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Abstract— We describe a hill-climbing algorithm that con-
structs high-girth quasi-cyclic low-density parity check (QC-
LDPC) codes. Given a desired girth, the algorithm can find QC-
LDPC codes of shorter block-length in much less time compared
with the previously proposed “guess-and-test” algorithm. An
analysis is also provided to explain when guess-and-test would
be expected to perform well or badly.

I. I NTRODUCTION

Two broad classes of methods have emerged for the con-
struction of low-density parity-check (LDPC) codes [1]. One
set of methods is based on random constructions, the second
on algebraic constructions. Random constructions (see, e.g.,
[2]-[5]) can produce LDPC codes that closely approach the
Shannon capacity. However, random constructions are not easy
to implement in hardware as the randomly designed connec-
tions between variable and check nodes inevitably result in
significant encoding and decoding complexity. On the other
hand, algebraic constructions yield structures that are strongly
preferred in hardware implementations.

Quasi-cyclic LDPC (QC-LDPC) codes are a particularly
important class of algebraically constructed LDPC codes. They
are featured in a variety of communications system standards,
such as IEEE 802.16e [6], DVB-S2 [7] and 802.11 [8]. QC-
LDPC codes have been constructed based on finite geometries
[9] or circulant permutation matrices [10]-[14].

Depending on the application, LDPC codes are designed to
optimize performance in either the “water-fall” (SNR near the
code threshold) or “error-floor” (higher SNR) regime, or both.
Low error floors are particularly important for applications
that have extreme reliability demands, including magnetic
recording and fiber-optic communication systems.

Error floor issues for LDPC codes are investigated in [15],
[16], which characterize error events using “trapping sets.”
Trapping sets result from clusters of short cycles in the code’s
Tanner graph. One way to remove trapping sets that involve
short cycles is to carefully design the clustering of short cycles
in the code graph. An alternate, and at least conceptually
simpler, approach is to design codes with larger girths – the
“girth” of a code is the length of the shortest cycle in the code
graph. By removing short cycles, we remove large swaths of
clusters of cycles and, at one fell swoop, hopefully lower the
error floor. Motivated by this idea, in this paper, we focus on
the problem of optimizing the girth of QC-LDPC codes1.

1Our initial experiments indeed show that girth-10 codes have a lower error
floor compared with girth-6 and girth-8 codes of the same length and rate.
This result, and other details about the codes found using our algorithm, will
be discussed in depth in a future paper [19].

There is considerable work on optimizing girth in LDPC
codes. In [17], a progressive-edge growth (PEG) algorithm is
proposed for random LDPC codes. The case of QC-LDPC
codes is studied in [18], where high-girth QC-LDPC codes
were obtained using a random “guess-and-test” algorithm.

The trouble with guess-and-test is that it is quite time-
consuming. In this paper, we propose a hill-climbing search
algorithm that greedily adjusts an initial QC-LDPC code to
find a code of short length that meets the specified code and
girth parameters. Given a set of parameters, the algorithm
finds QC-LDPC codes of shorter length and in much less time
when compared to guess-and-test. The improvement is quite
significant for QC-LDPC codes with large base matrices.

The rest of the paper is organized as follows. In Section
II, the necessary theory for identifying cycles in a QC-LDPC
code is presented, and the guess-and-test algorithm is detailed.
The hill-climbing algorithm is presented in Section III. The
comparison of guess-and-test and hill-climbing is presented
in Section IV, and in Section V we provide an analysis
explaining in more detail when the guess-and-test algorithm
can be expected to succeed or fail.

II. CYCLES IN QC-LDPCCODES

A (J, L) regular QC-LDPC code of lengthN is defined by
a parity check matrix

H =




I(0) I(0) · · · I(0)
I(0) I(p1,1) · · · I(p1,L−1)

...
. . .

...
I(0) I(pJ−1,1) · · · I(pJ−1,L−1)


 (1)

where1 ≤ j ≤ J − 1, 1 ≤ l ≤ L − 1, andI(pj,l) represents
the p × p circulant permutation matrix obtained by cyclically
right-shifting thep × p identity matrixI(0) by pj,l positions,
with p = N/L. For a specific QC-LDPC code we define the
corresponding “base matrix” as the matrix of circulant shifts
that defines the QC-LDPC code:

B =




0 0 · · · 0
0 p1,1 · · · p1,L−1

...
. . .

...
0 pJ−1,1 · · · pJ−1,L−1


 . (2)

Note that we have placed zeroes in the entire first row and
column of the base matrix. This form results in no loss of
generality as a base matrix with non-zero entries in the first
row or column can easily be converted into an equivalent
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code of our form without changing the Tanner graph of the
underlying code.

To understand how one can find cycles in a graph given a
base matrix, consider Figure 1. In the figure we show a parity
check matrixH from which we focus on four3× 3 circulant
permutation matrices (in black) with associated parametersp1,
p2, p3, andp4. Two choices for the parameters of these four
matrices are shown in the subfigures:p1 = 0, p2 = 1, p3 = 2
andp4 = 1 on the left andp1 = 0, p2 = p3 = p4 = 1 on the
right. The first set of choices results in cycles of length four,
while the latter results in a cycle of length 12. The cycles are
also shown.

H  =

0   1   0
0   0   1

0   1   0
0   0   1
1   0   0

0   1   0
0   0   1
1   0   0

0   0   1
1   0   0
0   1   0

1   0   0
0   1   0
0   0   1

0   1   0
0   0   1
1   0   0

0   1   0
0   0   1
1   0   0

0   1   0
0   0   1
1   0   0

1   0   0

p

1

4

p2

3p

p

Fig. 1. A parity-check matrix and fourp× p circulant permutation matrices
(I(p1), I(p2), I(p3) and I(p4)) selected from it. One set of parameters
(lower left, p1 = 0, p2 = 1, p3 = 2, p4 = 1 ) results in a cycle of length
four. An alternate set (lower right,p1 = 0, p2 = p3 = p4 = 1) results in a
cycle of length twelve.

We now discuss the correspondence between a choice of
shifts (thepj,l) and the length of a resulting cycle. Recall
that each row of a parity-check matrix corresponds to a check
node and each column to a bit node. Cycles correspond to a
path through nodes, alternating between check and bit nodes.
In terms of the parity-check matrix a path through nodes can
be visualized as rectilinear moves as depicted in Fig. 1. A
horizontal move (along a row) corresponds to choosing two
edges connected to the same parity-check that form part of
the path. A vertical move (along a column) corresponds to
choosing a second edge connected to the same bit node that
will form the next step in the path.

Now, for a cycle to exist the path must end at the same
bit node it started from. It is necessary (but not sufficient)
for the path when viewed at the base matrix level to form a
cycle (i.e., there must be a cycle inB, cf. (2)). However, since
each circulant permutation matrix corresponds top parity and
p variable nodes this is not sufficient. The path could end up
at a different bit node in the same circulant matrix, thus not
completing a cycle. What is sufficient is if, when the path
returns, it returns to the samecolumn of the circulant matrix
that it started from. E.g., in the left-hand example of Fig. 1,
this happens for a cycle of length four. However, with the
slightly different choice of circulant shifts of the right-hand
example, this only happens after a cycle of length12.

We can now specify the conditions on thepj,l that result
in a cycle. Calculate the differences between thepj,l for
neighboring permutation matrices along a given path, where

neighbors are on the same row. E.g., in Fig. 1) these would be
p2 − p1 and p4 − p3. (We could alternately and equivalently
think in terms of difference along columns.) Each difference
corresponds to the shift in what column (i.e., what variable
node) of the permutation matrix the path passes through. Only
if the differences sum to zero (mod-p) at the end of the path
will the path return to the same variable node in the starting
permutation matrix, thereby defining a cycle. For the example
of Fig. 1 for a length-four cycle to exist the condition is:

p1 − p2 + p3 − p4 mod p = 0, (3)

which is satisfied forp1 = 0, p2 = 1, p3 = 2, p4 = 1, but
is not satisfied byp1 = 0, p2 = p3 = p4 = 1. In passing
we note that each cycle in a QC-LDPC code is necessarily
related top − 1 other cycles obtained by thep − 1 possible
cyclic shifts in the circulant matrices, although this factwill
be of no consequence in the following.

The same logic extends to longer cycles. Just as a four-cycle
must pass through four elements of the base matrix arranged
in a rectangle, an arbitrary cycle of length2i in the Tanner
graph of the code must pass through2i elements of the base
matrix denoted by the ordered series

(j0, l0), (j1, l0), (j1, l1), · · · , (ji−1, li−1), (j0, li−1) (4)

where for1 ≤ k < i, jk 6= jk−1, lk 6= lk−1, ji−1 6= j0, and
li−1 6= l0. This ordered series can be considered a “potential”
cycle of length2i; it will only actually correspond to a cycle if
the base matrix elements traversed satisfy the generalization of
equation (3). To define this generalization we use the notation
introduced by Fossorier [18] who summarizes these ideas and
formulates the conditions for which a length2i cycle will exist
for a particular base matrix. Define∆jx,jy(l) = pjx,l − pjy,l.
Theorem 2.1 of [18] shows that a necessary and sufficient
condition for the code to have girth of at least2(i + 1) is that

m−1∑

k=0

∆jk,jk+1
(lk) 6= 0 mod p (5)

for all m, 2 ≤ m ≤ i, all jk, 0 ≤ jk ≤ J − 1, all jk+1,
0 ≤ jk+1 ≤ J − 1, and all lk, 0 ≤ lk ≤ L − 1, with j0 = jm,
jk 6= jk+1, and lk 6= lk+1.

For every pair(J, L) and desired girthg (minimum-length
cycle of graph) there must exist apmin (or equivalentlyNmin)
such that whenp < pmin or N < Nmin, no parity check
matrices exists that satisfies (5). It is shown in [18] that a
necessary condition for girthg ≥ 6 is p ≥ L if L is odd and
p ≥ L+1 if L is even. For girthg ≥ 8, a necessary condition
is p > (J − 1)(L − 1). However, these conditions give only
very loose lower bounds on the actual minimal valuepmin

that can give rise to a code of a given girth.
We want an algorithm that given a pair(J, L) and a desired

girth g returns a base matrix and a value ofp such that the
specified code has the desired girth andp was equal topmin,
or at least as close as possible topmin. Fossorier [18] suggests
a “guess-and-test” algorithm:(J −1)(L−1) integers between
0 and p − 1 are chosen randomly uniform and independent
identically distributed for the non-zero elements of the base
matrix until a set is found such that (5) is satisfied. He also
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shows that for codes of girth8 or larger, all non-zero values
in the base matrix must be distinct. We consider his algorithm
for those girths to be one where the(J − 1)(L − 1) integers
are chosen randomly in the range from1 to p − 1, such that
all the integers are distinct.

The problem with guess-and-test is that it is time-
consuming, especially for large base matrices andN is close
to Nmin. We have found that for largebase matrices and even
given considerable searching time, the smallestN we can
typically find (in a reasonable time) using this algorithm isfar
larger thanNmin. We know this because for the same choice
of (J, L) and girth g our algorithm typically finds a much
smallerN in less time than we allow for the guess-and-test
approach. We next present our algorithm. It is a hill-climbing
algorithm that sequentially adjusts the base matrix in a greedy
manner to rid it of short cycles.

III. H ILL -CLIMBING SEARCHING ALGORITHM

The general idea of our hill-climbing algorithm is as fol-
lows. We start with a randomly chosen base matrix. We
then iteratively change the base matrix by making a “move”
changing a single element (apj,l) to another value. We select
the move to make the greatest reduction in a cost function. The
cost is a function of the number of cycles of length less than
the desired girth that remain in the code graph. We further
weight shorter cycles to be more costly than longer cycles.
When we no longer can change any single value of the base
matrix to a value that further reduces the cost (and thus the
number of undesired cycles), the algorithm terminates. The
algorithm is a local hill-climbing algorithm where the objective
function is the weighted sum of undesired cycles, and local
moves are changes in a single element of the base matrix to
another value.

The main challenge in implementing this algorithm lies in
book-keeping: tracking how many cycles of each length the
current code contains, and what will be the resulting number
of cycles if we change each possible element in the base
matrix to each other possible value. The calculation becomes
particularly involved when one searches for codes of girth 10
(which is the highest girth value for which we have so far
implemented our algorithm), because of the many possible
ways that eight-cycles can form in the graph.

We now define the cost matrix, which tracks the cost (in
terms of the weighted sum of the number of cycles) of
changing any element in the base matrix to have any other
possible value. Thus, for any parity check matrixB defined
in (2), there exists a corresponding cost matrix

C =




c0,0 c0,1 · · · c0,L−1

c1,0 c1,1 · · · c1,L−1

...
. . .

...
cJ−1,0 cJ−1,1 · · · cJ−1,L−1


 (6)

where cj,l = [cj,l,0, cj,l,1, · · · , cj,l,p−1] and cj,l,z is the cost
we pay for assigning elementpj,l in B to the valuez for
0 ≤ z ≤ p − 1.

Let Si denote the set of all possible and distinct length-
2i potential cycles represented by the ordered series as

in (4) and |Si| denote the number of all the elements
in set Si. ThereforeSi = {si1, si2, · · · , si|Si|} with sik =

[(j
(k)
0 , l

(k)
0 ), (j

(k)
1 , l

(k)
0 ), (j

(k)
1 , l

(k)
1 ), · · · , (j

(k)
i−1, l

(k)
i−1), (j

(k)
0 , l

(k)
i−1)]

for 1 ≤ k ≤ |Si|. Suppose the desired girth isg and the
weight vector isw = [w2, w3, · · · , wg/2−1], wherewi is the
cost weight for length-2i cycles.

Given a parity check matrixH , the corresponding cost
matrix C is calculated based on the following argument. For
each potential cycle, we go through each of the elements of the
base matrix in the potential cycle, and try to mark the “guilty”
values of that element that (if we were to change to that value)
would result in a cycle, assuming all other base matrix values
in the potential cycle are kept unchanged. For example, for a
potential six-cycle, we know that a cycle will exist if and only
if p1 − p2 + p3 − p4 + p5 − p6 mod p = 0, wherep1 through
p6 are the elements of the potential six-cycle. So if the current
summed value ofp1 − p2 + p3 − p4 + p5 − p6 mod p is 1,
one knows that the guilty values forp1, p3, andp5 would be
one less than the current value, and the guilty values forp2,
p4, andp6 would be one greater than the current value.

This is relatively uncomplicated for potential cycles con-
sisting of2i distinct elements of the base matrix. It becomes
more complicated if some elements of the base matrix in
the potential cycle appear twice. This can occur in potential
eight-cycles and occurs, e.g., in the second example of Fig.1.
In such cases, we must keep in mind that when a value of
an element changes, the contribution to the alternating sum
doubles (or triples in the length-12 cycle of Fig. 1 because
the path in the base matrix cycles three times). Finding guilty
value(s) therefore becomes more complicated. In fact, there
can be more than one guilty value for a repeating element if
p is even and the current value of the alternating sum is even.
On the other hand, there may be no guilty values ifp is even
and the current value of the alternating sum is odd.

Formally, the we compute the cost matrix as follows.
• Step 1 : Initialize the cost matrixcj,l,z = 0 for 0 ≤ j ≤

J − 1, 0 ≤ l ≤ L − 1, and0 ≤ z ≤ p − 1.
• Step 2 : For2 ≤ i ≤ g/2 − 1,

– Setx(i)
j,l,z = 0 for 0 ≤ j ≤ J −1, 0 ≤ l ≤ L−1, and

0 ≤ z ≤ p − 1. (x(i)
j,l,z is a count of the number of

cycles of length2i that would result if base matrix
elementpj,l had valuez.)

– For 1 ≤ k ≤ |Si|, compute the alternating sum:

α =

[
2i−1∑

e=0

(−1)e · p
j
(k)

⌊(e−(−1)e+1)/2⌋
,l

(k)

⌊e/2⌋

]
modp .

For 0 ≤ e ≤ 2i − 1, if
(
j
(k)
⌊(e−(−1)e+1)/2⌋, l

(k)
⌊e/2⌋

)
is

unique insik, compute the guilty value

β =

[
p

j
(k)

⌊(e−(−1)e+1)/2⌋
,l

(k)

⌊e/2⌋

− (−1)e · α

]
modp .

If
(
j
(k)
⌊(e−(−1)e+1)/2⌋, l

(k)
⌊e/2⌋

)
is not unique insik and

occurs for the first time andα mod2 = 0, compute
the guilty value

β =

[
p

j
(k)

⌊(e−(−1)e+1)/2⌋
,l

(k)

⌊e/2⌋

− (−1)e · α/2

]
modp .
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If
(
j
(k)
⌊(e−(−1)e+1)/2⌋, l

(k)
⌊e/2⌋

)
is not unique insik and

occurs for the first time and(p − α) mod 2 = 0,
compute the additional guilty value

β =

[
p

j
(k)

⌊(e−(−1)e+1)/2⌋
,l

(k)

⌊e/2⌋

+ (−1)e · (p − α)/2

]

modp .

In each of the above three cases, increment

x
(i)

j
(k)

⌊(e−(−1)e+1)/2⌋
,l

(k)

⌊e/2⌋
,β

= x
(i)

j
(k)

⌊(e−(−1)e+1)/2⌋
,l

(k)

⌊e/2⌋
,β

+ 1.

• Step 3 : For0 ≤ j ≤ J − 1, 0 ≤ l ≤ L − 1, and
0 ≤ z ≤ p − 1, take the weighted sum

cj,l,z =

g/2−1∑

i=2

x
(i)
j,l,z · wi.

Now that we have specified the sub-routine for computing
the cost matrix, the actual hill-climbing algorithm is relatively
straightforward to describe. We assume that we are given a
desired girthg and circulant matrix sizep. We start with a
random base matrix, and keep choosing the move of changing
a value of a single base matrix element that most reduces the
cost (breaking ties randomly), until hopefully we find a base
matrix which has zero costs for each of the current values of
the base matrix elements, at which point we return the base
matrix, or if we end in a local optimum which has positive
cost, we return failure.

• Step 1 : Randomly generate a base matrixB.
• Step 2 : CalculateC based onB. For 0 ≤ j ≤ J −1 and

0 ≤ l ≤ L − 1 let

c̃j,l = min
z: 0≤z≤p−1

cj,l,z

z̃j,l = argmin
z: 0≤z≤p−1

cj,l,z

and

c′j,l = cj,l,pj,l
.

• Step 3 : DenoteG = [gj,l] as the gain matrix withgj,l =
c′j,l − c̃j,l. Let

gmax = max
(j,l): 0≤j≤J−1, 0≤l≤L−1

gj,l

(jmax, lmax) = argmax
(j,l): 0≤j≤J−1, 0≤l≤L−1

gj,l .

If gmax > 0, update B by setting pjmax,lmax =
z̃jmax,lmax and go to Step 2; otherwise, go to Step 4.

• Step 4 : If cj,l,pj,l
= 0 for all 0 ≤ j ≤ J − 1 and

0 ≤ l ≤ L − 1, return the current base matrix, otherwise
return ’FAILURE.’

L 4 5 6 7 8 9 10 11 12

Guess-and-test 9 14 18 21 26 33 39 46 54
Hill-climbing 9 13 18 21 25 30 35 41 47

TABLE I

UPPER BOUNDS ONpmin FORg = 8 AND J = 3 QC-LDPCCODES.

IV. COMPARISON OF GUESS-AND-TEST AND

HILL -CLIMBING SEARCHING ALGORITHMS

In [18] Fossorier uses guess-and-test to obtain upper bounds
on pmin for girth-8 QC-LDPC codes withJ = 8. We improve
on these upper bounds using the hill-climbing algorithm, as
shown in Table I. Notice that the guess-and-test actually works
quite well up toL = 8.

For g = 10 andJ = 3, the guess-and-test algorithm did not
find base matrices that were competitive with the hill-climbing
algorithm (see more details below), so we just provide the
upper bounds onpmin found by the hill-climbing searching
algorithm in Table II.

L 4 5 6 7 8 9 10 11 12

pmin 39 63 103 160 233 329 439 577 758

TABLE II

UPPER BOUNDS ONpmin FOUND BY THE HILL-CLIMBING ALGORITHM

FORg = 10 AND J = 3.

It is dangerous to compare the algorithms by the bestp
value that one obtains, because either algorithm could get
lucky and find an unusually good base matrix. To more fairly
compare the efficiency of guess-and-test with hill-climbing we
introduce the “success rate”. This is the percentage of times
that a run of the algorithm results in a base matrix that has the
desiredp andg. Naturally, the success rate will be a function
of the targep andg.

Figure 2 shows the success rate of guess-and-test and hill-
climbing as a function ofp, with J = 3, L = 9 and g = 8.
We observe that for the guess-and-test to find a parity check
matrix with girth 8 atp = 50 we need to test106 random
matrices on average, as compared to the near certain success
of hill-climbing. At p = 30, where hill-climbing is still able
to succeed in more than one try in105, it is hard to tell how
many random base matrices would need to tested to expect
one success using guess-and-test, but it is likely to be more
than1010.

Figures 3 and 4 depict the success rate of guess-and-test and
hill-climbing with J = 3, L = 12, g = 8 andJ = 3, L = 9,
g = 10, respectively. We observe the same tendency as in
Fig. 2. AsL andg increase, the success rate of hill-climbing
becomes increasingly superior to that of guess-and-test.

It is important to note that each attempt of hill-climbing
is much more computationally intensive than one attempt of
guess-and-test. The difference will depend on the particular
implementation of each algorithm. In our case, the ratio of
expected simulation time of hill-climbing to guess-and-test is
given in Table III. Both algorithms are implemented in Python,
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L 4 5 6 7 8 9 10 11 12

g=8 61 116 194 305 460 642 833 1106 1368

g=10 136 475 1282 2972 6020 11567 20931 34922 55774

TABLE III

RATIO OF SIMULATION TIME OF THE HILL -CLIMBING SEARCHING

ALGORITHM AND GUESS-AND-TEST ALGORITHM FORJ = 3 AND p EQUAL

TO THE SMALLEST VALUES FOUND BY THE HILL-CLIMBING ALGORITHM

AS GIVEN IN TABLE I AND II.

and neither implementation can be considered to be heavily
optimized. Because hill-climbing is so much more likeley to
be successful than guess-and-test, even with a large relative
difference in the efficiency per attempt, we always find hill-
climbing to be much more efficient in aggregate.
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Fig. 2. Comparison of the success rate of guess-and-test andhill-climbing
searching algorithms withJ = 3, L = 9 andg = 8.

V. A NALYSIS OF THE GUESS-AND-TEST ALGORITHM

In the previous section, we saw that guess-and-test performs
nearly as well as hill-climbing forg = 8 and J = 3 and L
small. The performance difference increases for largerg and
L. In this section we develop some insights telling us when
we can expect guess-and-test to work. We focus ong = 8 and
J = 3.

In a girth-8 base matrix allpj,l’s not on the first row or
column must be distinct and greater than zero. We call such
base matrices “expurgated base matrices.” The total number
of distinct expurgated base matrices is P(p − 1, 2(L − 1)),
where P(n, r) = n!

(n−r)! . Denote byM the total number of
expurgated base matrices that contain at least one cycle with
length smaller than8, and denote byfl, the total number of
4-cycles and 6-cycles for thel-th expurgated base matrix.

For p < pmin, since all expurgated base matrices will
contain 4-cycles and 6-cycles,M = P(p − 1, 2(L − 1));
otherwise, forp ≥ pmin, M < P(p − 1, 2(L − 1)).

Let Ri denote the set of all the potential length-2i cycles
in an expurgated base matrix.Ri is a subset ofSi because
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Fig. 3. Comparison of the success rate of guess-and-test andhill-climbing
searching algorithms withJ = 3, L = 12 andg = 8.
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Fig. 4. Comparison of the success rate of guess-and-test andhill-climbing
searching algorithms withJ = 3, L = 9 andg = 10.

the expurgation condition eliminates some potential cycles.
Denote Ri = {ri1, ri2, · · · , ri|Ri|}. Denote the number of
expurgated base matrices that indeed containrij as a length-
2i cycle asZi,j . One can check thatZi,j is a constant for
i = 2, 3 and all j’s with 1 ≤ j ≤ |Ri|; therefore set allZi,j

to the constantZ.
The total number of 4-cycles and 6-cycles in all expurgated

base matrices is
∑M

l=1 fl = (|R2| + |R3|) · Z. Definef to be
the mean number of 4-cycles and 6-cycles in the expurgated
base matrices:f = 1

M

∑M
l=1 fl. Then

M = (|R2| + |R3|) · Z/f. (7)

For J = 3, straightforward calculations give|R2| = (L −
1)(L−2)/2 and|R3| = (L−1)2(L−2). We can also expressZ
with the formulaZ = Z̃p(p−4)(p−5) · · · (p−2(L−1)) where
Z̃p is the number of distinct solutions toA−B+C = 0 modp
with 1 ≤ A, B, C ≤ p − 1, A 6= B, A 6= C, andB 6= C. The
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valueZ̃p can be obtained through simulation. We can also use
simulation to estimatef .

Suppose we simulateD expurgated base matrices each of
which containsdk 4-cycles or 6-cycles fork = 1, 2, · · · , D.
Then f ≈ 1

D

∑D
k=1 dk and M can be estimated using|R2|,

|R3|, Z andf according to (7). We notice that since(p−4)(p−
5) · · · (p−2(L−1)) is a common factor in both P(p−1, 2(L−
1)) andM , the comparison between P(p−1, 2(L−1)) andM
reduces to a comparison betweenU(p) = (p−1)(p−2)(p−3)

andV (p) = (|R2| + |R3|) · Z̃p/f .
Fig. 5 and Fig. 6 depict the comparison of the analytical

function U(p) and the statistically estimated functionV (p)
for the parametersJ = 3, L = 4, g = 8 and J = 3, L = 9,
g = 8, respectively. We usedD = 10000.
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Fig. 5. Comparison ofU(p) and V (p) for the parametersJ = 3, L = 4
andg = 8.

20 40 60 80 100 120 140 160
0

0.5

1

1.5

2

2.5

3

3.5
x 10

6

p

U
(p

)/
V

(p
)

 

 
U(p)
V(p)

Fig. 6. Comparison ofU(p) and V (p) for the parametersJ = 3, L = 9
andg = 8.

We observe that forL = 4, the functionsU(p) and V (p)
diverge quickly afterp > pmin, wherepmin can reliably be
estimated to be9. This means thatM becomes apparently

smaller than P(p− 1, 2(L− 1)) as soon asp > pmin, i.e., the
number of expurgated base matrices without 4-cycles and 6-
cycles is a significant fraction compared with the total number
of expurgated base matrices. On the other hand, whenL = 9,
the functionsU(p) andV (p) diverge only whenp >> 30, (we
know thatpmin is at most 30). In this case,M is very close
to P(p−1, 2(L−1)) for a large range ofp, i.e., the number of
expurgated base matrices without 4-cycles and 6-cycles is tiny
compared with the total number of expurgated base matrices.

This explains why guess-and-test fails to find minimum
length QC-LDPC codes whenL increases. The reason is
that for large L, when p increases, although the number
of expurgated base matrices increases, the number of cycles
increases with almost the same rate for a large range ofp.
This makes the fraction of “good” base matrices very small,
and leads inevitably to a very slow algorithm.

Although the above derivation is for girth-8 codes andJ =
3, similar analyses can be readily derived for girth-10 codes
and generalJ .
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