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Abstract

Supporting digital Video Cassette Recording (VCR) trick-play functionalities (e.g. random ac-
cess, fast-forward play, fast-reverse play) is desirable for compressed video streams. However,
due to strong inter-frame dependencies introduced by motion compensated prediction (MCP),
the computational complexity and memory requirement is drastically increased. Trade offs be-
tween coding efficiency and decoding complexity can be made with different Group of Pictures
(GOP) structures. In this paper, we investigate two flexible GOP structures, named G-Group and
Binary Reference GOP Structure (BRGS), which can achieve trick-play functionalities while
keeping low decoder complexity and memory requirement for the state-of-the art H.264/AVC
video coding standard. The schemes are drift-free since they utilize the compression and mem-
ory management tools adopted in H.264/AVC. Our analysis and experimental results show that
they can greatly reduce the decoder complexity and buffer size while introducing only about
4.0%-7.6% bit rate increase on average. The computational complexity saving for the worst case
and average case can be up to 77.8% and 62.5%, respectively. The memory buffer for the fast-
reverse play mode can be reduced to 33.3% compared to the conventional scheme. moreover, the
schemes are flexible and can be easily adapted to achieve a good trade off between compression
performance and complexity saving for the trick-play modes.
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Abstract—Supporting digital Video Cassette Recording (VCR) 
trick-play functionalities (e.g. random access, fast-forward play, 
fast-reverse play) is desirable for compressed video streams. 
However, due to strong inter-frame dependencies introduced by 
motion compensated prediction (MCP), the computational 
complexity and memory requirement is drastically increased. 
Tradeoffs between coding efficiency and decoding complexity 
can be made with different Group of Pictures (GOP) structures. 
In this paper, we investigate two flexible GOP structures, named 
G-Group and Binary Reference GOP Structure (BRGS), which 
can achieve trick-play functionalities while keeping low decoder 
complexity and memory requirement for the state-of-the-art 
H.264/AVC video coding standard. The schemes are drift-free 
since they utilize the compression and memory management 
tools adopted in H.264/AVC. Our analysis and experimental 
results show that they can greatly reduce the decoder complexity 
and buffer size while introducing only about 4.0%-7.6% bitrate 
increase on average. The computational complexity saving for 
the worst case and average case can be up to 77.8% and 62.5%, 
respectively. The memory buffer for the fast-reverse play mode 
can be reduced to 33.3% compared to the conventional scheme. 
Moreover, the schemes are flexible and can be easily adapted to 
achieve a good tradeoff between compression performance and 
complexity saving for the trick-play modes. 

I. INTRODUCTION 
Digital video compression techniques have played a very 

important role in the world of multimedia systems where 
bandwidth and storage are valuable commodities. Nowadays, 
most of the video contents for consumer applications are 
encoded using various video coding standards, since 
compressed digital videos are more preferable than the 
traditional video cassette in terms of storage and transmission 
efficiency. Due to the quick and user-friendly browsing of 
video content, it is highly desirable for multimedia systems to 
support Video Cassette Recording (VCR) functionalities, such 
as random access, fast-forward, fast-reverse play, etc. While it 
is straightforward to implement the trick-play modes for the 
video cassettes, it is not a trivial task for compressed video 
streams. Most of the video coding standards are based on the 
hybrid motion compensated prediction (MCP) framework, 
where correlation between successive video frames is utilized 
to achieve higher compression ratios. However, MCP 
introduces inter-frame dependencies that are unfriendly for 

VCR functionalities. That is, in order to display one video 
frame in a trick-play mode, not only does the target frame 
need to be decoded, but also any reference frames that the 
target frame is predicted from need to be decoded as well. 
Therefore, the computational and memory complexity is 
dramatically increased compared to the normal decoding 
process. 

Several previous schemes on MPEG-2 or MPEG-4 have 
been proposed addressing the implementation of video trick-
play modes. Several approaches utilizing transcoding between 
different frame types have been proposed [1]-[3]. However, 
extra complexity and higher storage cost are required to 
perform the transcoding. The approach proposed in [3] also 
causes drift due to the motion vector approximation. In [4], a 
scheme that stores both the forward-encoded and backward-
encoded bitstreams in the server is proposed to reduce the 
reverse-play complexity while maintaining a low bandwidth. 
However, this doubles the storage requirement of the server 
and cannot be used for applications that require real-time or 
low-delay encoding. Center-biased motion vector distribution 
characteristics of video sequences are utilized in [5] for 
MPEG-2 video reverse play. However, the bandwidth savings 
are highly dependent on the statistics of the coded sequence; 
thus, it is not always efficient for high motion sequences. 
Furthermore, the scheme cannot be applied in the context of 
H.264/AVC due to the different semantics of the standards.  

H.264/AVC offers 2-3 times improvement in compression 
efficiency over MPEG-2, and is becoming the dominant 
compressed video format for a wide range of applications [6]. 
In H.264/AVC, multiple reference pictures could be organized 
in List 0 and List 1 and used for prediction of P and B pictures. 
Another important feature of H.264/AVC is the decoupling of 
referencing order from display order, which allows the 
encoder to choose the ordering of pictures for referencing and 
display purposes with a high degree of flexibility [7]. With 
reference picture list reordering commands and Memory 
Management Control Operations (MMCO), encoders can 
flexibly choose any short-term and long-term reference picture 
as the reference picture to be used for prediction. 

In this paper, we analyze two complexity and memory 
efficient Group of Pictures (GOP) structures in the context of 
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the H.264/AVC standard to support VCR functionalities. This 
paper is organized as follows. Firstly, the analysis on the 
impact of VCR functionalities on H.264/AVC decoder 
complexity and memory requirement is explained. Secondly 
the two GOP structures are presented and compared. Then, the 
performances of the schemes are given. Finally, some 
concluding remarks and future work are provided. 

II. COMPLEXITY AND MEMORY ANALYSIS OF VCR 
FUNCTIONALITIES IN DECODER 

In this section, we provide an analysis of the 
computational complexity for H.264/AVC decoders when 
applying VCR functionalities. Here, we denote the index of 
the first I-frame as 0, and define N as the number of frames in 
one GOP and M as the inter frame distance between every two 
successive I/P-frames, which we assume fixed throughout the 
whole GOP. Also, we will use RP, RBL0, and RBL1 as the 
number of reference frames used for P-frames, B-frame List 0, 
and B-frame List 1, respectively. The bitstreams are encoded 
with a conventional prediction structure where every P-frame 
is predicted from the nearest forward I/P-frame and every B-
frame uses the nearest I/P-frame as the references. Forward 
reference frames are in List 0 and backward reference frames 
are in List 1. 

A. Random Access 
When random access to a specific frame is required, the 

frame to be displayed and any frames that it depends on need 
to be decoded. The complexity to access the j-th frame in one 
GOP1 is denoted as CRA(j) which indicates the number of 
frames to be decoded. 
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Within one GOP, the decoding complexity for a P-frame is 
determined by its index j, since large j means more previously 
encoded P-frames need to be decoded due to MCP reference 
dependencies. 

B. Fast-Forward Play 
In fast-forward play, we can jump to the next I-frame as 

the starting point. Denote the speed-up factor as s. After s/g 
GOPs, the frame to be displayed will again be an I-frame, 
where g = gcd(s, N) stands for the greatest common divisor of 
s and N. Therefore, our analysis is based on N*s/g frames 
starting from an I-frame. Moreover, we assume N is larger 
than s, which is usually the case in practice. 

In general, fast-forward play can be regarded as accessing 
the frames with indices of 0, s, 2s, …(N/g-1)*s. In these 
frames, only the first frame is an I-frame and there are 
N*s/(g*h)-1 P-frames and the remaining are B-frames, where 
h = lcm(s, M) stands for the least common multiple of s and M. 
If all the decoded frames for displaying the current frame are 
discarded although some of the decoded frames could be 
reused for decoding future frames to be displayed, the average 
number of frames that need to be decoded for fast-forward 
play is 
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The three parts in the numerator indicate the total decoding 
complexity for I-frame, P-frames, and B-frames, respectively. 

If we store those decoded frames which could be used for 
future display, the decoding complexity and bandwidth 
requirement will be reduced, but the buffer memory will be 
increased. The decoding complexity defined in (2) will be 
reduced by the number of necessary frames buffered in the 
memory, and the memory size will be increased by the 
maximum number of frames buffered for future use in 
addition to RBL0+RBL1 in the unit of frame size. 

C. Fast-Reverse Play 
In the fast-reverse play mode, the problem is similar to that 

for fast-forward play assuming the ending point is an I-frame. 
If the decoder performs the same as for fast-forward play 
when dealing with the decoded frames needed for the future 
use, i.e. discarding them or not, the average complexity for 
fast-reverse play is exactly the same as that for fast-forward. 
The reason is that both fast-forward and fast-reverse play 
modes follow the same periodicity which indicates that all the 
frames to be displayed are the same for the two modes. 

If we choose to buffer those decoded frames needed for 
future use, then the maximum decoding speed and maximum 
buffer size will be greater for fast-reverse play compared to 
fast-forward play due to the forward encoding nature in video 
compression. 

III. COMPLEXITY AND MEMORY EFFICIENT  GOP 
STRUCTURES  

A straightforward scheme to reduce the computational 
complexity and memory requirement is to assign the I-frame 
as the only reference for all the P-frames in the same GOP and 
every B-frame uses the nearest 2 I/P-frames as the references. 
We refer to this scheme as “All P Ref I”. The dependencies 
between P-frames have been eliminated in this scheme, so the 
complexity for accessing one P or B-frame is minimal. The 
obvious drawback of this method is that the performance of 
MCP will be greatly degraded when the distance between I/P-
frames becomes too long. 

A. G-Group GOP Structure 
In order to reduce the inter-frame dependencies without 

sacrificing too much coding efficiency, we introduce a scheme 
called G-Group GOP Structure where several successive P-
frames are grouped together which only use the last P-frame in 
the previous group or the I-frame as the reference. Here, G 
stands for the number of P-frames in one group. 

The index of the reference frame, RIP, for the current P-
frame with index j is 

 MGGMjRIP /)1/( −=                                                         (3) 

In addition, every B-frame still uses the nearest 2 I/P-
frames as the references in order to keep the low inter-frame 
dependencies. Fig. 1 provides an example with G=4. 

1 If j is larger than N, we can use mod(j, N) instead. 



 

Figure 1.  G-Group GOP Structure (M=3, G=4) 

The Longest Forward Prediction Distance (LFPD), the 
Average Forward Prediction Distance (AFPD), the Random 
Access Worst Complexity (RAWC) and the Random Access 
Average Complexity (RAAC) are 
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LFPD and AFPD are indicators of coding efficiency, while 
RAWC and RAAC can be derived from trick-play complexity 
constraints. According to (4)-(7), when N and M are fixed, G 
can be served as the parameter to control the coding efficiency 
and complexity. Generally, the larger the G, the worse the 
coding efficiency, but the better the trick-play performance. 

B. Binary Reference GOP Structure 
Notice that the G-Group scheme linearly increases 

prediction distance and reduces the complexity. It is possible 
to use a logarithmic scheme which we refer to as Binary 
Reference GOP Structure (BRGS). The scheme uses an index 
derived from the binary code of the number, j/M, where j is 
the frame index of a P-frame. Let L represent the number of 
bits for the binary code. The index of the reference frame for 
the current P-frame with index j is 
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where k stands for the position of last 1 in the binary code of 
mod(j/M, 2L). Fig. 2 provides examples of BRGS with L=3.  

 

Figure 2.  Binary Reference GOP Structure (M=3, L=3) 

It can be shown that: 
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When L is larger than 3, which corresponds to G larger 
than 8, BRGS can achieve lower complexity than the G-Group 
scheme with same LFPDs. L can be utilized to control the 
coding efficiency and complexity. 

The average number of frames that need to be decoded for 
fast-forward/reverse play can be derived by replacing the three 
components in (2) with the counterparts in the two schemes. 
The maximum buffer size required for fast-reverse play will 
be reduced, due to the fewer frames buffered to be used for 
future display. 

IV. PERFORMANCE EVALUATION 
In our experiments, we set N to 30 frames and M to 3. The 

number of reference frames in every list is set to 1. The 
necessary frames are stored in the memory for future display. 

TABLE I.  AVERAGE NO. OF FRAMES TO BE DECODED FOR RANDOM ACCESS 

 Conv. All P 
Ref I 

G-Group 
 (G=2) 

G-Group 
(G=4) 

BRGS 
 (L=3) 

LFPD 3 27 6 12 24 
AFPD 1.97 5.69 2.38 3.21 3.21 
RAWC 12 4 8 6 6 
RAAC 6.83 3.23 4.83 3.83 3.83 

Table I compares the average number of frames to be 
decoded for random access which indicates that both G-Group 
and BRGS can achieve similar complexity as the “All P Ref I” 
scheme. Fig. 3 shows the decoding speed needed for the fast-
forward and fast-reverse play modes in the worst case and Fig. 
4 shows the decoding speed on average. These two figures 
indicate that the “Conventional” structure requires the decoder 
to be 12 times faster while the “All P Ref I” structure only 
needs to be 4 times faster. The decoding speeds needed for the 
G-Group and BRGS are between those of the two reference 
structures. The complexity saving for the worst case and the 
average case can be up to 77.8% and 62.5%, respectively.  
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Figure 3.  Worst Decoder Complexity 
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Figure 4.  Average Decoder Complexity 



The maximum buffer sizes needed for the different 
schemes are presented in Fig 5. For fast-forward, there is no 
difference between difference schemes, however the memory 
buffer for the fast-reverse play mode which is of more 
importance [1]-[5] can be reduced to 33.3%. 
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Maximum Buffer Size (Fast-Reverse Play)
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Figure 5.  Max Buffer Size 

The coding efficiency of different schemes is verified 
using the H.264/AVC reference software, JM12.3 [8]. We 
choose four 1280*720 format sequences, “City”, “Cyclists”, 
“Horses”, and “Night”. High complexity RD optimization is 
enabled. Table II lists the PSNR loss or equivalent bitrate 
increase compared with the “Conventional” approach when 
applying different GOP structures by using the method 
proposed in [9]. Even though “All P ref I” structure gives the 
best trick-play performance, it introduces 17.27% bitrate 
increase. The average bitrate increases from G-Group and 
BRGS schemes are between 3.97% and 7.6%. As can be seen 
from the sample R-D curves for “Cyclists” in Fig. 6, the G-
Group and BRGS are much better than the “All P ref I” 
structure. Also, when video is encoded at higher quality, e.g. 
38dB, the performance loss from the proposed schemes 
becomes negligible. 

TABLE II.  COMPRESSION PERFORMANCE FOR DIFFERENT GOP STRUCTURES 
COMPARED WITH THE “BENCHMARK” SCHEME 

Seq.  All P 
Ref I 

G-Group 
(G=2) 

G-Group 
(G=4) 

BRGS 
(L=3) 

∆PSNR -0.68dB -0.15dB -0.27dB -0.31dB City ∆Bitrate 23.21% 5.09% 9.21% 10.43% 
∆PSNR -0.46dB -0.09dB -0.19dB -0.19dB Cycl. ∆Bitrate 17.43% 3.44% 7.22% 7.37% 
∆PSNR -0.41dB -0.1dB -0.2dB -0.2dB Horses ∆Bitrate 16.24% 3.87% 8.01% 8.07% 
∆PSNR -0.39dB -0.11dB -0.14dB -0.15dB Night ∆Bitrate 12.18% 3.48% 4.17% 4.55% 
∆PSNR -0.49dB -0.11dB -0.19dB -0.21dB Ave. ∆Bitrate 17.27% 3.97% 7.15% 7.6% 

These experimental results indicate that good tradeoff 
between compression performance, complexity, and memory 
saving for the trick-play modes can be made with different 
GOP structures, which favors user preference. With 

appropriate parameters, G-Group and BRGS can greatly 
reduce the computational complexity and memory 
requirement for VCR functionalities in H.264/AVC without 
much loss in coding efficiency.  
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Figure 6.  R-D Performance for Different GOP Structures 

V. CONCLUSION AND FUTURE WORK 
Due to the inter-frame dependencies introduced by modern 

video coding standards, the computational complexity and 
memory requirement for decoders are drastically increased 
when applying VCR functionalities. In this paper, we first 
analyze the impact of trick-play modes on decoder complexity 
and buffer size. Then, we analyze two drift-free schemes 
called G-Group GOP Structure and Binary Reference GOP 
Structure for H.264/AVC which can reduce the computational 
complexity and buffer size when applying VCR functionalities 
relative to conventional GOP structures. Theses schemes favor 
trick-play mode with only 4.0%-7.6% bitrate increase while 
requiring much less complexity and smaller buffer size. Users 
can choose appropriate parameters to control the GOP 
structure to satisfy their constraints on coding efficiency, 
decoder complexity and memory requirement. Our future 
work will focus on jointly optimizing the coding efficiency 
and trick-play performance. 
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