
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Complexity and Memory Efficient GOP
Structures Supporting VCR Functionalities

in H.264/AVC

Jian Lou, Shan Liu, Anthony Vetro, and Ming-Ting Sun

TR2008-041 May 2008

Abstract

Supporting digital Video Cassette Recording (VCR) trick-play functionalities (e.g. random ac-
cess, fast-forward play, fast-reverse play) is desirable for compressed video streams. However,
due to strong inter-frame dependencies introduced by motion compensated prediction (MCP),
the computational complexity and memory requirement is drastically increased. Trade offs be-
tween coding efficiency and decoding complexity can be made with different Group of Pictures
(GOP) structures. In this paper, we investigate two flexible GOP structures, named G-Group and
Binary Reference GOP Structure (BRGS), which can achieve trick-play functionalities while
keeping low decoder complexity and memory requirement for the state-of-the art H.264/AVC
video coding standard. The schemes are drift-free since they utilize the compression and mem-
ory management tools adopted in H.264/AVC. Our analysis and experimental results show that
they can greatly reduce the decoder complexity and buffer size while introducing only about
4.0%-7.6% bit rate increase on average. The computational complexity saving for the worst case
and average case can be up to 77.8% and 62.5%, respectively. The memory buffer for the fast-
reverse play mode can be reduced to 33.3% compared to the conventional scheme. moreover, the
schemes are flexible and can be easily adapted to achieve a good trade off between compression
performance and complexity saving for the trick-play modes.

IEEE International Symposium on Circuits and Systems (ISCAS)

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part
without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include
the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of
the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or
republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All
rights reserved.

Copyright c©Mitsubishi Electric Research Laboratories, Inc., 2008
201 Broadway, Cambridge, Massachusetts 02139

MERLCoverPageSide2

Complexity and Memory Efficient GOP Structures
Supporting VCR Functionalities in H.264/AVC

Jian Lou*a, Shan Liub, Anthony Vetrob and Ming-Ting Suna

aDepartment of Electrical Engineering, University of Washington, Seattle, WA 98195, USA
{louj, sun}@ee.washington.edu

bMitsubishi Electric Research Laboratories, Cambridge, MA 02139, USA
{liu, avetro}@merl.com

Abstract—Supporting digital Video Cassette Recording (VCR)
trick-play functionalities (e.g. random access, fast-forward play,
fast-reverse play) is desirable for compressed video streams.
However, due to strong inter-frame dependencies introduced by
motion compensated prediction (MCP), the computational
complexity and memory requirement is drastically increased.
Tradeoffs between coding efficiency and decoding complexity
can be made with different Group of Pictures (GOP) structures.
In this paper, we investigate two flexible GOP structures, named
G-Group and Binary Reference GOP Structure (BRGS), which
can achieve trick-play functionalities while keeping low decoder
complexity and memory requirement for the state-of-the-art
H.264/AVC video coding standard. The schemes are drift-free
since they utilize the compression and memory management
tools adopted in H.264/AVC. Our analysis and experimental
results show that they can greatly reduce the decoder complexity
and buffer size while introducing only about 4.0%-7.6% bitrate
increase on average. The computational complexity saving for
the worst case and average case can be up to 77.8% and 62.5%,
respectively. The memory buffer for the fast-reverse play mode
can be reduced to 33.3% compared to the conventional scheme.
Moreover, the schemes are flexible and can be easily adapted to
achieve a good tradeoff between compression performance and
complexity saving for the trick-play modes.

I. INTRODUCTION
Digital video compression techniques have played a very

important role in the world of multimedia systems where
bandwidth and storage are valuable commodities. Nowadays,
most of the video contents for consumer applications are
encoded using various video coding standards, since
compressed digital videos are more preferable than the
traditional video cassette in terms of storage and transmission
efficiency. Due to the quick and user-friendly browsing of
video content, it is highly desirable for multimedia systems to
support Video Cassette Recording (VCR) functionalities, such
as random access, fast-forward, fast-reverse play, etc. While it
is straightforward to implement the trick-play modes for the
video cassettes, it is not a trivial task for compressed video
streams. Most of the video coding standards are based on the
hybrid motion compensated prediction (MCP) framework,
where correlation between successive video frames is utilized
to achieve higher compression ratios. However, MCP
introduces inter-frame dependencies that are unfriendly for

VCR functionalities. That is, in order to display one video
frame in a trick-play mode, not only does the target frame
need to be decoded, but also any reference frames that the
target frame is predicted from need to be decoded as well.
Therefore, the computational and memory complexity is
dramatically increased compared to the normal decoding
process.

Several previous schemes on MPEG-2 or MPEG-4 have
been proposed addressing the implementation of video trick-
play modes. Several approaches utilizing transcoding between
different frame types have been proposed [1]-[3]. However,
extra complexity and higher storage cost are required to
perform the transcoding. The approach proposed in [3] also
causes drift due to the motion vector approximation. In [4], a
scheme that stores both the forward-encoded and backward-
encoded bitstreams in the server is proposed to reduce the
reverse-play complexity while maintaining a low bandwidth.
However, this doubles the storage requirement of the server
and cannot be used for applications that require real-time or
low-delay encoding. Center-biased motion vector distribution
characteristics of video sequences are utilized in [5] for
MPEG-2 video reverse play. However, the bandwidth savings
are highly dependent on the statistics of the coded sequence;
thus, it is not always efficient for high motion sequences.
Furthermore, the scheme cannot be applied in the context of
H.264/AVC due to the different semantics of the standards.

H.264/AVC offers 2-3 times improvement in compression
efficiency over MPEG-2, and is becoming the dominant
compressed video format for a wide range of applications [6].
In H.264/AVC, multiple reference pictures could be organized
in List 0 and List 1 and used for prediction of P and B pictures.
Another important feature of H.264/AVC is the decoupling of
referencing order from display order, which allows the
encoder to choose the ordering of pictures for referencing and
display purposes with a high degree of flexibility [7]. With
reference picture list reordering commands and Memory
Management Control Operations (MMCO), encoders can
flexibly choose any short-term and long-term reference picture
as the reference picture to be used for prediction.

In this paper, we analyze two complexity and memory
efficient Group of Pictures (GOP) structures in the context of

This work was performed during Jian Lou’s internship at Mitsubishi Electric
Research Laboratories.

the H.264/AVC standard to support VCR functionalities. This
paper is organized as follows. Firstly, the analysis on the
impact of VCR functionalities on H.264/AVC decoder
complexity and memory requirement is explained. Secondly
the two GOP structures are presented and compared. Then, the
performances of the schemes are given. Finally, some
concluding remarks and future work are provided.

II. COMPLEXITY AND MEMORY ANALYSIS OF VCR
FUNCTIONALITIES IN DECODER

In this section, we provide an analysis of the
computational complexity for H.264/AVC decoders when
applying VCR functionalities. Here, we denote the index of
the first I-frame as 0, and define N as the number of frames in
one GOP and M as the inter frame distance between every two
successive I/P-frames, which we assume fixed throughout the
whole GOP. Also, we will use RP, RBL0, and RBL1 as the
number of reference frames used for P-frames, B-frame List 0,
and B-frame List 1, respectively. The bitstreams are encoded
with a conventional prediction structure where every P-frame
is predicted from the nearest forward I/P-frame and every B-
frame uses the nearest I/P-frame as the references. Forward
reference frames are in List 0 and backward reference frames
are in List 1.

A. Random Access
When random access to a specific frame is required, the

frame to be displayed and any frames that it depends on need
to be decoded. The complexity to access the j-th frame in one
GOP1 is denoted as CRA(j) which indicates the number of
frames to be decoded.

 





++
+=

frame-B)1/),/min(
frame-P 1/
frame-I 1

1 MNRMj
Mj(j)C

BL
RA (1)

Within one GOP, the decoding complexity for a P-frame is
determined by its index j, since large j means more previously
encoded P-frames need to be decoded due to MCP reference
dependencies.

B. Fast-Forward Play
In fast-forward play, we can jump to the next I-frame as

the starting point. Denote the speed-up factor as s. After s/g
GOPs, the frame to be displayed will again be an I-frame,
where g = gcd(s, N) stands for the greatest common divisor of
s and N. Therefore, our analysis is based on N*s/g frames
starting from an I-frame. Moreover, we assume N is larger
than s, which is usually the case in practice.

In general, fast-forward play can be regarded as accessing
the frames with indices of 0, s, 2s, …(N/g-1)*s. In these
frames, only the first frame is an I-frame and there are
N*s/(g*h)-1 P-frames and the remaining are B-frames, where
h = lcm(s, M) stands for the least common multiple of s and M.
If all the decoded frames for displaying the current frame are
discarded although some of the decoded frames could be
reused for decoding future frames to be displayed, the average
number of frames that need to be decoded for fast-forward
play is

 

gN

MNRMji
C j

BL
i

FF /

1)/),/min(1)/M(1 1∑ +++∑ ++
= (2)

The three parts in the numerator indicate the total decoding
complexity for I-frame, P-frames, and B-frames, respectively.

If we store those decoded frames which could be used for
future display, the decoding complexity and bandwidth
requirement will be reduced, but the buffer memory will be
increased. The decoding complexity defined in (2) will be
reduced by the number of necessary frames buffered in the
memory, and the memory size will be increased by the
maximum number of frames buffered for future use in
addition to RBL0+RBL1 in the unit of frame size.

C. Fast-Reverse Play
In the fast-reverse play mode, the problem is similar to that

for fast-forward play assuming the ending point is an I-frame.
If the decoder performs the same as for fast-forward play
when dealing with the decoded frames needed for the future
use, i.e. discarding them or not, the average complexity for
fast-reverse play is exactly the same as that for fast-forward.
The reason is that both fast-forward and fast-reverse play
modes follow the same periodicity which indicates that all the
frames to be displayed are the same for the two modes.

If we choose to buffer those decoded frames needed for
future use, then the maximum decoding speed and maximum
buffer size will be greater for fast-reverse play compared to
fast-forward play due to the forward encoding nature in video
compression.

III. COMPLEXITY AND MEMORY EFFICIENT GOP
STRUCTURES

A straightforward scheme to reduce the computational
complexity and memory requirement is to assign the I-frame
as the only reference for all the P-frames in the same GOP and
every B-frame uses the nearest 2 I/P-frames as the references.
We refer to this scheme as “All P Ref I”. The dependencies
between P-frames have been eliminated in this scheme, so the
complexity for accessing one P or B-frame is minimal. The
obvious drawback of this method is that the performance of
MCP will be greatly degraded when the distance between I/P-
frames becomes too long.

A. G-Group GOP Structure
In order to reduce the inter-frame dependencies without

sacrificing too much coding efficiency, we introduce a scheme
called G-Group GOP Structure where several successive P-
frames are grouped together which only use the last P-frame in
the previous group or the I-frame as the reference. Here, G
stands for the number of P-frames in one group.

The index of the reference frame, RIP, for the current P-
frame with index j is

 MGGMjRIP /)1/(−= (3)

In addition, every B-frame still uses the nearest 2 I/P-
frames as the references in order to keep the low inter-frame
dependencies. Fig. 1 provides an example with G=4.

1 If j is larger than N, we can use mod(j, N) instead.

Figure 1. G-Group GOP Structure (M=3, G=4)

The Longest Forward Prediction Distance (LFPD), the
Average Forward Prediction Distance (AFPD), the Random
Access Worst Complexity (RAWC) and the Random Access
Average Complexity (RAAC) are

MGLFPD GroupG =− (4)
2/)(GMAFPD GroupG +=− (5)

  1/ +=− GNRAWC GroupG (6)

MNGGMMGNGMNNMNG

NGjMiGRAAC
MG
N

j

MG
N

i
GroupG

2/)1425427(

/))1)3(()1()1(1(
2

1

1

1

1
−++−−−+=

∑ −+−+∑ ++=

−

=

−

=
−

 (7)

LFPD and AFPD are indicators of coding efficiency, while
RAWC and RAAC can be derived from trick-play complexity
constraints. According to (4)-(7), when N and M are fixed, G
can be served as the parameter to control the coding efficiency
and complexity. Generally, the larger the G, the worse the
coding efficiency, but the better the trick-play performance.

B. Binary Reference GOP Structure
Notice that the G-Group scheme linearly increases

prediction distance and reduces the complexity. It is possible
to use a logarithmic scheme which we refer to as Binary
Reference GOP Structure (BRGS). The scheme uses an index
derived from the binary code of the number, j/M, where j is
the frame index of a P-frame. Let L represent the number of
bits for the binary code. The index of the reference frame for
the current P-frame with index j is

  LLkL
P MjMjRI 2)1)/2-/(2-)2 ,/mod(+= (8)

where k stands for the position of last 1 in the binary code of
mod(j/M, 2L). Fig. 2 provides examples of BRGS with L=3.

Figure 2. Binary Reference GOP Structure (M=3, L=3)

It can be shown that:

LMLFPDBRGS 2= (9)
2/)1(++= LMAFPDBRGS (10)

LMNRAWC L
BRGS +−= 2/)1((11)

LL

M
N

i

LLLLL
BRGS

MNNMLMNMNLMN

NiMLMLRAAC
L

22/)12)4345((

/)))2)223)(1(122(1(
2

1
2
1

0

11

−++−−−+=

∑ ++⋅−++++=
−

−

=

−− (12)

When L is larger than 3, which corresponds to G larger
than 8, BRGS can achieve lower complexity than the G-Group
scheme with same LFPDs. L can be utilized to control the
coding efficiency and complexity.

The average number of frames that need to be decoded for
fast-forward/reverse play can be derived by replacing the three
components in (2) with the counterparts in the two schemes.
The maximum buffer size required for fast-reverse play will
be reduced, due to the fewer frames buffered to be used for
future display.

IV. PERFORMANCE EVALUATION
In our experiments, we set N to 30 frames and M to 3. The

number of reference frames in every list is set to 1. The
necessary frames are stored in the memory for future display.

TABLE I. AVERAGE NO. OF FRAMES TO BE DECODED FOR RANDOM ACCESS

 Conv. All P
Ref I

G-Group
 (G=2)

G-Group
(G=4)

BRGS
 (L=3)

LFPD 3 27 6 12 24
AFPD 1.97 5.69 2.38 3.21 3.21
RAWC 12 4 8 6 6
RAAC 6.83 3.23 4.83 3.83 3.83

Table I compares the average number of frames to be
decoded for random access which indicates that both G-Group
and BRGS can achieve similar complexity as the “All P Ref I”
scheme. Fig. 3 shows the decoding speed needed for the fast-
forward and fast-reverse play modes in the worst case and Fig.
4 shows the decoding speed on average. These two figures
indicate that the “Conventional” structure requires the decoder
to be 12 times faster while the “All P Ref I” structure only
needs to be 4 times faster. The decoding speeds needed for the
G-Group and BRGS are between those of the two reference
structures. The complexity saving for the worst case and the
average case can be up to 77.8% and 62.5%, respectively.

Worst Decoder Complexity (Fast-Forward Play)

0

2

4

6

8

10

12

1 6 11 16 21 26
Fast Speed

D
e
c
od
i
n
g

C
om
p
l
e
x
it
y

Conventional
All P Ref I
G-Group (G=2)
G-Group (G=4)

BRGS (L=3)

Worst Decoder Complexity (Fast-Reverse Play)

0

2

4

6

8

10

12

14

1 6 11 16 21 26
Fast Speed

D
e
c
od
i
n
g

C
om
p
l
e
x
it
y

Conventional All P Ref I G-Group (G=2) G-Group (G=4) BRGS (L=3)

Figure 3. Worst Decoder Complexity

Worst Decoder Complexity (Fast-Forward Play and Fast-Revesr Play)

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

1 6 11 16 21 26
Fast Speed

De
c
od
i
ng
 C
o
mp
l
ex
i
ty

Conventional
All P Ref I

G-Group (G=2)
G-Group (G=4)
BRGS (L=3)

Figure 4. Average Decoder Complexity

The maximum buffer sizes needed for the different
schemes are presented in Fig 5. For fast-forward, there is no
difference between difference schemes, however the memory
buffer for the fast-reverse play mode which is of more
importance [1]-[5] can be reduced to 33.3%.

Maximum Buffer Size (Fast-Forward Play)

0

1

2

3

4

1 6 11 16 21 26
Fast Speed

D
e
c
o
d
i
n
g

C
o
m
p
l
e
x
i
t
y

Conventional
All P Ref I
G-Group (G=2)
G-Group (G=4)
BRGS (L=3)

Maximum Buffer Size (Fast-Reverse Play)

0
1
2
3
4
5
6
7
8
9

10
11
12

1 6 11 16 21 26
Fast Speed

D
e
c
o
d
i
n
g

C
o
m
p
l
e
x
i
t
y

Conventional
All P Ref I

G-Group (G=2)
G-Group (G=4)
BRGS (L=3)

Figure 5. Max Buffer Size

The coding efficiency of different schemes is verified
using the H.264/AVC reference software, JM12.3 [8]. We
choose four 1280*720 format sequences, “City”, “Cyclists”,
“Horses”, and “Night”. High complexity RD optimization is
enabled. Table II lists the PSNR loss or equivalent bitrate
increase compared with the “Conventional” approach when
applying different GOP structures by using the method
proposed in [9]. Even though “All P ref I” structure gives the
best trick-play performance, it introduces 17.27% bitrate
increase. The average bitrate increases from G-Group and
BRGS schemes are between 3.97% and 7.6%. As can be seen
from the sample R-D curves for “Cyclists” in Fig. 6, the G-
Group and BRGS are much better than the “All P ref I”
structure. Also, when video is encoded at higher quality, e.g.
38dB, the performance loss from the proposed schemes
becomes negligible.

TABLE II. COMPRESSION PERFORMANCE FOR DIFFERENT GOP STRUCTURES
COMPARED WITH THE “BENCHMARK” SCHEME

Seq. All P
Ref I

G-Group
(G=2)

G-Group
(G=4)

BRGS
(L=3)

∆PSNR -0.68dB -0.15dB -0.27dB -0.31dB City ∆Bitrate 23.21% 5.09% 9.21% 10.43%
∆PSNR -0.46dB -0.09dB -0.19dB -0.19dB Cycl. ∆Bitrate 17.43% 3.44% 7.22% 7.37%
∆PSNR -0.41dB -0.1dB -0.2dB -0.2dB Horses ∆Bitrate 16.24% 3.87% 8.01% 8.07%
∆PSNR -0.39dB -0.11dB -0.14dB -0.15dB Night ∆Bitrate 12.18% 3.48% 4.17% 4.55%
∆PSNR -0.49dB -0.11dB -0.19dB -0.21dB Ave. ∆Bitrate 17.27% 3.97% 7.15% 7.6%

These experimental results indicate that good tradeoff
between compression performance, complexity, and memory
saving for the trick-play modes can be made with different
GOP structures, which favors user preference. With

appropriate parameters, G-Group and BRGS can greatly
reduce the computational complexity and memory
requirement for VCR functionalities in H.264/AVC without
much loss in coding efficiency.

Cyclists

38.5

39

39.5

40

40.5

41

41.5

42

2500 3000 3500 4000 4500 5000 5500 6000 6500
Bitrate (kbps)

P
S

N
R

 Y
 (d

B)

Conventional
All P Ref I
G-Group (G=2)
G-Group (G=4)
BRGS (L=3)

Figure 6. R-D Performance for Different GOP Structures

V. CONCLUSION AND FUTURE WORK
Due to the inter-frame dependencies introduced by modern

video coding standards, the computational complexity and
memory requirement for decoders are drastically increased
when applying VCR functionalities. In this paper, we first
analyze the impact of trick-play modes on decoder complexity
and buffer size. Then, we analyze two drift-free schemes
called G-Group GOP Structure and Binary Reference GOP
Structure for H.264/AVC which can reduce the computational
complexity and buffer size when applying VCR functionalities
relative to conventional GOP structures. Theses schemes favor
trick-play mode with only 4.0%-7.6% bitrate increase while
requiring much less complexity and smaller buffer size. Users
can choose appropriate parameters to control the GOP
structure to satisfy their constraints on coding efficiency,
decoder complexity and memory requirement. Our future
work will focus on jointly optimizing the coding efficiency
and trick-play performance.

REFERENCES
[1] M.S. Chen and D.D. Kandlur, “Downloading and Stream Conversion:

Supporting Interactive Playout of Videos in a Client Station”, IEEE
Proc. of International Conference on Multimedia Computing and
Systems, pp. 73–80, 1995.

[2] S.J. Wee, “Reversing Motion Vector Fields”, IEEE Proc. of
International Conference on Image Processing, pp. 209–212, Oct. 1998.

[3] S. J. Wee and B. Vasudev, “Compressed-domain Reverse Play of
MPEG Video Streams,” SPIE Proc. of Conference on Multimedia
Systems and Applications, pp. 237–248, Nov. 1998.

[4] C. W. Lin, J. Zhou, J. Youn, and M. T. Sun, “MPEG Video Streaming
with VCR Functionality”, IEEE Trans. Circuits and Systems for Video
Technology, vol. 11, no. 3, pp. 415–425, Mar. 2001.

[5] C. H. Fu, Y. L. Chan, T. P. Ip and W. C. Siu, “New Architecture for
MPEG Video Streaming System With Backward Playback Support”,
IEEE Trans. Image Proc., vol. 16, no. 8, pp. 2169–2183, Sept. 2007.

[6] ITU-T Recommendation H.264 & ISO/IEC 14496-10, "Advanced
Video Coding for Generic Audiovisual Services", Version 4, 2005.

[7] T. Wiegand, G. J. Sullivan, G. Bjøntegaard and A. Luthra, “Overview
of the H.264/AVC Video Coding Standard”, IEEE Trans. Circuits and
Systems for Video Technology, vol. 13, no. 7, pp. 560–576, July 2003.

[8] Joint Video Team Reference Software, Version 12.3 (JM12.3),
http://iphome.hhi.de/suehring/tml/download/

[9] G. Bjøntegaard, “Calculation of Average PSNR Differences Between
RD-curves”, Video Coding Experts Group, VCEG-M33, Mar. 2001.

	Title Page
	Title Page
	page 2

	Complexity and Memory Efficient GOP Structures Supporting VCR Functionalities in H.264/AVC
	page 2
	page 3
	page 4

