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Abstract

The anisotropic diffusion techniques are in general efficient to preserve image edges when they
are used to reduce noise. However, they are not very effective to denoise those images that
are corrupted by a high level of noise mainly for the lack of a reliable edge-stopping criterion
in the partial differential equation (PDE). In this paper, a new algorithm is developed to tackle
this problem. The main contribution of this paper is in the construction of a new regularization
method for the PDE by using the overcompleted dyadic wavelet transform (DWT). It proposes to
perform anisotropic diffusion in the more stationary DWT domain rather than directly in the raw
noisy image domain. In the DWT domain, since noise tends to decrease as the scale increases,
at each scale, noise has less influence on the PDE than that in the raw noisy image domain. As a
result, the edge-stopping criterion and other partial derivative measurements in the PDE become
more reliable. Furthermore, there is no need to do Guassian smoothing or any other smoothing
operations. Experiment results show that the proposed algorithm can significantly reduce noise
while preserving image edges.
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Abstract 
In general, the anisotropic diffusion techniques are efficient to 

preserve image edges when they are used for reducing noise. 
However, they are not very efficient to reduce noise for those images 
that are corrupted by a high level of noise mainly for the lack of a 
reliable edge-stopping criterion in the partial differential equation 
(PDE).  In this paper, a new algorithm is developed to address this 
problem. The contribution of this paper is on the construction of a 
new regularization method for the PDE using wavelet transform 
without doing Gaussian smoothing or any other smoothing. As a 
result, the edge-stopping criterion of the PDE and other gradient 
measurements are more reliable, making the anisotropic diffusion 
more efficient for noise reduction. Experimental results have shown 
that the proposed algorithm can significantly reduce noise while 
preserving image edges. 

Key words: Wavelet transform, scale-space, multiscale anisotropic 
diffusion, adaptive statistical analysis, image restoration. 

I. Introduction 
For image denoising, the main challenge is how to preserve the 

information-bearing structures such as edges and object boundaries to 
get satisfactory visual quality when improving the signal-to-noise-
ratio (SNR).  Edge-preserving image denoising has become a very 
intensive research topic.  Traditional Gaussian smoothing is not 
efficient for preserving edges since the Gaussian kernel is symmetric 
and orientation-insensitive, resulting in blurring artifact for edges.  In 
the past two decades, the nonlinear anisotropic diffusion model [1] 
and its variants have been widely used for general image denoising 
[2-7] and medical imaging [8-11] since it can adaptively encourage 
the intra-region smoothing while inhibiting the inter-region diffusion 
for achieving simultaneous noise reduction and edge preservation.  
However, we find out that the anisotropic diffusion model is very 
sensitive to noise and is inefficient to denoise those images with low 
SNR.  This is mainly due to the fact that in the partial differential 
equation (PDE), the anisotropic diffusion coefficient is a non-
negative monotonically decreasing function of the image gradient 
magnitude, but the gradient is very sensitive to noise, making the 
anisotropic diffusion coefficient non-reliable.  In addition, the PDE 
contains some other partial derivatives and their numerical 
calculations are also very sensitive to noise.  

In this paper, we develop a new algorithm of wavelet based 
multiscale anisotropic diffusion with adaptive statistical analysis, 
which can take advantage of edge-preserving property of the 
anisotropic diffusion model while circumventing its noise sensitivity 
problem.  The main idea of this algorithm is to reduce the influence 
of noise on the PDE model.  For achieving this goal, we use the 
dyadic wavelet transform (DWT) [12-13] to construct a linear scale-
space for the noisy image. Due to the smoothing functionality of the 
scaling function, the wavelet-based multiscale representation of the 
noisy image is much more stationary than the raw noisy image. Noise 
is mostly located in the finest scale and tends to decrease as the scale 
increases.  Afterwards, we perform the minimum mean squared error 
(MMSE)-based filtering on the finest scale, making the wavelet-
based scale-space even more stationary.  Finally, we perform the 
anisotropic diffusion on the stationary scale-space rather than on the 
rough noisy image domain.  Furthermore, the stationary scale-space 

makes it possible to optimize the anisotropic diffusion model by 
removing the regularization component such as Gaussian smoothing 
or other regularization methods as done in the previous work [2-3]. 
Comparative studies demonstrate that the proposed algorithm can 
significantly improve SNR while preserving edges. 

The rest of this paper is organized as follows: Section II reviews 
the related work about anisotropic diffusion. Section III presents the 
algorithm of wavelet-based multiscale anisotropic diffusion and 
adaptive statistical analysis.  The experimental results are 
demonstrated in Section IV and conclusion is made in Section V. 
 

II. Related Work about Anisotropic Diffusion 
The nonlinear PDE based anisotropic diffusion model proposed 

by Perona and Malik is to improve the isotropic diffusion [1]. In the 
continuous domain, consider the isotropic diffusion equation (the 
heat equation),  
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where denotes the divergence operator.  Smoothing an image 
according to the isotropic diffusion equation in the following way is 
equivalent to filtering the image with a Gaussian filter 
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The disadvantage of the Gaussian smoothing is that it is symmetric 
and orientation-insensitive, which would result in blurred edges and 
reduced resolution. In the anisotropic diffusion, the isotropic 
diffusion equation is modified into    
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I∇where  is the image gradient magnitude for edge detection, and 

)( Ig ∇  is the anisotropic diffusion coefficient, which is a non-
negative monotonically decreasing function of the image gradient 
magnitude. The function of anisotropic diffusion coefficient is 
defined in such a way that when ∞→∇I 0)( →∇Ig, ; and when 

0=∇I 1)( →∇Ig, . Thus the smoothing is only encouraged 
within homogeneous regions and is prohibited across object 
boundaries and edges. In terms of the anisotropic diffusion, the image 
smoothing is defined as following [1]: 
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The iterative anisotropic diffusion process can be discretized as: 
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where the original image is used as the initial condition , 

 denotes a pixel to be smoothed in the 2-D image domain, t  

denotes the discrete time steps (iterations).  The constant 
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λ  is a 
scalar that determines the stability, and it is usually less than 0.25. 

),( yxη  denotes the spatial neighborhood of pixel , and ),( yx
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represents the number of neighbors of point .  ),( yx ),(
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indicates the image intensity difference between two pixels at 
 and to approximate the image gradient. For the 4-

nearest neighbors of point (
),( yx ),( qp

yx, ) as illustrated in Figure 1, the 
gradients in 4 directions can be calculated in the following way: 
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The choice of the anisotropic diffusion function plays a significant 
role in preserving image edges.  Generally, as proposed in Perona-
Malik’s work [1], it takes either 
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where I∇  is the gradient magnitude defined in (6),  is a threshold 

for the gradient magnitude, and it determines  the extent to which 
edges are to be preserved during the anisotropic diffusion process.   
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Figure 1. The 4-nearest neighbors of a point in a 2-D grid. 

However, when the anisotropic diffusion model is directly 
applied to the noisy image (it is called the single-scale anisotropic 
diffusion here), its denoising performance is very susceptible to noise 
level.  From Eq.(6), we can see that when the image  
contains no or a low-level noise, the high image gradient magnitudes 
calculated from the difference of image intensity values can surely 
reflect the existence of edges, and the corresponding small 
anisotropic diffusion coefficients are reliable.  However, when the 
image is corrupted by a high level of noise, the numerical calculation 
of the image gradients is very sensitive to noise.   In addition to edges, 
noise may also exhibit high gradients.  As a result, for the single-
scale anisotropic diffusion, a large gradient magnitude no longer 
surely corresponds to a true edge and the anisotropic diffusion 
coefficients are not reliable, resulting in the discounted denoising 
performance. 

)0,,( yxI

So far, much research has been devoted to improving Perona-
Malik’s anisotropic diffusion method [2-6]. For example, Catte et al. 
[2] proposed the following anisotropic diffusion equation: 
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The gradients for determining the anisotropic diffusion coefficients 
are calculated from a “regularized” or smoothed image, which is 
obtained by filtering the noisy image at each time (iteration) with a 
Gaussian filter. Similarly, Torkamani-Azar et al. [3] proposed to 
replace the Gaussian filter with a symmetric exponential filter and the 
diffusion coefficient is calculated from the convolved image.  
Although these improvements can convert the ill-posed problem [15] 
in the Perona-Malik anisotropic diffusion into a well-posed one, their 
reported denoising performance can be further improved.  The 
problem is that a typical image has a wide variety of edges and it is 
difficult for one filter to select an optimal scale parameter so as to be 
adapted to all these edges.  For example, a Gaussian filter with a 
smaller scale parameter can preserve more of the edges, but it cannot 

smooth the image sufficiently and noise still has significant influence 
on the image gradient measurement.  On the other hand, using a 
Gaussian filter with a larger scale parameter for image smoothing, the 
image can be “regularized” enough, but edges are also smoothed and 
some weak features may even be removed.  As a result, for this kind 
of regularization method, the calculated gradient magnitudes from the 
smoothed image may not be able to reflect all true edges in the non-
filtered image.  So, in both cases, some noisy pixels may be 
misinterpreted as edge pixels or some true edges may not be detected, 
and the filtering result may either fail to reduce noise or make the 
non-detected edges blurred.   

Black et al. [4] improved Perona-Malik’s anisotropic diffusion 
from another direction. A different monotonically decreasing 
function is chosen to determine the anisotropic diffusion coefficient 
through robust statistics. Compared with the Perona-Malik method 
[1], the robust anisotropic diffusion demonstrates improved automatic 
stopping of the diffusion process with preservation of sharp 
boundaries and better continuity of edges [4].  The new “edge-
stopping” function is defined as: 
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I∇  is the gradient magnitude and σwhere  is a threshold about 

the gradient magnitude. In terms of robust statistics, the “robust 
scale” eσ  of the image at each time (iteration) is estimated as 
following [4]: 

)(42826.1 IMADe ∇=σ   
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where “MAD” denotes the median absolute deviation.  The 

normalized scale parameter σ eσσ 5= in Eq.(9) is defined as [4]. 

The constant λ  in Eq.(5) for controlling the stability of the 
anisotropic diffusion is defined as [4]: 

),(1 σσλ eg=             .           (11) 
Pollak proposed another stabilized inverse diffusion equation 

(SIDE) to overcome the problem in Perona-Malik’s PDE that edges 
can only be preserved temporarily and will be eventually blurred if 
the diffusion is allowed for a long time [5]. Wei generalized Perona-
Malik’s anisotropic diffusion and achieved better denoising 
performance [6].  However, these algorithms are still a kind of single-
scale anisotropic diffusion.  When noise level is high, they all have 
the noise-sensitivity problem. 

 
III. The Proposed Wavelet-based Multiscale 

Anisotropic Diffusion Algorithm 
From the above analysis, we can know it is very necessary for 

the anisotropic diffusion techniques to reduce the influence of noise 
on the edge-stopping criterion and gradient measurements.  For this 
end, we propose to decompose the noisy image using the DWT [12-
13] so as to construct a linear scale-space representation. After DWT, 
noise originally in the spatial noisy image is amplified to be the high 
frequency information, and in the wavelet-based scale-space, noise is 
mostly located in the finest scale.  Furthermore, due to the smoothing 
functionality of the scaling function in the wavelet transform, noise in 
the detail subbands tends to decrease as the scale increases.  This can 
be seen from Fig. 2.  The wavelet components at each scale are the 
decomposition results of the approximation component at the next 
finer scale, while the approximation component at that scale is a 
smoothed version of the original image.  Thus the linear scale-space 
representation is more stationary than the raw noisy image.  Chan et 



al developed another wavelet function to represent the piecewise-
smooth functions [16], which can be used as an alternative tool for 
multiscale representation.  Afterwards, we perform the MMSE-based 
filtering on the finest scale.  Since for typical images, the real signals 
are mostly located at the coarser scales and only a small fraction of 
them, corresponding to the sharpest edges is located at the finest scale, 
the MMSE-based filtering can significantly reduce noise without 
affecting edges.  As a result, the linear scale-space becomes even 
more stationary.  Finally, we perform the anisotropic diffusion on the 
more stationary linear scale-space rather than on the raw noisy image 
domain.  Since at each scale, less noise has influence on the PDE 
than that in the raw noisy image, the anisotropic diffusion 
coefficients and gradient measurements become more reliable and the 
anisotropic diffusion is more efficient.  Furthermore, the more 
stationary wavelet-based scale-space makes it possible to optimize 
the PDE by removing the regularization component such as Gaussian 
smoothing and other methods [2-3], making the PDE more robust.  
This means the filtered wavelet-based scale-space works as a new 
regularization method for the PDE and it is unnecessary to smooth 
the wavelet-based scale-space using the Gaussian filtering at each 
step of the anisotropic diffusion process. Gradients can be directly 
calculated from the wavelet coefficients at the same scale.  Zhu et al 
proposed a multiscale reaction-diffusion method for texture 
simulation and noise reduction [17], but in their method, the reaction-
diffusion is still performed in the spatial domain not in the wavelet 
transform domain.  
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Mwhere  is the image dimension.  The DWT [12] of the noisy 
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where  denotes the wavelet coefficient of a noise-free 

image at location  and scale , while 

denotes the observed wavelet coefficient of the noisy 

image, and  denotes the wavelet coefficient of the 

zero-mean and -variance  additive white Gaussian noise. 
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In this paper, the wavelet coefficients  of the noise-

free image at the finest scale are assumed to be the 
conditionally independent zero-mean Gaussian random 
variables , given their locally varying variances .  

This idea is extended from that in the orthogonal wavelet transform 
domain [19], in which the zero-mean Gaussian distribution is 
assumed for the orthogonal wavelet coefficients at all scales.  The 
variances  are modeled as identically distributed, highly 

correlated random variables.  According to the maximum likelihood 
(ML) estimation, the local variance  is obtained from the 

observed local noisy wavelet coefficients [14, 19]: 

),(,
2 yxIw dk

j

)1( =j

),0( 2
),( yxN σ 2

),( yxσ

 
A. Dyadic Wavelet Transform based Multiscale Image Analysis 

In this work, the translation-invariant two-dimensional (2-D) 
DWT [12-13] is used to decompose an image I into a linear scale-
space. The scale-space consists of an approximation component 
containing the smoothed structural information of the image at the 
coarsest scale and a set of detail components describing the details of 
the image in the horizontal and vertical directions at different scales 
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where denotes discrete form, denotes the low-pass 

component at the coarsest scale ,  and  denote the 

wavelet coefficient 
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the position of .  The noise standard deviation 
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can be estimated directly using a robust estimation, the median 
absolute deviation of wavelet coefficients in the lowest 
decomposition level divided by 0.6745 [20],  

.  In this work, the wavelet function in each orientation is 
the quadratic spline that approximates the first derivative of a 
Gaussian function.  As a result, the DWT works like the Canny edge 
detector [18]. Wavelet coefficients with large magnitudes usually 
correspond to edges in the smoothed image at the next finer scale 
[12-13], while those with very small magnitudes correspond to the 
slowly varying regions or constant regions in the image. An example 
of the 2-D DWT for a piecewise constant image is shown in Figure 2, 
from which, it is evident that noise in the spatial image domain is 
mainly located in the finest scale of the scale-space. Also due to the 
smoothing effect by the low-pass filtering, noise tends to decrease as 
the scale increases.   
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After the variance of local noise-free wavelet coefficients is 

estimated, the noise-free wavelet coefficient value of  
is estimated [14, 19]: 
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.           (17) B. MMSE-Based Filtering for the Finest Scale 

The MMSE-based filtering on the finest scale is to make the 
wavelet-based scale-space even more stationary.  

It needs to be pointed out, since the variances are estimated from the 
local observed noisy wavelet coefficients within a small moving 
window, the zero-mean assumption is only adequate at the finest 
scale, and it is inadequate at coarser scales, where when a window 
contains edges, the mean of wavelet coefficients within the window 

In the MMSE-based filtering, the image  is assumed to 
be corrupted by the additive white Gaussian noise (AWGN) 

 with variance .  Let us term the observed noisy 

image as: 
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is likely non-zero and the estimated  is not robust. An optimal 

way is to use a biased-mean model [21]. 
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C. The Rationale of the Wavelet-based Multiscale 
Anisotropic Diffusion  

It is well known that the anisotropic diffusion is best suitable to 
smooth the piecewise-constant images separated by edges. How can 
we perform the anisotropic diffusion on the wavelet transform 
domain? The rationale is that for a typical piecewise-constant image, 
after it is decomposed using the translation-invariant DWT [12], the 
wavelet transform components of ( ) ( )

Jj
d

Jj
d IWIW jj ≤≤≤≤ 1

,2
21

,1
2 , at each 

scale are still piecewise-constant separated by wavelet coefficients 
with large magnitudes due to the chosen quadratic spline wavelet 
function. As shown in Figure 2, wavelet coefficients in the 
components of , , , andIW d,1

2 IW d,2
2 IW d,1

4 IW d,2
4 , corresponding 

to smooth regions in the original image , are with very small 
magnitudes, while those corresponding to the vertical and horizontal 
edges are with very large magnitudes.  Thus, the magnitudes of 
wavelet coefficients reflect the variations in the image intensity 
values.  Therefore, it is possible to perform the anisotropic diffusion 
on the piecewise-constant wavelet transform components to reduce 
noise in wavelet coefficients while preserving the edge-related 
wavelet coefficients.  

1S

For the single-scale anisotropic diffusion, the gradients for 
determining the anisotropic diffusion coefficients are calculated 
either directly from the raw noisy image [1] or from the Gaussian-
smoothed image with the difference of image intensity values [2].   
For the multiscale anisotropic diffusion on wavelet transform domain, 
how can we calculate the gradients for determining the anisotropic 
diffusion coefficients?  We propose to calculate the finite difference 
(FD) of wavelet coefficients at the same scale as the gradients.  If the 
absolute FD between a central wavelet coefficient and one of its 
neighboring coefficients is very small, it means that the two wavelet 
coefficients are located at the same smooth region. Therefore, the 
anisotropic diffusion coefficient at the corresponding direction will 
be close to one so that the neighboring wavelet coefficient can be 
actively involved in smoothing the central wavelet coefficient.  On 
the other hand, if the absolute FD is large, the two wavelet 
coefficients are separated by an edge and the anisotropic diffusion 
coefficient will be very small, resulting in the preservation of edge-
related wavelet coefficients. 

 
D. Numerical Implementation of Wavelet-based Multiscale 
Anisotropic Diffusion 

In this work, we perform the robust anisotropic diffusion 
algorithm [4] on the wavelet transform components of  and 

at different scales forming the wavelet-based multiscale 

anisotropic diffusion to reduce noise in the wavelet coefficients.  
Within this framework, any other anisotropic diffusion techniques 
can be performed on the wavelet transform domain.  The proposed 
anisotropic diffusion process for smoothing the wavelet transform 
coefficients is defined as: 
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Compared with the conventional anisotropic diffusion as done in [3], 
the above equation is more optimal. The Gaussian smoothing 
component is removed from the PDE due to the stationary DWT 

representation of the noisy image. Here,  denotes the 

wavelet coefficient at a position  at time (iteration) , t),( yx
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2,1=k , indicating the horizontal and vertical directions, σ  is a 
threshold for the gradient magnitude tuned for a particular application, 

and  is the gradient, for which the finite 

differencing scheme is applied to the DWT domain.  
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be automatically calculated using (10) and (11). Consider the 
neighborhood support illustrated in Figure 1, the gradient 

 in the 4 directions is calculated in the following 

way: 
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The other parameters are calculated in the identical way as done in 
the robust anisotropic diffusion algorithm [4]. 

The anisotropic diffusion is iteratively performed on each scale 
of wavelet transform components  and  for noise 

reduction until a certain number of iterations are reached.  Since 
noise tends to decreases as the scales increases, the iteration number 
can be set smaller as the scale increases. 
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E. Summary of the Proposed Algorithm 

The proposed algorithm for noise reduction can be summarized 
as follows: 

1. Decompose the noisy image into a scale-space with 4 levels using 
the DWT to obtain the components 
( ) ( ) ,,

41
,2

241
,1

2 ≤≤≤≤ j
d

j
d IWIW jj

and . IS d
42

2. For the wavelet transform components of  and , 
perform the MMSE-based filtering as described in Section III.A.  
This step can be optional. 
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3. Perform the anisotropic diffusion algorithm described in Section 
III.D on the wavelet transform components ( )
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have been denoised in Step 2.  The low-pass component  is 

kept without doing any modifications. 
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4. Perform the inverse DWT on the denoised wavelet transform 
components, ( )
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component  to reconstruct the denoised image. IS 42
The proposed wavelet-based multiscale anisotropic diffusion 

algorithm with all the 4 steps is called WMSAD and that without 
including step 2 is called WMSAD-I.  The scheme that only includes 
the MMSE-based filtering on the finest scale is called WT_MMSE. 

IV. Experimental Results 
The performance of the proposed algorithm is evaluated using 

the 512x512 standard testing images of Peppers, Lena, Goldhill, and 
Barbara with 256 gray-scale values.  The additive Gaussian white 
noise with different noise variances is added to these images for 
performance test.  The peak signal to noise ratio (PSNR) values of 
the 4 noisy images with respect to different noise variances are listed 
in Table I.  Three standard images and their noisy versions with noise 



variance 225 are displayed in Figures 3, 4, and 5, respectively.   For 
clarity, only a portion is displayed for each image.  For demonstrating 
the effectiveness of the proposed WMSAD algorithm in noise 
reduction and edge preservation, the WMSAD algorithm is compared 
with the counterparts of the robust anisotropic diffusion [4] (RAD), 
the BSF algorithm [22], and the EWID algorithm [24] in detail from 
PSNR and the visual quality of the denoised images.  The BSF is one 
of the state-of-the-art wavelet-based denoising techniques while the 
EWID algorithm is an improved version of the LAWMAP algorithm 
[19].  When testing the RAD and WMSAD algorithms, the iteration 
number is set to achieve the maximum PSNR value.  The PSNR 
values of the denoised images for the 4 algorithms with respect to 
different noise variances are listed in Table II, in which the results of 
BSF are from the running of the source code [23], and they are higher 
than those reported in the original paper [22].  From PSNR values, 
we can see that the proposed WMSAD algorithm achieves the best 
denoising performance on average among the 4 algorithms.  The BSF 
algorithm achieves a little bit better performance for the image of 
Barbara, but for all other images, the WMSAD outperforms the BSF.  
For comparing the visual quality of the denoised images for the 4 
algorithms, their denoised images with respect to noise variance 225 
are shown in Figures 6, 7, and 8, respectively.  By comparing the 
denoised images shown in Figures 6(a), 7(a), and 8(a), produced by 
the WMSAD algorithm, with those shown in Figures 6(c), 7(c), and 
8(c), produced by the algorithm of RAD, we can see that the 
WMSAD achieves better visual quality for all images.  For RAD, a 
lot of noise is still remaining in the denoised images.  This conforms 
to our analysis that when the anisotropic diffusion is directly 
performed on the raw noisy image domain, noise cannot be reduced 
efficiently due to the influence of noise on the calculation of image 
gradients.  On the other hand, the wavelet-based multiscale 
anisotropic diffusion is much more immune to noise.  Finally by 
comparing the denoised Lena and Peppers of WMSAD with those of 
BSF and EWID algorithms, we can see that the WMSAD algorithm 
achieves much better visual quality. Much less artifacts are on the 
denoised images.  For the denoised Barbara, in order to have a clearer 
perception for the subtle difference, the eye region in the denoised 
image is displayed in Figure 9 for WMSAD, BSF and EWID.  It can 
be seen that WMSAD achieves best visual quality.  For both BSF and 
EWID, there are some distortions in the two eyes. 
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Table I. The PSNR (in dB) of the noisy standard testing images 

of Lena, Barbara, Peppers and Goldhill with respect to different noise 
variances.  

PSNR (dB) vs. noise variance   )( 2σ 

Image 
100 225 400 625 900 

Lena 28.20 24.66 22.18 20.27 18.75 

Barbara 28.20 24.67 22.19 20.29 18.77 

Peppers 28.32 24.81 22.36 20.47 18.96 

Goldhill 28.20 24.69 22.22 20.33 18.80 

 
In order to illustrate the impact of MMSE-based filtering at the 

finest scale on the performance of WMSAD, the schemes of 
WT_MMSE and WMSAD-I are evaluated. Their PSNR values are 
listed in Table-II, from which, we can see that the WMSAD-I 
achieves higher PSNR values than the RAD algorithm.  This 
conforms to our analysis that the wavelet-based scale-space is more 
stationary than the raw noisy image and the multiscale anisotropic 
diffusion is more efficient.  Also, it is evident that the MMSE-based 
filtering on the finest scale can reduce a lot of noise, which makes the 
scale-space even more stationary and greatly helps the WMSAD 
algorithm outperform the WMSAD-I. Without doing the WT_MMSE, 

performing the anisotropic diffusion directly on the finest scale as 
done in the WMSAD-I is similar to that on the raw noisy image and 
noise still has significant influence on the gradients. 

The proposed WMSAD algorithm is also compared with the 
recently published work about Gauss curvature-driven diffusion 
(CCD) [25] and complex steerable wavelets in image denoising 
(Complex_steer) [26] from the PSNR values.  In the CCD algorithm, 
only the image of Lena is used for experiment. When the PSNR value 
of the noisy image is 23.54 dB (noise variance < 400 as indicated by 
Table I), the PSNR value of the denoised image with the CCD 
algorithm is 27.91 dB, and the PSNR value with the mean curvature 
evolution method is 25.57 dB.  But with the WMSAD algorithm, the 
PSNR value of the denoised image is 31.40 dB even when the PSNR 
value of the noisy image is 22.18 dB (noise variance = 400).  Also 
from Table II, it is evident that the WMSAD algorithm is much more 
efficient than the Complex_steer [26] for the two images.  Thus we 
can say that the WMSAD outperforms the state-of-the-art PDE-based 
denoising techniques. 

Finally, we compare the WMSAD with the algorithm of image 
denoising using scale mixtures of Gaussians in the wavelet domain 
(SMG) [27], which is one of the most efficient denoising algorithms 
published so far. From the PSNR values, for most of the images such 
as Lena and Barbara, the SMG algorithm achieves much higher 
PSNR values than the proposed WMSAD algorithm. However for the 
piecewise-smooth image of Peppers, the WMSAD algorithm 
achieves much better performance. 

As for the computational complexity, the proposed algorithm is 
more computationally expensive than the conventional anisotropic 
diffusion techniques.  This is due to the fact that for the N-level 2-D 
DWT, the amount of DWT coefficients is 2N times that of the 
original noisy image.  As a result, the anisotropic diffusion at all 
scales is more time consuming than the conventional anisotropic 
diffusion techniques.  However, the wavelet coefficients at different 
scales can be processed independently, and if the algorithm is run on 
a computer with the parallel processing mechanism, the 
computational complexity will be significantly reduced and it will be 
less than or comparable to that of the conventional anisotropic 
diffusion techniques. 

V. Conclusion 
We have presented a very efficient algorithm that can achieve 

both efficient noise reduction and edge preservation at the same time 
due to the following four factors.  The first is the construction of the 
wavelet-based linear scale-space, which is more stationary than the 
raw noisy image.  The second is the MMSE-based filtering 
performed on the finest scale, making the scale-space even more 
stationary.  The third factor is that the anisotropic diffusion model is 
optimized by removing the regularization component. The fourth is 
the anisotropic diffusion is performed on the filtered scale-space 
rather than on the raw noisy image domain, which makes the 
anisotropic diffusion coefficients more reliable than those for the 
single-scale anisotropic diffusion.  Experimental results with different 
noisy images demonstrate that this algorithm outperforms the state-
of-the-art anisotropic diffusion techniques and achieves both very 
high PSNR values and very satisfactory visual quality for the 
denoised image.  It is expected that this algorithm is useful for those 
denoising applications such as medical imaging where good image 
visual quality is particularly emphasized.  In the future, efforts will be 
concentrated on reducing the computational complexity of the 
technique without compromising its denoising performance. 
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Table II. Performance (PSNR in dB) of the proposed WMSAD algorithm compared with that of the RAD [4], BSF [22], EWID [24], 
Complex_Steer [26], SMG [27], WMSAD-I, and WT_MMSE algorithms for the images of Lena, Barbara, Goldhill, and Peppers with respect 
to different noise variances.  The results of RAD and EWID are from the authors’ implementations rather than from the original papers.  The 
results of BSF [22] are from the running of the authors’ source code which is available in [23]. 
 

PSNR (dB) vs. noise variance   

Scheme 

 

Image 100 225 400 625 900 

Lena 34.49 32.69 31.40 30.36 29.47 

Barbara 32.25 30.03 28.43 27.23 26.35 

Peppers 34.11 32.55 31.21 30.05 29.04 

 

 

WMSAD 

Goldhill 32.53 31.03 29.85 28.87 27.98 

Lena 34.34 32.48 31.16 30.23 29.34 

Barbara 32.52 30.10 28.53 27.35 26.48 

Peppers 33.64 31.99 30.81 29.88 29.09 

 

 

BSF [22] 

Goldhill 32.30 30.45 29.22 28.38 27.72 

Lena 33.38 31.27 28.40 26.75 25.10 

Barbara 31.19 28.63 26.90 25.52 24.80 

Peppers 33.57 31.59 29.76 28.51 27.27 

 

 

RAD[4] 

Goldhill 32.11 30.43 29.01 27.92 26.90 

Lena 34.26 32.35 31.01 29.98 29.16 

Barbara 32.09 29.95 28.51 27.35 26.40 

Peppers 33.51 31.77 30.42 29.34 28.41 

 

    

EWID[24] 

Goldhill 32.48 30.57 29.28 28.32 27.54 

Lena 34.22 31.73 29.63 27.41 26.42 

Barbara 32.01 29.33 27.57 25.90 24.96 

Peppers 33.90 31.53 29.45 27.28 26.18 

 

 

WMSAD-I 

Goldhill 32.32 30.49 28.84 27.47 25.98 

Lena 32.88 29.74 27.46 25.68 24.24 

Barbara 32.05 29.13 26.96 25.27 23.84 

Peppers 32.70 29.64 27.38 25.59 24.13 

 

WT_MMSE 

Goldhill 32.28 29.46 27.30 25.57 24.15 

Lena 32.81 N/A 31.07 N/A 29.69 Complex_ 

Steer [26] Barbara 27.56 N/A 25.51 N/A 24.55 

Lena 35.61 33.90 32.66 31.69 N/A 

Barbara 34.03 31.86 30.32 29.13 N/A 

 

SMG[27] 

Peppers 33.77 31.74 30.31 29.21 N/A 
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Figure 2. A 2-D DWT decomposition example for a piecewise constant image with 2 decomposition levels. The noisy image is .   

and  denote the DWT coefficients in the first level, while  and
1S IW d,1
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 denote the DWT coefficients in the  second level.   

and  are the smoothed versions of the image . 

dS2

1SdS4

  
   (a)       (b) 

Figure 3. The original and noisy image of Peppers (a portion).  (a) is the standard image of Peppers,  (b) is the noisy image of 
Peppers with noise variance of 225. 



  
                               (a)                 (b)    
Figure 4. The original and noisy image of Lena (face region).  (a) is the standard image,  (b) is the noisy image of Lena with 
noise variance of 225.  

  
                              (a)                (b) 
Figure 5. The original and noisy Barbara image.  (a) is the standard image of Barbara,  (b) is the noisy image of Barbara with 
noise variance of 225.  

  
   (a)                                   (b)  
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(c)                      (d) 

Figure 6. The denoised images of peppers using different algorithms for comparison.  (a) is with the WMSAD algorithm.  (b) is with the BSF 
[22].  (c) is that of the RAD [4]. (d) is with the EWID[24]. 

  
                 (a)          (b) 

  
                        (c)                  (d)   
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Figure 7. The denoised Lena images (only face region is displayed for clarity) using different algorithms for comparison. (a) is the denoised 
result with the WMSAD. (b) is that of the BSF[22]. (c) is that of the RAD[4]. (d) is that of the EWID[24].  

  
                  (a)                             (b) 

  
                  (c)                            (d) 
 
Figure 8. The denoised images of Barbara (only face region is displayed for clarity). (a) is the denoised result of the WMSAD.  (b) is that of the 
BSF [22].  (c) is that of the RAD[4].  (d) is that of the EWID[24]. 
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  (a)     (b)              (c) 
Figure 9. The eye region of the denoised Barbara for different algorithms. (a) is for WMSAD, (b) is for BSF, and (c) is for EWID. 

References 
[1] P. Perona and J. Malik, “Scale-space and edge detection using 

anisotropic diffusion”, IEEE Trans. on Pattern Anal. and Mach. Intell., 
vol.12, no. 7, pp.629-639, 1990. 

[5] I. Pollak, A. S. Willsky, and H. Krim, “Image segmentation and edge 
enhancement with stabilized inverse diffusion equations”, IEEE Trans. 
On Image Processing, vol. 9, no. 2, pp.256-266, 2000. 

[2] F. Catte, P. L. Lions, J. M. Morel, and T. Coll, “Image selective 
smoothing and edge detection by nonlinear diffusion”, SIAM J. Numer. 
Anal., vol. 29, no. 1, pp. 182-193, 1992. 

[6] Guo W. Wei, “Generalized Perona–Malik Equation for Image 
Restoration”, IEEE Signal Processing Letters, vol.6, no.7, pp.165-167, 
1999. 

[3] F. Torkamani-Azar and K. E. Tait, “Image recovery using the 
anisotropic diffusion equation”, IEEE Trans. on Image Processing, vol. 5, 
no. 11, pp. 1573-1578,1996. 

[7] J. Weickert, Anisotropic diffusion in image processing, Teubner-Verlag, 
Stuttgart, Germany, 1998. 

[8] G. Gerig, O. Kubler, R. Kikinis, and F. A. Jolesz, “Nonlinear anisotropic 
filtering of MRI data”, IEEE Trans. On Medical Imaging, vol.11, no.2, 
pp.221-232, 1992. 

[4] Michael J. Black, Guillermo Sapiro, David H. Marimont and David 
Heeger, “Robust anisotropic diffusion”, IEEE Trans. on Image 
Processing, vol. 7, no. 3, pp.421-432, 1998. 



 11

[9] M. Lysaker, A. Lundervold, and X-C. Tai, “Noise removal using fourth-
order partial differential equation with applications to medical magnetic 
resonance images in space and time”, IEEE Trans. On Image Processing, 
vol.12, no.12, pp. 1579-1590, 2003. 

[10] Z. Ding, J. G. Gore, and A. W. Anderson, “Reduction of noise in 
diffusion tensor images using anisotropic smoothing”, Magn. Reson. 
Med., vol. 53, pp.585-490, 2005. 

[11] B. Chen, E. W. Hsu, “Noise removal in magnetic resonance diffusion 
tensor imaging”, Magn. Reson. Med., vol. 54, pp.393-407, 2005. 

[12] S. Mallat and S. Zhong, “Characterization of signals from multiscale 
edges”, IEEE Trans. on Pattern Anal. and Mach. Intell., vol.14, no.7, 
pp.710-732,1992. 

[13] S. Mallat and W. L. Hwang, “Singularity detection and processing with 
wavelets”, IEEE Trans. on Information Theory, vol.38, no. 2, pp.617-
643, 1992. 

[14] Junmei Zhong, and R. Ning, “Image denoising based on wavelet 
transform and Multifractals in singularity detection”, IEEE Transactions 
on Image Processing, vol. 14, no.10, pp. 1435-1447, Oct. 2005.   

[15] T. H. Romeny B., M., ed., “Geometry-driven diffusion in computer 
vision”, vol. 1 of Computational Imaging and Vision, Klumer, 1994. 

[16] T. Chan, H. M. Zhou, “ENO-wavelet transforms for piecewise smooth 
functions”, SIAM J. on Numerical Analysis, vol. 40, no.4, pp.1369-1404, 
2002. 

[17] S. C. Zhu, D. Mumford, "Prior learning and Gibbs reaction-diffusion", 
IEEE Trans. On Pattern Anal. and Mach. Intell., vol.19, no.11, pp.1236-
1250, 1997. 

[18] J. Canny, “A computational approach to edge detection”, IEEE Trans. 
Pattern Anal. Mach. Intell., vol.8, no. 6, pp.679-697, 1986. 

[19] M. K. Mihcak, I. Kozintsev, K. Ramchandran and P. Moulin, “Low-
complexity image denoising based on statistical modeling of wavelet 
coefficients”, IEEE Signal Processing Letters, vol. 6, no.12, pp. 300-303, 
1999. 

[20] D. L. Donoho and I. M. Johnstone, “Ideal spatial adaptation by wavelet 
shrinkage”, Biometrika, vol. 81, no.3, pp.425-455, 1994. 

[21] X. Li and M. T. Orchard, “Spatially adaptive image denoising under 
overcomplete expansion”, Proceedings of International Conference on 
Image Processing, pp.300-303, 2000. 

[22] L. Sendur, I. W. Selesnick, “Bivariate shrinkage functions for wavelet-
based denoising exploiting interscale dependency", IEEE Transactions 
on Signal Processing, vol. 50, no. 11, pp. 2744-2756, 2002. 

[23] http://taco.poly.edu/WaveletSoftware/denoise2.html. 
[24] Z. Cai, T. H. Cheng, C. Lu and K. R. Subramanian, “Efficient wavelet-

based image denoising algorithm”, Electronics Letters, Vol. 37, No.11, 
pp.683-685, 2001. 

[25] Suk-Ho Lee and Jin Keun Seo, “Noise removal with Gauss curvature-
driven diffusion”, IEEE Trans. on Image Processing, vol. 14, no. 7, pp. 
904-909, 2005. 

[26] A. Anthony Bharath and Jeffrey Ng, “A steerable complex wavelet 
construction and its application to image denoising”, IEEE Trans. on 
Image Processing, vol. 14, no.7, pp. 948-959, 2005. 

[27] J. Portilla, V. Strela, M. J. Wainwright, and E. P. Simoncelli, “Image 
denoising using scale mixtures of Gaussians in the wavelet domain,” 
IEEE Trans. Image Process. vol. 12, no.11, pp.1338-1351, 2003. 

 

http://taco.poly.edu/%7Elevent/bi_shrink.pdf
http://taco.poly.edu/%7Elevent/bi_shrink.pdf


 12

 
Point-by-point response to reviewers’ comments 

 
Dear reviewers,  
 
       Thank you very much for the valuable comments.  The paper has been revised according to these comments.  
The point-by-point responses to the comments are given below. 
 
Junmei Zhong & Huifang Sun 
 
 
 
------------------------------------- 
 
Review Number 1. 
 
***************** 
 
Comments to the Author 
 
---------------------- 
  
Comment 1-1: 
The sole contribution of this paper is the idea of nonlinear diffusion filtering of wavelet coefficients. This 
contribution is not enough to warrant publication in a Transactions. It is described in Sections III-D and III-E which 
take up less than a page in the double-column format. The discussion preceding these sections consists mostly of the 
background material which, for a reader familiar with diffusion filtering and wavelets, does not contribute anything 
to the understanding of the authors' contribution. 
 
Response 1-1:   
The whole Section III is the body of the proposed algorithm.  It describes how the idea is formed and the individual 
components of the proposed algorithm. 
 
Comment 1-2: 
The experimental part is very weak. Diffusion-based denoising methods are notoriously sensitive to the number of 
iterations: if too many iterations are used, the image is oversmoothed resulting in low PSNR; on the other hand, if too 
few iterations are used, the estimate is noisy, also resulting in a low PSNR. Thus, any diffusion-based denoising 
algorithm A can be "shown" to be better than another diffusion-based denoising algorithm B by setting the number of 
iterations for A to achieve the best performance and setting the number of iterations for B carelessly. For example, 
looking at Fig. 8, it is clear that (a) and (c) were oversmoothed, and (c) has been under-smoothed.  
 
Response 1-2:  
 
For all anisotropic diffusion techniques, it is generally done by setting an iteration number for controlling the 
diffusion process.  This may have the problem as pointed out by the reviewer.  How to approach automatic stopping 
for the anisotropic diffusion is still an open problem and it does need more investigation.   In the revised paper, we 
set the iteration number as many as possible so that the PSNR for the robust anisotropic diffusion is maximized. 
 
Fig. 8(c) looks under-smooth.  It is due to the fact that the original anisotropic diffusion is sensitive to noise, and 
even when the iteration number is increased, some noise still cannot be removed. This conforms to the analysis in 
this paper that since the model is sensitive to noise, noise can also exhibit high gradients and some noise cannot be 
smoothed. 
 
Comment 1-3: 
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Many of these algorithms are also very sensitive to other parameters, such as the time discretization step lambda in 
(19), the function g in (19), and sigma in (19). Thus constructing a meaningful experiment to compare several such 
algorithms is very challenging, and is certainly not achieved in this paper, as these crucial issues of parameter 
selection are not addressed. 
 
Response 1-3: 
 
The calculation of the parameters in (19) including the scale parameter sigma and lambda is addressed in detail in the 
robust anisotropic diffusion [4].  They are all automatically calculated from the image as listed in formula (10) and 
(11).  For the wavelet-based multiscale anisotropic diffusion, the iteration number is set smaller when scale increases. 
 
Comment 1-4: 
 
Finally, diffusion-based denoising has become irrelevant as other, more powerful denoising methods have been 
developed in the last few years, based on overcomlete representations such as curvelets and on statistical 
models such as Gaussian scale mixtures. 
 
Response 1-4:   
 
The authors completely agree with the reviewer that denoising techniques based on curvelets and statistical 
models such as Gaussian scale mixtures are efficient in image denoising. In the mean time, the authors also would 
like to say that for a wide variety of images, it is still very hard to expect one or two denoising techniques to tackle 
the challenging problem of noise reduction and edge preservation.  For example, noise statistics in MR images, CT 
images, PET images and ultrasound images are different. For medical image denoising with different modalities, it is 
impossible for a single denoising technique to efficiently reduce noise for all these image modalities. For biomedical 
image denoising, when a high PSNR is obtained, image edges must be preserved.  When one denoising technique is 
very efficient for some kinds of images, it may be not very efficient for the other images.  For example, the denoising 
technique based on Gaussian scale mixture is very efficient for many images such as Lena, Barbara, but for the image 
of Peppers, some other techniques are more efficient than the technique.  This is very natural.  Recently, there is a lot 
of research about anisotropic diffusion in biomedical imaging [8-11] for edge-preserving image denoising since the 
PDE model is theoretically efficient for preserving edges.  The motivation of this research is trying to develop an 
improved anisotropic diffusion technique so that the noise-sensitivity problem as addressed in this paper for the PDE-
based anisotropic diffusion can be solved well so that it can be much more useful for emerging biomedical imaging 
applications.  
 
 
Review Number 2. 
 
***************** 
 
Comments to the Author 
 
---------------------- 
 
 
The paper proposes an interesting combination of MMSE-based filtering on the finest-scale subbands of a wavelet 
transform and anisotropic diffusion on the other subbands at coarser scales to denoise images. 
 
 
Minor Changes: 
 
Comment 2-1: 



 
1/ Pg 2, Eq(7) and Eq(9), can some other symbol be used instead of x, as the latter has previously been used for x-
coordinates 
 
Response 2-1: 
 

I∇In (7) and (9), they have been changed into , which denotes the magnitude of gradient as defined in Eq. (6). 
 
Comment 2-2: 
 
2/ Pg 2, line after Eq(7), "where x is the gradient" _magnitude_ 
 
Response 2-2: 
 
Yes, it has been corrected. 
 
 
Comment 2-3: 
 
3 / Pg 4, last paragraph, line 8, it may be worth clarifying that as the multiscale wavelet transform has already shifted 
coarser-scale image information to a coarser spatial-frequency subband, there is no/less of a need to keep applying 
the Gaussian regularization filter at each step of the diffusion as in [2]. 
 
Response 2-3: 
 
Yes, you are right.  We have added this.  Actually, since the wavelet-based scale-space is more stationary than the 
raw noisy image, and after the MMSE-based filtering on the finest scale, the scale-space becomes even more 
stationary. So it is not necessary to do the Gaussian smoothing at each scale.  We optimized the PDE by removing 
the Gaussian smoothing component from the PDE.  This is more optimal than in [2].  In the first submission, from 
the Equation (19), there was no Gaussian smoothing. 
 
 
Comment  2-4: 
 
4 / Pg 4, next sentence, it may be a good idea to clarify that the finite differences are computed on wavelet coeffs at 
the same scale. 
 
Response 2-4: 
 
Yes, it has been added in the revised paper. 
 
Comment 2-5: 
 
5 / Pg 5, it would be interesting if the authors could include a graph of the PSNR achieved separately by (a) the 
MMSE finest-scale filtering and 
 
(b) the anisotropic diffusion on coarser subbands as noise variance is increased. This would give an indication of the 
contribution of the two components at different noise levels. 
 
Response 2-5: 
 
For (a), we have included the denoising results for only filtering the finest scale using the MMSE-based method, 
which is called the WT_MMSE in this work.  The result is included in Table II. 
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For (b), the results in Table II for the WMSAD_I algorithm are for the anisotropic diffusion at all scales without 
doing MMSE-based filtering on the finest scale.  Since the direct application of the anisotropic diffusion model to the 
finest scale is similar to that of the conventional anisotropic diffusion technique, noise still has great influence on the 
PDE, noise cannot be reduced efficiently.  That why the PSNR results of WMSAD-I are lower than those of 
WMSAD.  We hope this makes sense. 
  
Comment 2-6: 
 
6 / Page 7, Table II, As well as complex steer, the authors should include the denoising psnr results for Gaussian 
Scale Mixture in the Wavelet Domain, by Portilla et al., IEEE Trans Imag Proc, 12(11):133801351, 2003. 
 
Response 2-6.  
 
The algorithm in that paper you mentioned is very efficient for image denoising.  The results of that paper are 
included in the revised paper for comparison. 
 
Comment 2-7: 
 
7/ Page 12, Fig 8, it would be good to have an additional subfigure of the zoomed face region of Lenna as reference. 
 
Response 2-7: 
The original image of Lena in Figure 2 is replaced with the face region as reference in the revised paper. 
 
Comment 2-8: 
 
8/ Page 13, Fig 9 (d), why is there a circle on Barbara's "tie"? 
 
Response 2-8:  it has been removed. 
 
 
 
Review Number 3. 
 
***************** 
 
Comments to the Author 
 
---------------------- 
 
A reasonably well written paper, whose main contribution seems to be the application of anisotropic diffusion in a  
wavelet transform framework. This approach and the supporting results are providing a valid contribution 
to the field of image denoising and more importantly to the improvement of diffusion based methods. However, a 
number of improvements or additions should be considered. 
 
Comment 3-1: 
 
Firstly, while the results do offer improvements with respect to robust anisotropic diffusion (and the other referred 
methods), other perhaps superior wavelet based techniques (in terms of reported PSNR) were not mentioned, (eg. 
those of Sendur et. al. and Deng et. al.)  
 
Response 3-1: 
 
   Sendur et al’s paper is cited and compared in detail by running the source code in the website [23] in the revised 
paper. 
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Comment 3-2: 
 
This is particularly relevant, given the optional MMSE based filtering proposed by the authors for the finest scale and 
the significant improvement in PSNR that results. A question that should be addressed is why the proposed 
anisotropic diffusion approach used at the remaining scales is more suitable than the reported MMSE fine-scale 
method (used at all scales) or indeed one of the other leading wavelet-based methods.  
 
Response 3-2:  
 
The main reason is that when a noisy image is transformed using the wavelet, noise in the spatial image is amplified 
to be the high frequency information and is mostly located at the finest scale of the time-frequency DWT domain.   If 
we directly perform the anisotropic diffusion on the finest scale, noise will have great influence on the anisotropic 
diffusion coefficient and other gradient measurements in the PDE, making the anisotropic diffusion not efficient for 
noise reduction.  On the other hand, in the finest scale, noise is dominant and the real signal components for typical 
images are very weak especially when noise level in the image is high and they are mostly located at coarser scales.  
So when we perform the MMSE-based filtering on the finest scale, noise can be reduced significantly while real 
signal components cannot be affected, making the wavelet-based scale-space even more stationary. 
 
On the other hand, since noise tends to decrease as the scale increases, the coarser scales are more stationary than the 
raw noisy image.  So it is possible to directly perform the anisotropic diffusion on the coarser scales and this can 
preserve the edge-related wavelet coefficients while reducing noise in wavelet coefficients.   
 
But the MMSE-based filtering cannot be applied to all scales as addressed in the paper.  It is due to the fact that in the 
MMSE-based filtering method, it is assumed that the noise observes the zero-mean Gaussian distribution. For the 
finest scale, this assumption is adequate, but for coarser scales, this assumption is inadequate since the image 
structural information is mostly located at the coarser scales. We calculate the parameters using a moving window, at 
coarser scales, when the window contains edge-related information, the mean of wavelet coefficients within the 
window may not be zero.  As a result, the model is no longer robust at coarser scales.  This is confirmed by the 
LAWMAP algorithm [19] in which the MMSE-based filtering is applied to all scales. 
 
 
 
Comment 3-3: 
 
Briefly contrasting the proposed method with leading non-diffusion based approaches would be useful addition. If 
the proposed method offers improvement in visual quality (or efficiency) rather than PSNR, than this would be a very 
useful comparison. 
 
Response 3-3: 
 
Sendure et al’s paper [22] has been compared in detail with its denoised images by running the code in [23]. 
 
 
Comment 3-4: 
 
The number of images displayed for reader evaluation is perhaps excessive. Key examples demonstrating the desired 
effects would be adequate. The authors refer to the degree of stationarity of the respective data spaces. This comes 
across as a rather intuitive assessment rather than something that is being objectively measured. Perhaps this could be 
clarified by providing a basis for this description (either referenced or explained). 
 
Response 3-4: 
Yes, the authors have removed some images by only keeping some key examples as suggested by the reviewer.  As 
for the degree of stationarity in the DWT domain, the authors have re-stated this in the revised paper.  Noise is 



dominant at the finest scale and tends to decrease as the scale increases.  This is due to the smoothing functionality of 
the scaling function in the wavelet transform.  Since the DWT decomposition results at a coarser scale (j+1) are from 
the approximation (low-pass) component at the next finer scale (j) as shown in Figure 2, while the approximation 

component mainly contains the main structure of the image at the corresponding scale (j), and less noise is in than 
in the original noisy image due to the low-pass filtering effect of the scaling function.  This property is applicable to 
all DWT.  We hope this makes more sense. 
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