ofx̃ that satisfy
fsec(x̃) = s.

E. Implementation using syndrome coding

In our work, the enrollment biometricx is binary and we
use a linear code for the encoding function,

s = fsec(x) = Hx, (4)

where H is a k × n binary matrix and addition is mod-2,
i.e., a ⊕ b = XOR(a, b). Using the language of algebra, the
secure biometrics is the “syndrome” of the set of sequences
x̃ ∈ {0, 1}n satisfyingHx̃ = s. This set is also referred to as
the “coset” or “equivalence class” of sequences. Note that all
cosets are of equal cardinality3.

An attacker should limit his set of guessesARsec
to be

a subset of the coset corresponding to the storeds. If all x

sequences were equally likely (which is the case since cosets
are of equal size and ifx is an i.i.d.Bernoulli(0.5) sequence),
then the attacker would need to check through nearly the entire
list to find the true biometric with high probability. For this
case and from (3), we calculate the logarithm of the list sizeto
beH(x)−H(s) = n−k, wheren andk are the dimensions of

3It can be shown that anỹx in the s′ coset can be written as̃x = x ⊕ z

for somex in the s coset and wherez is fixed. Thus,Hx̃ = H(x ⊕ z) =
s+Hz = s′. Thes′ coset corresponds to all elements of thes coset (defined
by its syndromes) shifted byz, and thus the cardinalities of the two cosets
are equal.
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thex ands vectors, respectively, and are also the dimensions of
the H matrix in (4). This follows from the model:H(x) = n
sincex is i.i.d. Bernoulli(0.5) andH(s) = k since cosets are
of equal size andpx(x) = 2−n for all x.

If the enrollment biometricx is not a uniformly-distributed
i.i.d. sequence – which is going to be the case generally – the
attacker need not check through the entire coset corresponding
to s. Instead the attacker should intersect the coset with the
set of sequences inXn that look like biometrics. These are
the “typical” sequences [20] determined by the probability
measurepx(·). This intersection is taken into account in (3).4

If the rows of the H matrix in (4) are generated in an
independent and identically distributed manner, then step(b)
in (3) simplifies as follows:

H(x|s) = H(x)−H(s) = H(x)−
k

∑

i=1

H(si) = H(x)−kH(s).

(5)
In an actual implementation, we generally do not generate
the rows ofH in an i.i.d. manner, but rather use a structured
code such as a low-density parity-check (LDPC) code. In such
situations, (3) is alower bound on the security of the system
since H(s) ≤

∑k

i=1 H(si) using the chain rule for entropy
and the fact that conditioning reduces entropy, and the third
equality still holds as long as the rows ofH are identically
distributed (even if not independent). Furthermore, contrast (5)
with (3). In the latter,H(s) = nRSW because of the random
binning procedure. The assumptions of this procedure no
longer hold when using linear codes to implement binning.

It is informative to consider estimating (5). The second term,
kH(s) is easy to estimate since it involves only the entropy
of a marginal distribution. An estimation procedure would be
to encode many biometrics using different codes, construct
a marginal distribution fors, and calculate the entropy of
the marginal. Particularly, if the code alphabet is small (say
binary) little data is required for a good estimate. The first
termH(x) is harder to estimate. Generally, we would need to
collect a very large number of biometrics (ifn is large) to have
sufficient data to make a reliable estimate of the entropy of
then-dimensional joint distribution. Thus, the absolute levelof
security is difficult to evaluate. However, the analysis provides
a firm basis on which to evaluate the comparative security
between two systems. TheH(x) term is common to both and
cancels out in a calculation of relative security – the difference
between the individual securities, which iskH(s)− k′H(s ′).

IV. I RIS SYSTEM

This second describes a prototype implementation of a
secure biometrics system for iris recognition based on syn-
drome coding techniques. Experimental results on the CA-
SIA (Chinese Academy of Sciences Institute of Automation)
database [21] are presented.

4We note that calculating the intersection may be difficult computationally.
However, the security level quantified by Theorem 1 is conservative in the
sense that it assumes that the attacker can calculate the intersection and
produce the resulting list effortlessly.

A. Enrollment and Authentication

At enrollment the system performs the following steps.
Starting with an image of a user’s eye, the location of the
iris is first detected, and the torus is then unwrapped into a
rectangular region. Next, a bank of Gabor filters are appliedto
extract a bit sequence. The Matlab implementation from [22]
could be used to perform these steps. Finally, the extracted
feature vectorx is produced by discarding bits at certain
fixed positions that were determined to be unreliable5. The
resulting x = ffeat(b) consists of the most reliable bits; in
our implementation1806 bits are extracted. Finally, the bit
string x is mapped into the secure biometrics by computing
the syndrome ofx with respect to a LDPC code. Specifically,
a random parity check matrixH is selected from a good low
rate degree distribution obtained via density evolution [23] and
s = H · x is computed.

To perform authentication, the decodergdec(·, ·) repeats the
detection, unwrapping, filtering, and least-reliable bit dropping
processes. The resulting observationy is used as the input to a
belief propagation decoder that attempts to find a sequenceŝ

satisfyingH·ŝ = s. If the belief propagation decoder succeeds,
then the output̂s = gdec(s, y). Otherwise, an authentication
failure (or false rejection) is declared and the output of
gdec(s, y) is ∅.

Sample iris measurements from two different users are
shown in Fig. 3. The bit correlation between different samples
of the same user and differences between samples of different
users are easily seen. It has also been observed that the bit
sequences extracted from the irises contain significant inter-
bit correlation. Specifically, letpi,j be the probability of an
iris bit taking the valuei followed by another bit with the
value j. If the bits extracted from an iris were independent
and identically distributed, one would expectpi,j = 1/4 for
all (i, j) ∈ {0, 1}2. Instead, the following probabilities have
been measured from the complete data set:

p0,0 = 0.319, p0,1 = 0.166, p1,0 = 0.166, p1,1 = 0.349.

Ignoring the inter-bit memory would result in degraded perfor-
mance. Therefore, the belief propagation decoder is designed
to exploit this source memory. Further details can be found
in [24].

B. Experimental Results

The system is evaluated using the CASIA iris database [21].
The iris segmentation algorithm that was implemented was
only able to correctly detect the iris in 624 out of 756
images [22, Chapter 2.4]. Since our emphasis is on the secure
biometrics problem and not on iris segmentation, experiments
were performed with the 624 iris that were segmented suc-
cessfully. Furthermore, half of the iris images were used for
training.

5Unreliable positions are those positions at which the bit values (0 or 1)
are more likely to flip due to the noise contributed by eyelidsand eyelashes,
and due to a slight misalignment in the radial orientation ofthe photographed
images. The bit positions corresponding to the outer periphery of the iris
tend to be less reliable than those in the interior. These bitpositions can be
determined from the training data.
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(a)

 

(b)

Fig. 3. Sample bit sequences extracted from iris data (a) Twosample measurements from one user (b) Two sample measurements from a second user.

Fig. 4 reports performance results for the 312 image test set
from the CASIA iris database. The horizontal axis represents
security while the vertical axis represents the probability of
false rejection for a legitimate user. Better systems correspond
to points in the lower right, but as Theorem 1 shows theoreti-
cally and the figure demonstrates, there is a trade-off between
security and robustness. Specifically, if a rateR LDPC code is
used, thens containsn(1−R) bits. Under the idealized model
where the iris data consists of i.i.d. Bernoulli(0.5) bits, our
approach yields approximately1806 · R bits of security with
confidence approaching 1. IncreasingR yields higher security,
but lower robustness, so the security-robustness region can be
estimated by varying this parameter.

Note that if the biometric is stored in the clear, there is a
probability of false rejection equal to0.0012 (i.e., the leftmost
point in the graph). Thus, it is shown that, relative to an
insecure scheme, with essentially no change in the probability
of authentication failure the syndrome-based scheme achieves
almost50 bits of security.

Higher levels of security can be achieved if larger authenti-
cation error rates are allowed. As discussed in Section III,the
true level of security is more difficult to evaluate. Specifically,
the original length of the bit sequence extracted from an
iris in the system is1806 and the length of the syndrome
produced by our encoder is1806− t wheret is a point on the
horizontal axis of Fig. 4. If the original biometric is an i.i.d.
sequence of Bernoulli(0.5) random bits, then the probability of
guessing the true biometric from the syndrome would be about
2−t (i.e., security oft bits). However, as discussed earlier
in this section, there is significant inter-bit memory in iris
biometrics. In particular, according to the statistics forpi,j

that we measured, the entropy of an1806 bit measurement
is only about90% of 1806. Consequently, if the syndrome
vector was a truly random hash of the input biometric, it
would contain1806−t bits of information about the biometric.
Since 1806 − t > 90% for all reasonable values ofPFR,
this suggests that an attacker with unbounded computational
resources might be able to determine the true syndrome more
quickly than by randomly searching a key space of size2t.
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Fig. 4. Performance result of 312 iris images from CASIA database.
Horizontal axis represents security, while vertical axis plots robustness in
terms of the probability of false rejection. The original length of the bit
sequence extracted from an iris isn = 1806, while the length of the syndrome
is 1806−t bits, wheret is plotted along the horizontal axis above. In fact, the
actual number of bits of security is slightly smaller thant, since the syndrome
bits are not Bernoulli(0.5). A detailed explanation appears at the end of this
section.

That said, we are not aware of any computationally feasible
methods of improving upon random guessing and believe that
the estimated security provided here is still reasonable.

V. FINGERPRINT SYSTEM: MODELING APPROACH

In the previous section we remarked on the difficulties
caused by the correlations between bits in an iris biometric.
These problems were dealt with by explicitly including the
correlations in a belief propagation decoder. For fingerprint
data, such problems are more severe. Models for fingerprint
biometrics do not obviously map onto blocks of i.i.d. bits as
would be ideal for a Slepian-Wolf LDPC code. We present
two solutions to this problem. In this section, a “modeling”
solution is discussed, in which the relationship between the
enrollment biometric and the probe biometric is modeled as a
noisy channel. The rest of this section describes a somewhat
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Fig. 5. Fingerprint and extracted feature vector.

complex statistical factor graph model for fingerprint dataand
corresponding graph-based inference decoding techniques.

In section VI, a second “transformation” approach is in-
troduced, in which the fingerprint biometric is transformed,
as well as possible, into a block of i.i.d. bits, and then a
standard LDPC code and decoder are used. Although these two
approaches are described in detail for fingerprint biometrics,
other biometrics will have a similar dichotomy of possible
approaches. For fingerprints, we have found that the transfor-
mation approach gives better results and makes it easier to
quantify the security of the system, but both approaches are
worth understanding.

A. Minutiae Representation of Fingerprints

A popular method for working with fingerprint data is to
extract a set of “minutiae points” and to perform all subsequent
operations on them [25]. Minutiae points have been observed
to be stable over many years. Each minutiae is a discontinuity
in the ridge map of a fingerprint, characterized by a triplet
(x, y, θ) representing its spatial location in two dimensions
and the angular orientation. In the minutiae mapM of a
fingerprint,M(x, y) = θ if there is a minutia point at(x, y)
andM(x, y) = ∅ (empty set) otherwise. A minutiae map may
be considered as a joint quantization and feature extraction
function which operates on the fingerprint image, i.e., the
output of theffeat(·) box in Fig. 1. In Fig. 5, the minutiae map
is visualized using a matrix as depicted in the right-hand plot,
where a ‘1’ simply indicates the presence of a minutiae at each
quantized coordinate. In this figure, as well as in the model
described throughout the rest of this section, theθ coordinate
of the minutiae is ignored.

It is noted that different fingerprints usually have different
numbers of minutiae. Furthermore, the number and location
of minutiae could vary depending on the particular extraction
algorithm that is used. For some applications, it could be
important to account for such factors in addition to typical
differences between fingerprint measurements, which will be
discussed further in the next subsection. In the work described
here, the enrollment feature vectorx is modeled as a Bernoulli
i.i.d.random vector.

B. Modeling the movement of fingerprint minutiae

In the following, a model for the statistical relationship
py|x(y|x) between the enrollment biometric and the probe

An enrollment minutia’s
location may jitter
locally

An enrollment minutia
may not appear in probe
(deletion)

A minutia may appear
in probe but wasn’t 
there at enrollment
(insertion)

Fig. 6. Statistical model of fingerprints corresponding to local movement,
deletion and insertion.

biometric is described. There are three main effects that are
captured by this model: (1) movement of enrollment minutiae
when observed the second time in the probe, (2) deletions, i.e.,
minutiae observed at enrollment, but not during probe, and (3)
insertions, i.e.,“spurious” minutiae observed in probe, but not
during enrollment.

Fig. 6 depicts these three mechanisms in turn. First, minu-
tiae observed at enrollment are allowed to jitter slightly
around their locations in the enrollment vector when registered
the second time in the probe. This movement is modeled
within a local neighborhood, where up to three pixels in
either the horizontal or vertical direction (or both) couldbe
accounted for. The size of the local neighborhood depends
on the resolution of the minutiae map and how coarsely it
is quantized. Second, a minutia point may be registered in
the enrollment reading, but not in the probe. Or, a minutia
point may be displaced beyond the local neighborhood defined
by the movement model. Both count as “deletions”. Finally,
minutia points that are not observed at enrollment, but may
be in the probe vector are termed insertions.

The statistical model is formalized using a factor graph [26]
as shown in Fig. 7. The presence of a minutiae point at position
t, t ∈ {1, 2, . . . , n} in the enrollment grid is represented by
the binary random variablext that takes on the valuext = 1
only if a minutiae is present during enrollment.6 For simplic-
ity, the figure shows one-dimensional movement model. All

6Note that t indexes a position in the two-dimensional field of possible
minutiae locations. The particular indexing used (e.g., raster-scan) is imma-
terial. The product of the number of rows and the number of columns equals
n.
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experimental results use a two-dimensional movement model.
The decoder observes two vectors: the probe biometricyi

for i ∈ {1, 2, . . . , n} and sj for j ∈ {1, 2, . . . , k}. The
decoder’s objective is to estimate the hiddenxt enrollment
variables.

The factor graph breaks down into three pieces. At the
bottom of Fig. 7 is the code graph representing theH matrix
(cf. (4)) that mapsx into s. At the top of Fig. 7 is the
observationy. In betweenx andy is our model of movement,
deletion, and insertion. Each circle in the figure represents a
variable node either observed (s and y) or unobserved (x, h,
and z) that need to be estimated. The vectorh is a vector
of binary variables each indicating the current belief (at a
given point in the decoding process) whether an enrollment
minutiae at positiont is deleted. If a probe minutia is observed
at positiont (i.e., yt = 1), thenzt indicates the current beliefs
of what enrollment locations the minutiae might have come
from andzN (t) = {zi|i ∈ N (t)} are the set of these variables
in the neighborhood of enrollment positiont.

The constraints between the variables and the priors that
define the joint probability function of all system variables
are represented by the polygon factor nodes. The constraints
enforced by each are as follows. The prior onxt is p�(xt). The
prior on deletion isp�(ht). The prior on insertion isp∇(zt).
The constraint that each enrollment minutia is paired with only
a single probe minutia is enforced by the function node△.
In other word,△ says that an enrollment minutiae can move
to at most one position in the probe, or it can be deleted.
Finally, in the reverse direction,♦ constrains probe minutiae
either to be paired with only a single enrollment minutiae or
to be explained as an insertion. For a more detailed discussion
of the statistical model see [27], [28]. The complete statistical
model of the enrollment and probe biometrics is

px,y(x,y) = px(x)py|x(y|x)

=
∑

{hi}

∑

{zi}

∏

t

p�(xt)p�(ht)p∇(zt)△(xt, ht, zN (t))♦(zt, yt).

The above statistical model of the biometrics is combined
with the code graph. This yields the complete model used
for decodingpx,y,s(x,y, s) = px,y(x,y)

∏

j ⊕(sj ,x), where
⊕(sj ,x) indicates that the mod-2 sum ofsj and the xi

connected to syndromej by the edges of the LDPC code
is constrained to equal zero. A number of computational
optimizations must be made for inference to be tractable in
this graph. See [27], [28] for details.

C. Experimental Evaluation of Security and Robustness

We use a proprietary Mitsubishi Electric (MELCO) database
to evaluate our techniques. The database consists of a set of
fingerprint measurements with roughly 15 measurements per
finger. One measurement is selected as the enrollment, while
decoding is attempted with the remaining 14 serving as probes.
The locations of the minutiae points were quantized to reside
in a 70 × 100 grid, resulting in a block-lengthn = 7000.

The mean and standard deviation of movement, deletions
(pD), and insertions (pI) for the MELCO data set are plotted in
Fig. V-C. The labeld = 1 labels the probability an enrollment
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Fig. 8. Empirical movement statistics.

minutia moved a distance of one pixel in either the vertical
or horizontal directions or both (i.e., themax- or ∞-norm).
These parameters are used to set parameter values in the factor
graph.

A summary test results are given in Table I. Results are
categorized by the number of minutiae in the enrollment
print. To first order, this is a measure of the randomness
of the enrollment biometric. As an estimate ofH(x), we
say that if a fingerprint has, e.g.,33 minutiae its entropy is
7000 × HB(33/7000) = 7000 × 0.0432 = 302. Each row in
the table tabulates results for enrollment biometrics withthe
number of minutiae indicated in the first column. The second
column indicates how many users had that number of minutiae
in their enrollment biometric.

In the security-robustness trade-off developed in SectionIII-
C, it was found that holding all other parameters constant
(in particular the rate of the error-correcting code) security
should increase and robustness decrease as the biometric
entropy increases. To test this, we use LDPC codes of rate
RLDPC = 0.94 and length-7000 for all syndrome calculations.
The second and third groups of columns, labelled “False Neg-
atives” and “False Positives” bear out the theoretic analysis.
As the number of enrollment minutiae in a given fingerprint
increase, the FRR goes up while the FAR drops. All non-
enrollment probes of the given user are used to calculate FRR.
Summing the “# tested” column under FRR gives8111, which
is roughly equal to the sum of the number of users (579) times
the number of probes per user (roughly14). To calculate the
FRR we test the enrollment biometric uniformly against other
users’ biometrics. Note that for all results it is assumed that
the fingerprints in the database are pre-aligned.7

The final group of columns in Table I is labelled “Security”.
Here, we quantify the information theoretic security for the
prototype. From (5) and recalling that the length of the
biometric isn = 7000, the number of bits of security is

H(x|s) = H(x) − kH(s)

= 7000H(x)− 7000(1 − RLDPC)H(s). (6)

7We align fingerprints using a simple greedy minutiae-matching approach
over a number of vertical and horizontal shifts (there was norotational offset
in the dataset). More generally, alignment would have to be done blindly
prior to syndrome decoding. This is not as difficult as it may seem at first.
For instance, many fingers have a “core point” and orientation in their pattern
that can be used to define an inertial coordinate system in which to define
minutiae locations. Doing this independently at enrollment and at verification
would yield approximate pre-alignment. The movement part of the factor
graph model is be able to compensate for small residual alignment errors.
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Fig. 7. Factor graph of minutiae movement model.

Enrollment False Negatives False Positives Security
# minutiae # users FRR # tested FAR # tested H(x) H(s) # bits

31 195 0.11 2736 0.0098 110000 0.0410 0.682 0.5
32 139 0.13 1944 0.0032 78000 0.0421 0.693 3.6
33 107 0.15 1506 0.0024 60000 0.0432 0.701 8.2
34 79 0.20 1101 0.0011 44000 0.0443 0.711 11.6
35 59 0.32 824 0.0003 33000 0.0454 0.716 17.2

TABLE I

TEST PARAMETERS, FRRAND FAR RESULTS FOR FULL MODEL DECODING WORKING ONMELCO DATA AT ENCODING RATE RLDPC = 0.94.

Equation (6) follows from our model that the underlying
source is i.i.d. soH(x) = 7000H(x) and because we use
syndrome codes via (4) the number of syndromesk =
7000(1−RLDPC). UsingRLDPC = 0.94 and substituting the
values forH(x) andH(s) from the different rows of Table I
into (6) gives the bits of security for this system, which are
tabulated in the last column of the table.

D. Remarks on Modeling Approach

This section describes a secure fingerprint biometrics
scheme in which an LDPC code graph was augmented with a
second graph that described the “fingerprint channel” relating
the enrollment to the probe biometric. A number of improve-
ments are possible. For example, we implement an LDPC code
designed for a binary symmetric channel (BSC). This design
is not tuned to the fingerprint channel model. One possible
improvement is to refine the design of the LDPC to match that
channel. In general however, while the “fingerprint channel”
is a reasonable model of the variations between the enrollment
and probe fingerprints, the techniques developed are specific to
the feature set and the resulting inference problem is complex

and non-standard. In addition, higher levels of security are
desired. For these reasons, we take a different approach in
the next section that aims to redesign the feature extraction
algorithm to yield biometric features that are well-matched to
a standard problem of syndrome decoding.

VI. F INGERPRINT SYSTEM: TRANSFORMATION

APPROACH

In this section we aim to revamp the feature extraction
algorithm to produce biometric features with statistics well-
matched to codes designed for the BSC. Since the construction
of LDPC codes for the BSC is a deeply-explored and well-
understood topic, we are immediately able to apply that body
of knowledge to the secure biometrics problem. We believe
this is a more promising approach, in part because the design
insights we develop can be applied to building transforms for
other biometric modalities. In contrast, the biometric channel
model developed in Section V-B is specific to fingerprints
and minutiae points. In addition, the system we describe
for fingerprints in this section achieves a higher level of
information-theoretic security.
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The transformation-based secure fingerprint biometrics
scheme is depicted in Fig. 9. In Section 5, the functionffeat(·)
extracted minutiae maps from the enrollment and probe fin-
gerprints. Here, in addition to minutiae extraction, theffeat(·)
box also encompasses a feature transformation algorithm that
converts the 2-D minutiae maps to 1-D binary feature vectors.
The central idea is to generate binary feature vectors that
are i.i.d. Bernoulli(0.5), independent across different users but
such that different measurements of the same user are related
by a binary symmetric channel with crossover probabilityp
(BSC-p), wherep is much smaller than 0.5. This is one of the
standard channel models for LDPC codes and therefore stan-
dard LDPC codes can be used for Slepian-Wolf coding of the
feature vectors. We emphasize that the feature transformation
we now present is made public and isnot assumed to provide
any security – in contrast to some of transformation-based
techniques discussed in Section II.

A. Desired Statistical Properties of Feature Vectors

We aim to have a feature vector that possesses the following
properties:

1) A bit in a feature vector representation is equally likely
to be a 0 or a 1. Thus,
Pr{xi = 0} = Pr{xi = 1} = 1/2 andH(xi) = 1 bit for
all i ∈ I = {1, 2, . . . , n}.

2) Different bits in a given feature vector are indepen-
dent of each other, so that a given bit provides no
information about any other bit. Thus, the pairwise
entropy H(xi, xj) = H(xi) + H(xj) = 2 bits for all
i 6= j where i, j ∈ I. This property, along with the
first property, ensures that the feature vector can not
be compressed further, i.e., it presents the maximum
possible uncertainty for an attacker who has to guess
a portion of a feature vector given some other portion.

3) Feature vectorsx and y from different fingers are
independent of each other, so that one person’s feature
vector provides no information about another person’s
feature vector. Thus, the pairwise entropyH(xi, yj) =
H(xi) + H(yj) = 2 bits for all i, j ∈ I.

4) Feature vectorsx andx′ obtained from different readings
of the same finger are statistically related by a BSC-p.
If p is small, it means that the feature vectors are robust
to repeated noisy measurements with the same finger.
Thus,H(x ′

i |xi) = H(p) for all i ∈ I.
The last property ensures that a Slepian-Wolf code with an
appropriately chosen rate then makes it possible to estimate the
enrollment biometric when provided with feature vectors from
the enrollee. At the same time, the chosen coding rate makes
it extremely difficult (practically impossible) to estimate the
enrollment biometric when provided with feature vectors from
an attacker or from a different user. To show that the resulting
biometrics system is information theoretically secure, proceed
just like in (3) to obtain

H(x|s) = H(x, s) − H(s) = H(x) − H(s)

= H(x) − nRSW = n (H(xi) − RSW) (7)

= n(1 − RSW) = nRLDPC > 0

where the last two equalities follow from properties 1 and 2,
andRLDPC is the rate of the LDPC code used. Thus, the higher
the LDPC code rate, the smaller is the probability of successful
attack conditioned on an observation ofs. Moreover,H(x|s) >
0 and hencenRSW < H(x) implies that, if properties 1-4 are
satisfied, the system has positive information-theoretic security
for any LDPC code rate.

B. Feature Transformation Algorithm

To extractn bits from a minutiae map, it suffices to askn
“questions,” each with a binary answer. A general framework
to accomplish this is shown in Fig. 10. First,n operations
are performed on the biometric to yield a non-binary feature
representation that is then converted to binary by thresholding.
As an example, one can project the minutiae map onton
orthogonal basis vectors and quantize the positive projections
to 1s and negative projections to0s.

In the implementation we now describe, then operations
count the number of minutiae points that fall in randomly
chosen cuboids inX − Y − Θ space (x-position,y-position,
θ-minutia-orientation), as shown in Fig. 10-(b). To choose a
cuboid, an origin is selected uniformly at random inX−Y −Θ
space, and the dimensions along the three axes are also chosen
at random.

Next, define the threshold as the median of the number
of minutiae points in the chosen cuboid, measured across
the complete training set. A similar method is used for face
recognition in [30]. The threshold value may differ for each
cuboid based on its position and volume. If the number of
minutiae points in a randomly generated cuboid exceeds the
threshold, then a 1-bit is appended to the feature vector,
otherwise a 0-bit is appended. We consider the combined
operation of (a) generating a cuboid and (b) thresholding as
equivalent to posing a question with a binary answer. Withn
such questions we get ann-bit feature vector.

The simplest way to generate feature vectors is to use the
same questions for all users. In the sequel, we consider a more
advanced approach in which the questions are user-specific.
The rationale behind using user-specific questions is that some
questions are more robust (reliable) than others. In particular, a
question is robust if the number of minutiae points in a cuboid
is much greater than or much less than the median calculated
over the entire dataset. Thus, even if there is spurious insertion
or deletion of minutiae points when a noisy measurement of
the same fingerprint is provided at a later time, the answer to
the question (0 or 1) is less likely to change. On the other hand,
if the number of minutiae points is close to the median, the 0 or
1 answer to that question is less reliable. Thus, more reliable
questions result in a BSC-p intra-user channel with lowp.
Different users have a different set of robust questions, and
we propose to use these while constructing the feature vector.
We emphasize that for the purposes of security analysis, theset
of questions used in the system is assumed public. An attacker
who steals a set of syndromes and poses falsely as a user will
be given the set of questions appropriate to that user. Our
security analysis is not based in any way on the obscurity of
the questions, but rather on the information-theoretic difficulty
of recovering the biometric given only the stolen syndromes.
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Fig. 9. Robust feature extraction is combined with syndromecoding to build a secure fingerprint biometrics system.

(a) (b)

Fig. 10. (a)n questions can be asked by performingn operations on the biometric followed by thresholding. In our scheme, the operation involves counting
the minutiae points in a randomly generated cuboid. (b) To obtain a binary feature vector, the number of minutiae points in a cuboid is thresholded with
respect to the median number of minutiae points in that cuboid calculated over the entire dataset. Overlapping cuboid pairs will result in correlated bit pairs.
For details about eliminating bit pairs with very high correlation, the reader is referred to [29].

For a given useri, the average number of minutiae
points m̄i,j in a given cuboidCj is calculated over repeated
noisy measurements of the same fingerprint. Letmj and
σj be the median and standard deviation of the number of
minutiae points inCj over the dataset of all users. Then, let
∆i,j = (m̄i,j − mj)/σj . The magnitude,|∆i,j | is directly
proportional to the robustness of the question posed by cuboid
Cj for useri. The sign of∆i,j determines whether the cuboid
Cj should be placed intoL0,i, a list of questions with a 0
answer for useri, or into L1,i, a list of questions with a 1
answer for useri. Both these lists are sorted in the decreasing
order of |∆i,j |. Now, a fair coin is flipped to choose between
L0,i andL1,i and the question at the top of the chosen list is
stored on the device. Aftern coin flips, approximatelyn/2 of
the most robust questions from each list will be stored on the
device. This process is repeated for each enrolled useri.

C. Experimental Evaluation of Security and Robustness

In the following experiments, we use the same Mitsubishi
Electric fingerprint database as described in the previous
section, which contains minutiae maps of 1035 fingers with
15 fingerprint samples taken from each finger. The average
number of minutiae points in a single map is approximately

32. As before, all fingerprints are pre-aligned. To measure
the extent to which the desired target statistical properties in
Section VI-A are achieved, we examine the feature vectors
obtained from the minutiae maps according to the method
described in Section VI-B. Then most robust questions were
selected to generate the feature vectors, withn ranging from
50 to 350. Fig. 11 shows the statistical properties of the feature
vectors forn=150. As shown in Fig. 11(a), the histogram of
the average number of 1-bits in the feature vectors is clustered
aroundn/2 = 75. Fig. 11(b) shows that the pair-wise entropy
measured between bits of different users is very close to 2
bits. Thus, bits are nearly pairwise independent and nearly
uniformly distributed, approximating property 1.

In order to measure the similarity or dissimilarity of two
feature vectors, the normalized Hamming distance (NHD) is
used. The NHD between two feature vectorsx and y, each
having lengthn, is calculated as follows:

NHD(x,y) =
1

n

n
∑

i=1

(xi ⊕ yi)

where ⊕ is summation modulo 2. The plot of Fig. 12(a)
contains three histograms: (1) The intra-user variation isthe
distribution of the average NHD measured pairwise over 15
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Fig. 11. (a) Histogram of the number of ones in the feature vectors for n=150 is clustered aroundn/2 = 75. (b) The pairwise entropy measured across all
pairs and all users is very close to 2 bits.
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Fig. 12. (a) The Normalized Hamming Distance (NHD) between feature vectors shows clear separation within and across users. (b) The tradeoff between
intra-user NHD and inter-user NHD is plotted by sweeping a threshold NHD across the histograms in Fig. 12(a). Forn=150, equal error rate is 0.027 when
the attacker has access to the victim’s questions and is nearly zero when the attacker is impersonating a victim without knowing his specific questions.

samples of the same finger, (2) The inter-user variation is
the distribution of the NHD averaged over all possible pairs
of users, each with his own specific set of questions (3)
The attacker variation is the NHD for the case in which an
attacker attempts to identify himself as a given useri, while
using a different fingerprintj 6= i, but while using the 150
robust questions of useri. As seen in the figure, there is a
clean separation between the intra-user and inter-user NHD
distributions, and a small overlap between the intra-user and
attacker distributions. One way to ascertain the effectiveness
of the feature vectors is to choose different threshold NHDs
in Fig. 12(a) and plot the intra-user NHD against the inter-
user NHD. This tradeoff between intra-user NHD and inter-
user NHD is shown in Fig. 12(b) both for the case in which
every user employs specific questions and for the case in
which an attacker uses the questions stolen from the user being
impersonated. A metric for evaluating plots such as Fig. 12(b)
is the “equal error rate (EER)”, which is defined as the point
where intra-user NHD equals inter-user NHD. A lower EER
indicates a superior tradeoff. Fig. 13 plots the EER for various
values ofn. Observe that user-specific questions provide a
significantly lower EER than using the same questions for all
users irrespective of the robustness of the questions. Evenif
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Fig. 13. User-specific questions result in lower EER than common questions,
even if the user-specific questions are given to the attacker.

the attacker is provided with the user-specific questions, the
resulting EER is lower than the case in which everybody has
the same questions.

Based on the separation of intra-user and inter-user distri-
butions, we expect that a syndrome code designed for a BSC-
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n BSC crossover RLDPC FRR after FAR after No. of Bits
probability, p syndrome coding syndrome coding of security

100 0.1 0.3 0.23 0.0001 30
150 0.13 0.2 0.11 0.0001 30
200 0.2 0.15 0.14 0.0014 30
250 0.2 0.125 0.15 0.0035 31.25

TABLE II

SYNDROME CODING WITH AN APPROPRIATELDPC CODE GIVES AN INFORMATION-THEORETICALLY SECURE BIOMETRICS SYSTEM WITH LOWFRRAND

EXTREMELY LOW FAR.

p, with appropriatep < 0.5 would authenticate almost all
genuine users while rejecting almost all impostors. Table II
shows the FRR and FAR8 for overall syndrome coding with
different values ofn and p. These FAR and FRR values are
measures of the security-robustness tradeoff of the distributed
biometric coding system. The LDPC code rate is chosen so
as to provide about 30 bits of security. This restriction on the
LDPC code rate in turn places a restriction on how largep can
be, especially for smalln. Due to this restriction, the FRR is
relatively large forn = 100. The lowest FRR is achieved for
n = 150. As n increases, less robust questions need to be
employed, so the statistical properties of the feature vectors
diverge from those in Section VI-A. Thus, the FRR increases
again whenn becomes too large.

Compare the FRR, FAR and number of bits of security
reported in Table II with those reported in Section V. We
observe that the FRR and FAR are comparable, but the
transformation approach described in this section provides a
higher number of bits of security compared to the model-based
approach of Section V (see final column of Table I). The
reason for this improved security-robustness tradeoff is that
the statistical properties of the transformed feature vectors are
intentionally matched to the standard LDPC code for a binary
symmetric channel.

VII. SUMMARY

This chapter demonstrates that the principles of distributed
source coding can be successfully applied to the problem
of secure storage of biometrics. A Slepian-Wolf framework
is used to store a secure version of the biometric template
data collected at enrollment and to recover the enrollment
template at authentication. The trade-off between security and
robustness in this framework is formally defined and discussed,
and sample implementations based on iris and fingerprint data
validate the theory.

While iris data tends to be relatively well behaved and
exhibits easily modeled sample-to-sample variability (both
between samples of the same user and across users) the
same can not be said of fingerprints. It is shown that the
fingerprint noise channel is far removed from the standard bit-
flipping (e.g., BSC) channel model of communication systems.
The design of a secure system for such biometric modalities
therefore requires additional attention. Two approaches are
discussed. The first design is based on using a sparse binary

8While determining the FAR, if an input feature vectorba satisfies the
syndrome, it is counted as a false accept. This is a conservative FAR estimate
since anyba for which fhash(ba) 6= fhash(a) is denied access.

matrix representation of minutiae locations and developing
a model of minutiae movement that can be combined with
a graphical representation of a linear code. Although this
approach does not yet yield satisfactory performance in terms
of security and robustness, it does reveal various factors
that affect performance and provides valuable insight that
motivates the transform-based approach of Section VI.

In the latter approach, a transform is designed to con-
vert the fingerprint feature set into a binary vector with
desirable statistical properties, in the sense of being well-
matched to well-understood channel coding problems. The
resultant design yields very low false-acceptance and false-
rejection rates. Further, it ensures operation well into the
information-theoretically secure region. We believe thisto be
a powerful concept that will allow extension of this framework
to other biometric data. It may also prove useful in resolving
performance issues with other Slepian-Wolf inspired systems.

Besides further improving security and robustness, there
are a number of additional open research issues. As one
example, the designs presented in this chapter assumed thatthe
biometric data is pre-aligned. In practice, this is not the case
and biometric data must be aligned blindly, i.e., without access
to other reference data. One research trajectory is the design of
such algorithms. An alternative to blind alignment is the design
of a translation- and rotation-invariant feature set. A second
aspect of the secure biometrics that has not received much
attention concern multi-biometric systems. In these systems
multiple biometrics are collected at enrollment and verification
– such as both iris and fingerprint. The measurements are fused
to improve overall robustness and security. This particular
combination and some encouraging results are presented by
Nandakumar in [31]. However, the topic has yet to be studied
in the context of a Slepian-Wolf coding system.

As the use of biometrics become more widespread, the
incentive to attack biometric systems will grow. Assuming the
technology for securing biometric data is sufficiently mature, it
would be natural to standardize the template protection design.
Such work is within the scope of ISO/IEC JTC1/SC37, which
is an international standardization committee on biometrics.
Open issues to be handled by this committee would range
from quantifying the inherent entropy and security limits of
biometric data to remote authentication scenarios.

As a final note, the biometric system described in this
chapter is one example where a noisy version of an original
signal is available at the decoder for the purpose of authenti-
cation. This type of setup is extended to the problem of image
authentication following similar principles [32]. We believe
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that there are many such applications of this nature in which
the principles of distributed source coding can be applied.

REFERENCES

[1] D. Slepian and J. K. Wolf, “Noiseless Coding of Correlated Information
Sources,”IEEE Trans. Information Theory, pp. 471–480, Jul 1973.

[2] N. Ratha, J. Connell, R. Bolle, and S. Chikkerur, “Cancelable Biomet-
rics: A Case Study in Fingerprints,” inIntl. Conf. on Pattern Recognition,
2006, pp. 370–373.

[3] N. K. Ratha, S. Chikkerur, J. H. Connell, and R. M. Bolle, “Generat-
ing Cancelable Fingerprint Templates,”IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 29, no. 4, pp. 561–572, 2007.

[4] K. Sakata, T. Maeda, M. Matsushita, K. Sasakawa, and H. Tamaki,
“Fingerprint Authentication based on Matching Scores withOther Data,”
in Lecture Notes in Computer Science, ser. LNCS, vol. 3832, 2005, pp.
280–286.

[5] A. Teoh, A. Gho, and D. Ngo, “Random Multispace Quantization
as an Analytic Mechanism for Biohashing of Biometric and Random
Identity Inputs,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 28, no. 12, pp. 1892–1901, 2006.

[6] R. Ahlswede and I. Csiszar, “Common Randomness in Information
Theory and Cryptography I: Secret Sharing,”IEEE Trans. Information
Theory, vol. 39, no. 4, pp. 1121–1132, Jul 1993.

[7] G. I. Davida, Y. Frankel, and B. J. Matt, “On Enabling Secure Ap-
plications through Off-line Biometric Identification,” inProc. IEEE
Symposium on Security and Privacy, May 1998, pp. 148–157.

[8] A. Juels and M. Wattenberg, “A Fuzzy Commitment Scheme,”in
CCS ’99: Proceedings of the 6th ACM conference on Computer and
communications security. New York, NY, USA: ACM Press, 1999, pp.
28–36.

[9] F. Hao, R. Anderson, and J. Daugman, “Combining Cryptography with
Biometrics Effectively,” University of Cambridge, Tech. Rep. UCAM-
CL-TR-640, July 2005.

[10] A. Juels and M. Sudan, “A Fuzzy Vault Scheme,” inProc. International
Symposium on Information Theory, Lausanne, Switzerland, July 2002,
p. 408.

[11] T. C. Clancy, N. Kiyavash, and D. J. Lin, “Secure Smartcard-based Fin-
gerprint Authentication,” inProc ACM SIGMM workshop on biometrics
methods and applications, 2003.

[12] S. Yang and I. M. Verbauwhede, “Secure Fuzzy Vault-based Fingerprint
Verification System,” inAsilomar Conference on Signals, Systems, and
Computers, vol. 1, November 2004, pp. 577–581.

[13] U. Uludag, S. Pankanti, and A. K. Jain, “Fuzzy Vault for Fingerprints,”
in Audio- and Video-Based Biometric Person Authentication, 5th Inter-
national Conference, AVBPA 2005, Hilton Rye Town, NY, USA, July
20-22, 2005, Proceedings, ser. Lecture Notes in Computer Science, vol.
3546. Springer, 2005.

[14] K. Nandakumar, A. K. Jain, and S. Pankanti, “Fingerprint-based Fuzzy
Vault: Implementation and Performance,”IEEE Transactions on Infor-
mation Forensics and Security, vol. 2, no. 4, pp. 744–757, Dec 2007.

[15] D. Maio, D. Maltoni, J. Wayman, and A. K. Jain, “FVC2002:Second
Fingerprint Verification Competition,” inInternational Conference on
Pattern Recognition, August 2002, pp. 811–814.

[16] U. Uludag, S. Pankanti, S. Prabhakar, and A. K. Jain, “Biometric Cryp-
tosystems: Issues and Challenges,”Proceedings of the IEEE, vol. 92,
no. 6, pp. 948–960, June 2004.

[17] A. K. Jain, S. Pankanti, S. Prabhakar, L. Hong, and A. Ross, “Biomet-
rics: A Grand Challenge,”Proc. Interntaional Conference on Pattern
Recognition, vol. 2, pp. 935–942, August 2004.

[18] T. M. Cover, “A Proof of the Data Compression Theorem of Slepian
and Wolf for Ergodic Sources,”IEEE Trans. Inform. Theory, vol. 21,
no. 2, pp. 226–228, Mar 1975.

[19] R. G. Gallager, “Source Coding with Side Information and Universal
Coding,” Massachusetts Institute of Tech., Tech. Rep. LIDSP-937, 1976.

[20] T. M. Cover and J. A. Thomas,Elements of Information Theory. New
York: Wiley, 1991.

[21] “CASIA Iris Image Database collected by Institute of
Automation, Chinese Academy of Sciences.” [Online]. Available:
http://www.sinobiometrics.com

[22] L. Masek, “Recognition of Human Iris Patterns for Biometric Identifi-
cation,” Bachelors Thesis, University of Western Australia, 2003.

[23] T. J. Richardson, M. A. Shokrollahi, and R. L. Urbanke, “Design
of Capacity-Approaching Irregular Low-density Parity Check Codes,”
IEEE Transactions on Information Theory, vol. 47, no. 2, pp. 619–637,
February 2001.

[24] E. Martinian, S. Yekhanin, and J. S. Yedidia, “Secure Biometrics via
Syndromes,” inAllerton Conf., Monticello, IL, Sep 2005, pp. 1500–
1510.

[25] A. K. Jain, L. Hong, and R. Bolle, “On-line fingerprint verification,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 19, no. 4, pp. 302–314, April 1997.

[26] F. R. Kschischang, B. J. Frey, and H. Loeliger, “Factor Graphs and the
Sum-Product Algorithm,”IEEE Transactions on Information Theory,
vol. 47, no. 2, pp. 498–519, February 2001.

[27] S. C. Draper, A. Khisti, E. Martinian, A. Vetro, and J. S.Yedidia,
“Secure Storage of Fingerprint Biometrics using Slepian-Wolf Codes,”
in Inform. Theory and Apps. Work., UCSD, San Diego, CA, Jan 2007.

[28] ——, “Using Distributed Source Coding to Secure Fingerprint Biomet-
rics,” in Int. Conf. Acoutics Speech Signal Proc., Honolulu, HI, Apr
2007, pp. II–(129–132).

[29] Y. Sutcu, S. Rane, J. S. Yedidia, S. C. Draper, and A. Vetro, “Feature
Transformation for a Slepian-Wolf Biometric System based on Error
Correcting Codes,” inComputer Vision and Pattern Recognition (CVPR)
Biometrics Workshop, Anchorage, AL, Jun 2008, pp. 1–6.

[30] T. Kevenaar, G. Schrijen, M. V. der Veen, A. Akkermans, and F. Zuo,
“Face Recognition with Renewable and Privacy Preserving Binary Tem-
plates,” Fourth IEEE Workshop on Automatic Identification Advanced
Technologies, pp. 21–26, October 2005.

[31] K. Nandakumar, “Multibiometric Systems: Fusion Strategies and Tem-
plate Security,”Ph.D. Thesis, Michigan State University, 2008.

[32] Y. C. Lin, D. Varodayan, and B. Girod, “Image Authentication based
on Distributed Source Coding,” inInternational Conference on Image
Processing, San Antonio, TX, Sep 2007, pp. III–(5–8).


	Title Page
	Title Page
	page 2


	Securing Biometric Data
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16


