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Abstract

We describe a hill-climbing algorithm that constructs high-girth quasi-cyclic low density parity
check (QC-LDPC) codes. Given a desired girth, the algorithm can find QC-LDPC codes of
shorter block-length in much less time compared with the previously proposed ~guess-and-test”
algorithm. An analysis is also provided to explain when guess-and-test would be expected to
perform well or badly.
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Abstract—We describe a hill-climbing algorithm that con- There is considerable work on optimizing girth in LDPC
structs high-girth quasi-cyclic low-density parity check (QC-  codes. In [17], a progressive-edge growth (PEG) algorithm i
LDPC) codes. Given a desired girth, the algorithm can find QC- proposed for random LDPC codes. The case of QC-LDPC

LDPC codes of shorter block-length in much less time compac . R . .
with the previously proposed “guess-and-test’ algorithm. An codes is studied in [18], where high-girth QC-LDPC codes

analysis is also provided to explain when guess-and-test wid ~Were obtained using a random “guess-and-test” algorithm.

be expected to perform well or badly. The trouble with guess-and-test is that it is quite time-
consuming. In this paper, we propose a hill-climbing search
. INTRODUCTION algorithm that greedily adjusts an initial QC-LDPC code to

Two broad classes of methods have emerged for the Céiﬁ_d a code of short _Iength that meets the specified code. and
struction of low-density parity-check (LDPC) codes [1]_@ng|rth parameters. Given a set of parameters, the algon_thm
set of methods is based on random constructions, the secHRds QC-LDPC codes of shorter length and in much less time
on algebraic constructions. Random constructions (sge, e/VNen compared to guess-and-test. The improvement is quite
[2]-[5]) can produce LDPC codes that closely approach tisignificant for QC-LDPC godes Wlt{h large base matrices. _
Shannon capacity. However, random constructions are syt ea 1h€ rest of the paper is organized as follows. In Section
to implement in hardware as the randomly designed conndk-the necessary theory for identifying cycles in a QC-LDPC
tions between variable and check nodes inevitably result §8d€ iS presented, and the guess-and-test algorithm idedeta
significant encoding and decoding complexity. On the othéf€ hill-climbing algorithm is presented in Section Ill. &h
hand, algebraic constructions yield structures that aomgly Comparison of guess-and-test and hill-climbing is present
preferred in hardware implementations. in Se_c'qon_lv, and in _Sect|0n V we provide an analy_5|s

Quasi-cyclic LDPC (QC-LDPC) codes are a particularl?xmam'”g in more detail when th.e guess-and-test algaorith
important class of algebraically constructed LDPC codegyT Can be expected to succeed or fail.
are featured in a variety of communications system starsgard
such as |IEEE 802.16e [6], DVB-S2 [7] and 802.11 [8]. QC- I[I. CYCLES IN QC-LDPCCODES
LDPC codes have been constructed based on finite geometrieg (J, L) regular QC-LDPC code of length is defined by
[9] or circulant permutation matrices [10]-[14]. arity check matrix

Depending on the application, LDPC codes are designedatcp y
optimize performance in either the “water-fall” (SNR nelae t I(0) I(0) e I(0)
code threshold) or “error-floor” (higher SNR) regime, orHhoot I1(0)  I(p11) - I(p1,n-1)
Low error floors are particularly important for applicatn H = . . .
that have extreme reliability demands, including magnetic ) ' '
recording and fiber-optic communication systems. 10) I(ps-11) - I(ps-1.0-1)

Error floor issues for LDPC codes are investigated in [15here1 < j<J—-1,1<1< L -1, and I(pj.) represents
[16], which characterize error events using “trapping Setshe p x p circulant permutation matrix obtained by cyclically
Trapping sets result from clusters of short cycles in theetd right-shifting thep x p identity matrix 7(0) by pj.1 positions,
Tanner graph. One way to remove trapping sets that involygth , = N/L. For a specific QC-LDPC code we define the

short cycles is to carefully design the clustering of shgdes corresponding “base matrix” as the matrix of circulant tshif
in the code graph. An alternate, and at least conceptuaiht defines the QC-LDPC code:

simpler, approach is to design codes with larger girths — the

“girth” of a code is the length of the shortest cycle in the €od 0 0 e 0

graph. By removing short cycles, we remove large swaths of B_ 0 pia - PrL—1 @)
clusters of cycles and, at one fell swoop, hopefully lower th : " : '

error floor. Motivated by this idea, in this paper, we focus on
the problem of optimizing the girth of QC-LDPC cods

1)

0 pr-11 -+ pi-1,0-1

Note that we have placed zeroes in the entire first row and

10ur initial experiments indeed show that girth-10 codesetalower error column of the base matrix. This form results in no loss of
floor compared with girth-6 and girth-8 codes of the sametleramnd rate. . . . . . .

This result, and other details about the codes found usinglgorithm, will generallty as a base matrix with non-zero entries in the first

be discussed in depth in a future paper [19]. row or column can easily be converted into an equivalent



code of our form without changing the Tanner graph of theeighbors are on the same row. E.g., in Fig. 1) these would be
underlying code. p2 — p1 andpy — p3. (We could alternately and equivalently
To understand how one can find cycles in a graph giverttaink in terms of difference along columns.) Each differenc
base matrix, consider Figure 1. In the figure we show a paritgrresponds to the shift in what column (i.e., what variable
check matrixH from which we focus on fouB x 3 circulant node) of the permutation matrix the path passes througty Onl
permutation matrices (in black) with associated paramseter if the differences sum to zero (mqg-at the end of the path
p2, p3, andpy. Two choices for the parameters of these fouwill the path return to the same variable node in the starting
matrices are shown in the subfigures:= 0, po = 1, p3 =2 permutation matrix, thereby defining a cycle. For the exampl
andps = 1 on the left andp; = 0, p2 = p3 = p4 = 1 on the of Fig. 1 for a length-four cycle to exist the condition is:
right. The first set of choices results in cycles of lengthrfou
while the latter results in a cycle of length 12. The cycles ar p1—p2+ps—ps mod p =0, ®)

also shown. which is satisfied fop; = 0, po = 1, p3 = 2, ps = 1, but

is not satisfied byp; = 0, po = ps = p4 = 1. In passing
==== we note that each cycle in a QC-LDPC code is necessarily
BREEE related top — 1 other cycles obtained by the— 1 possible
- cyclic shifts in the circulant matrices, although this fagtl

be of no consequence in the following.

(100101 0 "6-0—o-1 g The same logic extends to longer cycles. Just as a four-cycle
01 % 0D % Y 1 o % must pass through four elements of the base matrix arranged
001 |1 b 0 0 4 0 o in a rectangle, an arbitrary cycle of leng®h in the Tanner

B o - N graph of the code must pass througjhelements of the base

0 1d [ob 1 0 o1 [0 matrix denoted by the ordered series

ggﬁ é(l) i ) 8 d 14 5 %J (Jos10), (41, 10)s (1, 11), - -+ (Jie1, lim1), (Jos lie1) 4)

< . . . .
Fig. 1. A parity-check matrix and foys x p circulant permutation matrices where forl - k<, jk # Jk—1» b # Lr—1, Ji—1 7 j?" and -
(I(p1), I(p2), I(ps) and I(p4)) selected from it. One set of parametersli—1 # lo. This Or(_jere_d series can be considered a pOten_“al
(lower left, py = 0, p2 = 1, p3 = 2, p4 = 1) results in a cycle of length cycle of length2i; it will only actually correspond to a cycle if

fouz- Arf‘ Ia'te";]ate Slet (lower righfn = 0, p2 =p3 =pa = 1) resulis in a  the hase matrix elements traversed satisfy the geneializat
cycle of length twelve. . . . . . .
y 9 equation (3). To define this generalization we use the rostati

Wi di th d bet hoi intﬁ)]duced by Fossorier [18] who summarizes these ideas and
€ now discuss the correspondence between a ¢ 0|ce[ ulates the conditions for which a lengthcycle will exist

shifts (thep,;) and the length of a resulting cycle. Recal (kr a particular base matrix. Defin&; . (I) = p;.; — p;, 1.

that each row of a parity-check matrix corresponds to a chen]: eorem 2.1 of [18] shows that a necessary and sufficient
node and each column to a bit node. Cycles correspond ta g

path through nodes, alternating between check and bit nodes dition for the code to have girth of at least +1) is that

In terms of the parity-check matrix a path through nodes can m—1
be visualized as rectilinear moves as depicted in Fig. 1. A Z Ajyjrea (k) #0 mod p (5)
horizontal move (along a row) corresponds to choosing two k=0

edges connected to the same parity-check that form partfof all m, 2 < m <4, all ji, 0 < jr < J =1, all jr41,
the path. A vertical move (along a column) corresponds < jr+1 < J —1, and alll, 0 < < L —1, with jo = jpm,
choosing a second edge connected to the same bit node $hat jrr1, andiy # lki1-
will form the next step in the path. For every pair(J, L) and desired girtty (minimum-length
Now, for a cycle to exist the path must end at the sanuycle of graph) there must exista, i, (or equivalentlyN,,;,)
bit node it started from. It is necessary (but not sufficienfuch that wherp < p, OF N < Ny, NO parity check
for the path when viewed at the base matrix level to form matrices exists that satisfies (5). It is shown in [18] that a
cycle (i.e., there must be a cycle B, cf. (2)). However, since necessary condition for girth > 6 isp > L if L is odd and
each circulant permutation matrix correspondsg foarity and p > L+ 1 if L is even. For girthy > 8, a necessary condition
p variable nodes this is not sufficient. The path could end upp > (J — 1)(L — 1). However, these conditions give only
at a different bit node in the same circulant matrix, thus neery loose lower bounds on the actual minimal valyg;,
completing a cycle. What is sufficient is if, when the patthat can give rise to a code of a given girth.
returns, it returns to the sanwelumn of the circulant matrix ~ We want an algorithm that given a pdif, L) and a desired
that it started from. E.g., in the left-hand example of Fig. Hirth ¢ returns a base matrix and a value osuch that the
this happens for a cycle of length four. However, with thepecified code has the desired girth andas equal t@,,;,,
slightly different choice of circulant shifts of the rightnd or at least as close as possiblevtp;,,. Fossorier [18] suggests
example, this only happens after a cycle of lengh a “guess-and-test” algorithn.J — 1)(L — 1) integers between
We can now specify the conditions on the,; that result 0 andp — 1 are chosen randomly uniform and independent
in a cycle. Calculate the differences between fhe for identically distributed for the non-zero elements of theea
neighboring permutation matrices along a given path, whematrix until a set is found such that (5) is satisfied. He also



shows that for codes of girtR or larger, all non-zero valuesin (4) and |S;| denote the number of all the elements
in the base matrix must be distinct. We consider his algorithin set S;. ThereforeS; = {sz1,Si2, - 7Si\Si|} with s;. =
for those girths to be one where tlié — 1)(L — 1) integers [(j(()@’ l(()k)% (jgk),lé’@), (jy“), lgk)% . (ji(f)b 11@1)7 (Jék)vlﬁ)ﬂ]
are chosen randomly in the range frdnto p — 1, such that for 1 < k < |S;|. Suppose the desired girth is and the
all the integers are distinct. weight vector isw = [wa,ws, -+, wy/2—1], Wherew; is the
The problem with guess-and-test is that it is timecost weight for lengtt®i cycles.
consuming, especially for large base matrices ahe close  Given a parity check matrix, the corresponding cost
to Nomin. We have found that for largebase matrices and eveiatrix C is calculated based on the following argument. For
given considerable searching time, the smalldstwe can each potential cycle, we go through each of the elementseof th
typically find (in a reasonable time) using this algorithnids base matrix in the potential cycle, and try to mark the “guilt
larger than,,,;,. We know this because for the same choicgalues of that element that (if we were to change to that Yalue
of (J,L) and girth g our algorithm typically finds a much would result in a cycle, assuming all other base matrix \@lue
smaller N in less time than we allow for the guess-and-tes the potential cycle are kept unchanged. For example, for a
approach. We next present our algorithm. It is a hill-clini potential six-cycle, we know that a cycle will exist if andlpn
algorithm that sequentially adjusts the base matrix in &adye if p; — py + p3 — ps + ps — ps mod p = 0, wherep; through

manner to rid it of short cycles. pe are the elements of the potential six-cycle. So if the curren
summed value 0p; —p2 +ps —pa +ps —pe mod pis 1,
I1l. HILL-CLIMBING SEARCHING ALGORITHM one knows that the guilty values fgi, p3, andps would be

The general idea of our hill-climbing algorithm is as fol°N€ less than the current value, and the guilty valuegpfor
lows. We start with a randomly chosen base matrix. We: @ndps would be one greater than the current value.
then iteratively change the base matrix by making a “move” 1his is relatively uncomplicated for potential cycles con-
changing a single element {g,) to another value. We selectSisting of 2 qhstmct glements of the base matrix. It becor_ne_s
the move to make the greatest reduction in a cost functioa. THOre complicated if some elements of the base matrix in
cost is a function of the number of cycles of length less thdj€ Potential cycle appear twice. This can occur in poténtia
the desired girth that remain in the code graph. We furth§ight-cycles and occurs, e.g., in the second example ofiFig.
weight shorter cycles to be more costly than longer cycld® Such cases, we must keep in mind that when a value of
When we no longer can change any single value of the b&¥& element changgs, the contribution to the qlternatlng sum
matrix to a value that further reduces the cost (and thus tguPIes (or triples in the length-12 cycle of Fig. 1 because
number of undesired cycles), the algorithm terminates. TH& Path in the base matrix cycles three times). Findingguil
algorithm is a local hill-climbing algorithm where the objiwe  V2lu€(s) therefore becomes more complicated. In factether
function is the weighted sum of undesired cycles, and locgfn P& more than one guilty value for a repeating element if
moves are changes in a single element of the base matri¥ls V€N and the current value of the alternating sum is even.
another value. On the other hand, there may be no guilty values i§ even

The main challenge in implementing this algorithm lies i@"d the current value of the alternating sum is odd.
book-keeping: tracking how many cycles of each length the Formally, the.v.ve- compute the cost matrix as follows.
current code contains, and what will be the resulting numbere Step 1 : Initialize the cost matrix;; . = 0 for 0 < j <
of cycles if we change each possible element in the base / —1, 0<I<L-1,and0<z<p-1.
matrix to each other possible value. The calculation besome * Step 2 : For2 <i < g/2—1,

particularly involved when one searches for codes of gifih 1 - Setzgfl{z =0for0<j<J-1,0<I<L-1,and
(which is the highest girth value for which we have so far 0<z<p-1. (x(_il) is a count of the number of
implemented our algorithm), because of the many possible cycles of length2i that would result if base matrix
ways that eight-cycles can form in the graph. elementp,; had valuez.)
We now define the cost matrix, which tracks the cost (in — For1<k S |S;|, compute the alternating sum:
terms of the weighted sum of the number of cycles) of i1
changing any element in the base matrix to have any other o= _1)e. mod
possible value. Thus, for any parity check matfxdefined ;( ) pa’f’fﬁ,<,1)e+1)/2yli'l>/2j .
in (2), there exists a corresponding cost matrix _ * * _
G0 G o Cops For0 < e < 2~ 1if (1) _uyepnyop1fe)ay) 8
" " " unigue ins;;, compute the guilty value
o C1,0 C1,1 e Ci,r—1 ©)
= . 5= oy o, ~ (-1 a mody.
[(e=(=1)e+1)/2]""[e/2]
Csj—1,0 Cj—11 -+ Cj—1,L—1 * )
wherec;; = [¢j10,¢,0,1, ¢ p—1) @ande;, . is the cost If (]L(e—(—1)8+1)_/2j’Z_\_e/QJ) is not unique is;; and
we pay for assigning element;; in B to the valuez for occurs for the first time and mod2 = 0, compute
0<z<p—1. ' the guilty value

Let S; denote the set of all possible and distinct length- g = (1 5| mod
2i potential cycles represented by the ordered series as TP eyt ( a/ p-



(k) k) ; : : | L [4] 56 789 J10o]11]12]
If ( ( . l ) is not unique ins;;, and
Il e—(~1)e+1)/2)> Le/2] que Isik Guessandtes|{ O | 14 [ 18] 21| 26| 33 | 39 | 46 | 52
occurs for the first time andp — a) mod 2 = 0, Hill-clmbing | 9 | 13 | 18 | 21 | 25 | 30 | 35 | 41 | 47
compute the additional guilty value
TABLE |
UPPER BOUNDS ONpymin FORg = 8 AND J = 3 QC-LDPCCODES
B = [ij o (=1 (p—a)/2
Le—(=1)e+1)/2] " [e/2]
modp .
In each of the above three cases, increment IV. COMPARISON OF GUESSAND-TEST AND
HILL -CLIMBING SEARCHING ALGORITHMS
(4) _ .0 . .
) 1 g T T IO + 1. In[18] Fossorier uses guess-and-test to obtain upper ound
Tle—(=ne+1y/2) " Le/2) Tle=(=1)e+1)/2)" Le/2)

oN P, for girth-8 QC-LDPC codes withy = 8. We improve
e« Step3:For0 < j<J—-1,0<1< L—1,and On these upper bounds using the hill-climbing algorithm, as

0<z<p-1, take the weighted sum shown in Table I. Notice that the guess-and-test actuallskg/o
quite well up toL = 8.
g/2-1 Forg = 10 andJ = 3, the guess-and-test algorithm did not
Cjl,z = Z a:gzl)z Swj. find base matrices that were competitive with the hill-clinth
i=2 algorithm (see more details below), so we just provide the

Now that we have specified the sub-routine for computir!gfper bounds oy, found by the hill-climbing searching

the cost matrix, the actual hill-climbing algorithm is ridlaly gorithm in Table 1I.

straightforward to describe. We assume that we are given BT (4[5 6 7 89 0] @ ]17]
desired girthg and circulant matrix sizep. We start with a [Pmin | 39 | 63 ] 103 | 160 | 233 | 329 | 439 | 577 | 758 |
random base matrix, and keep choosing the move of changing

a value of a single base matrix element that most reduces the TABLE Il
cost (breaking ties randomly), until hopefully we find a baseUPPER BOUNDS ONomis FOUND BY THE HILL-CLIMBING ALGORITHM
matrix which has zero costs for each of the current values of FORg =10 AND J = 3.

the base matrix elements, at which point we return the base
matrix, or if we end in a local optimum which has positive
cost, we return failure. It is dangerous to compare the algorithms by the hest
. Step 1 : Randomly generate a base maBix value that one obtains, because either algorithm could_ get
. Step 2 : Calculate based onB. For0 < j < J — 1 and lucky and find a_n_unusually good base majmx. To more fairly
0<1<L—1let - compare the efficiency of guess-and-test with hill-clingine
-~ introduce the “success rate”. This is the percentage ofstime
Gi= min ¢, that a run of the algorithm results in a base matrix that has th
T 20<z<p-1 Y desiredp andg. Naturally, the success rate will be a function
of the targep andg.
Figure 2 shows the success rate of guess-and-test and hill-
climbing as a function op, with J =3, L =9 andg = 8.
We observe that for the guess-and-test to find a parity check
and matrix with girth 8 atp = 50 we need to test0® random
matrices on average, as compared to the near certain success
of hill-climbing. At p = 30, where hill-climbing is still able

Z;p = argmin ¢ .
2:0<2<p—1

C/j,l = Cj,lpja-
' to succeed in more than one try 10°, it is hard to tell how
« Step 3 : Denot&: = [g;,] as the gain matrix witly;; = many random base matrices would need to tested to expect
iy — ¢ Let one success using guess-and-test, but it is likely to be more
v than 10,
Jmaz = ~ max 9j.l Figures 3 and 4 depict the success rate of guess-and-test and
(7,1): 0<5<J =1, 0<I<L—1 hill-climbing with J =3, L =12, g =8 andJ =3, L = 9,
g = 10, respectively. We observe the same tendency as in
. Fig. 2. AsL andg increase, the success rate of hill-climbing
(]mazy lmam) = argmax gj,t-

(G1): 0<j<I—1,0<I<L—1 " becomes increasingly superior to that of guess-and-test.
It is important to note that each attempt of hill-climbing
e is much more computationally intensive than one attempt of
Zias.lmaes @nd go to Step 2; otherwise, go to Step 4. guess-and-test. The difference will depend on the pasticul
o Step 4 : Ifcjy,,, = 0foral o< j < J-1and implementation of each algorithm. In our case, the ratio of
0 <1< L —1, return the current base matrix, otherwisexpected simulation time of hill-climbing to guess-andttis
return 'FAILURE. given in Table Ill. Both algorithms are implemented in Pyiho

If gmaz > 0, update B by setting p;,....



(L [4]5] 6 78] 9 [ 10] 11 12|

g=8 | 61 [116] 194 | 305 | 460 | 642 | 833 | 1106 | 1368 1° T T T e
| | 61 [116] 194 [ 305 [ 460 | | | | | "

[g=10] 136] 475] 1282] 2972] 6020] 11567] 20931] 34922] 55774

TABLE Il B /
RATIO OF SIMULATION TIME OF THE HILL-CLIMBING SEARCHING ; I
ALGORITHM AND GUESS-AND-TEST ALGORITHM FORJ = 3 AND p EQUAL N
TO THE SMALLEST VALUES FOUND BY THE HILL-CLIMBING ALGORITHM
AS GIVEN IN TABLE | AND 1.

success rate

=
S
e

10|

and neither implementation can be considered to be heavily ol
optimized. Because hill-climbing is so much more likeley to

be successful than guess-and-test, even with a largeveelati )

difference in the efficiency per attempt, we always find hill- P @ w , w0 s

climbing to be much more efficient in aggregate.

Fig. 3. Comparison of the success rate of guess-and-teshiiraimbing
searching algorithms witth =3, L = 12 andg = 8.
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Fig. 2. Comparison of the success rate of guess-and-teshiiraimbing
searching algorithms witth =3, L = 9 andg = 8. ’

Fig. 4._ Compe_irison of_ the success rate of guess-and-teshiiratimbing

V. ANALYSIS OF THE GUESSAND-TEST ALGORITHM searching algorithms witty =3, L = 9 andg = 10.

In the previous section, we saw that guess-and-test pesform
nearly as well as hill-climbing foy = 8 andJ = 3 and L he expurgation condition eliminates some potential cycle
small. The performance difference increases for laggand penote R, = {ri,lis, -, Tin,}. Denote the number of
L. In this section we develop some insights telling us Wheé}(purgated base matrices that indeed contgiras a length-
we can expect guess-and-test to work. We focug en8 and o, cycle asZ; ;. One can check thaf; ; is a constant for
J=3. ) ) i i =2,3 and allj’'s with 1 < j < |R;|; therefore set alZ; ;

In a girth-8 base matrix alp;;’s not on the first row or ig the constant.
column ml_Jst be distinct and greater than zero. We call suchtpe total number of 4-cycles and 6-cycles in all expurgated
base matrices “expurgated base matrices.” The total nuUmBgLa matrices iElM fi = (|Ra| + |Rs|) - Z. Define to be

- _ ) = .

of distinct expurga;ed base matrices igpP- 1,2(L — 1)), the mean number of 4-cycles and 6-cycles in the expurgated
where Rn,r) = T Denote byM_ the total number of base matricesf = - ?i1fl- Then
expurgated base matrices that contain at least one cydte wit
length smaller tharg, and denote byf;, the total number of M = (|Rs| + |Rs|) - Z/F. (7)

4-cycles and 6-cycles for theth expurgated base matrix.
For p < pmin, Since all expurgated base matrices will For J = 3, straightforward calculations givigRs| = (L —

contain 4-cycles and 6-cyclesy = P(p — 1,2(L — 1)); 1)(L—2)/2and|Rs| = (L—1)*(L—2). We can also express
otherwise, forp > pumin, M < P(p — 1,2(L — 1)). with the formulaZ = Z,(p—4)(p—5) - - - (p—2(L—1)) where

Let R; denote the set of all the potential lengthcycles Z, is the number of distinct solutions #— B+C = 0 modp
in an expurgated base matriR; is a subset ofS; because with 1 < A, B,C<p—1,A# B, A# C,andB # C. The




valuez) can be obtained through simulation. We can also usenaller than B — 1,2(L — 1)) as soon ap > ppin, i.€., the
simulation to estimatef. number of expurgated base matrices without 4-cycles and 6-
Suppose we simulat® expurgated base matrices each afycles is a significant fraction compared with the total nemb
which containsd, 4-cycles or 6-cycles fok = 1,2,---,D. of expurgated base matrices. On the other hand, when9,
Thenf ~ 5 Zszl dr, and M can be estimated usindzz|, the functiond/(p) andV (p) diverge only whem >> 30, (we
|Rs3|, Z andf according to (7). We notice that singe—4)(p—  know thatp,,;,, is at most 30). In this casé/ is very close
5)---(p—2(L—1)) is a common factor in both(P—1,2(L— to P(p—1,2(L —1)) for a large range op, i.e., the number of
1)) and M, the comparison betweer{f>-1,2(L—1)) andM expurgated base matrices without 4-cycles and 6-cyclasyis t
reduces to a comparison betwdé(p) = (p—1)(p—2)(p—3) compared with the total number of expurgated base matrices.
andV(p) = (|Ra| + |R3]) - Z,/?, This explains why guess-and-test fails to find minimum
Fig. 5 and Fig. 6 depict the comparison of the analyticngth QC-LDPC codes whet increases. The reason is
function U(p) and the statistically estimated functidn(p) that for large L, when p increases, although the number
for the parameterd =3, L =4, g =8 andJ = 3, L = 9, of expurgated base matrices increases, the number of cycles
g = 8, respectively. We used = 10000. increases with almost the same rate for a large rangg. of
This makes the fraction of “good” base matrices very small,
and leads inevitably to a very slow algorithm.
g - Although the above derivation is for girth-8 codes ahe-
vt 3, similar analyses can be readily derived for girth-10 codes
and general/.
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