
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Pedestrian Detection Using Boosted Features
over Many Frames

Michael Jones, Daniel Snow

TR2008-027 July 2008

Abstract

A scanning window type pedestrian detector is presented that uses both appearance and motion
information to find walking people in surveillance video. We extend the work of Viola, Jones and
Snow [18] to use many more frames as input to the detector thus allowing a much more detailed
analysis of motion. The resulting detector is about an order of magnitude more accurate than the
detector of Viola, Jones and Snow. It is also computationally efficient, processing frames at the
rate of 5 Hz on a 3 GHz Pentium processor. The detectorś accuracy and speed make it practical
for real applications.

CVPR 2008

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part
without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include
the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of
the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or
republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All
rights reserved.

Copyright c©Mitsubishi Electric Research Laboratories, Inc., 2008
201 Broadway, Cambridge, Massachusetts 02139

MERLCoverPageSide2

Pedestrian Detection using Boosted Features over Many Frames

Michael J. Jones Daniel Snow
Mitsubishi Electric Research Labs

201 Broadway, Cambridge, MA 02139�
mjones,snow � @merl.com

Abstract

A scanning window type pedestrian detector is presented
that uses both appearance and motion information to find
walking people in surveillance video. We extend the work
of Viola, Jones and Snow [18] to use many more frames as
input to the detector thus allowing a much more detailed
analysis of motion. The resulting detector is about an or-
der of magnitude more accurate than the detector of Viola,
Jones and Snow. It is also computationally efficient, pro-
cessing frames at the rate of 5 Hz on a 3 GHz Pentium pro-
cessor. The detector’s accuracy and speed make it practical
for real applications.

1. Introduction������	�

This paper extends the work of Viola, Jones and Snow

[18] on detecting pedestrians in video using both appear-
ance and motion information. The goal is to develop an al-
gorithm with enough speed and accuracy to be useful for
detecting pedestrians in real outdoor surveillance scenar-
ios. In typical outdoor surveillance scenarios, the camera
is static and the pedestrians are often very small (around 20
pixels tall). Although the pedestrian detector described in
[18] achieved state-of-the-art accuracy with a detection rate
of about 90% and around 1 in 100,000 false positives per
image window, this false positive rate is still too high to be
truly useful for real applications. The goal here is to re-
duce the false positive rate by at least an order of magnitude
while maintaining the high detection rate.

The key to achieving this is to use more video frames as
the input to the pedestrian detector. Instead of the minimal
two frames used in [18], we use ten frames which allows
much more motion information to be analyzed. The other
major difference is that we divide the detector into eight
separate direction-specific detectors (north, northeast, east,
southeast, etc). This is analogous to the state-of-the-art in
multi-view face detection in which different face poses are

ultimately detected by separate detectors [10, 9, 12].
The basic framework is to use the AdaBoost learning al-

gorithm to select a set of features that separates pedestrians
from non-pedestrians for each direction class. The input to
the classifier is small image windows from ten consecutive
frames of a video sequence. An image window is simply a
patch or rectangular area of an image. The feature set con-
sists of Haar-like features that act either on a single frame,
on the difference between two frames or on the shifted dif-
ference between two frames. The first type of feature dis-
criminates based on the appearance of pedestrians and the
second and third types discriminate based on the motion.
The features will be described in more detail later. In ad-
dition we use a soft cascade [1] (instead of a cascade) to
make the resulting detector very efficient to compute. Soft
cascades were chosen over standard cascades because the
speed versus accuracy trade-off can be more easily opti-
mized with soft cascades.

2. Related Work

There have been many papers in the area of person or
pedestrian detection. Gavrila [7] provides a good survey of
the field. We concentrate here on the papers most relevant
to our work. Many papers have focused on the problem
of detecting fairly large pedestrians (in terms of number of
pixels) in static images. These include the work of Dalal
and Triggs [3], Zhu et al. [19], Tuzel et al. [16], Leibe et
al. [11], Papageorgiou et al. [14] and Mohan et al. [13]. In
all of these the people must be around 100 pixels tall to be
detected. Even with such relatively high resolution, the best
reported system [16] has an accuracy of about 90% detec-
tion rate with about 1 in 10,000 false positives per window
on the difficult INRIA test set.

Dalal, Triggs and Schmid [4] extend the previous work
of Dalal and Triggs [3] to handle video from moving cam-
eras. They use an optical flow based approach along with
histograms of oriented gradients to detect large pedestri-
ans from moving cameras. Various other researchers have
also looked at pedestrian detection from video sequences.
Gavrila et al. [8] present a vision-based pedestrian detection

1

system designed for use in a moving car. The system inte-
grates various techniques for finding pedestrians including
the use of stereo cameras. Although their system is practical
(or very nearly so) for use in automobiles, it is not directly
applicable to a single camera surveillance scenario. Like us,
Efros et al. [6] were also interested in people that are around
30 pixels high in video sequences, but their focus was on an-
alyzing the actions of such people and not in detecting them
in the first place. An even earlier algorithm that worked on
low resolution pedestrians in video was Cutler and Davis
[2]. They used periodic motion to detect walking people
and other objects in video. Their system analyzed much
longer video sequences than ours in order to notice period-
icity. Our approach has the advantage of requiring shorter
video sequences (less than one period) to detect a pedes-
trian. Also, Cutler and Davis’s system was never tested for
the purpose of finding detection rates and false positive rates
on a large test set so it is not known how accurate their sys-
tem is on the detection task in real scenarios.

The approach taken in this paper is distinguished from
previous work by various attributes. It analyzes a moder-
ate number of frames at once (10 frames), it detects very
small pedestrians (as few as 20 pixels high), has a much
lower false positive rate than static detectors (about 1 in a
million false positives per window) and is fast (about 5 Hz
for 360x240 pixel images on a P4 3 GHz machine).

3. Input Representation

The input representation used in this work is one of its
main distinguising aspects. Ten consecutive frames from
a 15 fps camera (or every other frame from a 30 fps cam-
era) are used as input to the pedestrian detector. This al-
lows a modest amount of motion (about one walking step
depending on walking speed) to be analyzed by the clas-
sifier. For the low resolution pedestrians we are trying to
detect, the motion information is more informative than ap-
pearance and so using more frames can potentially lead to
much greater accuracy. We have chosen a base input win-
dow size of 24 pixels wide by 26 pixels high. The win-
dow has to be large enough to allow a pedestrian to be vis-
ible within it both in frame 1 and in frame 10. The typical
pedestrian height in our training examples is 20 pixels. An
example (used for training a classifier) consists of 10 image
windows from 10 consecutive frames. Each window is in
exactly the same position in all 10 frames. For some typical
positive examples in the east, south and northeast directions
see figure 1.

At this resolution, a pedestrian is roughly a person
shaped blob usually moving in an approximately straight
line with a walking motion in the leg region and a mostly
translational motion in the torso region (arms are usually
not very visible). We are not using enough frames to judge
periodicity (a la Cutler and Davis [2]), but leg motion is nev-

Figure 1. Positive examples for three different directions of pedes-
trian motion. Each row of 10 windows comprises one example.

ertheless distinctive. Very few if any non-pedestrian win-
dows in a video meet this description. Using ten frames
and the simple features introduced in the next section al-
lows this type of description to be learned. This repre-
sentation also implies that it will be very advantageous to
split the detector into different classes based on direction of
movement. The idea of using different detectors for differ-
ent directions of motion is analogous to the state-of-the-art
in face detection in which different views of faces are han-
dled by different detectors [10, 9, 12]. Splitting the detec-
tor into multiple detectors for each of the various walking
directions raises the question of what range of direction an-
gles should each direction-specific detector handle. We did
some experiments with east moving pedestrians and found
that ���� could be covered reasonably well with a single de-
tector. This means 8 different detectors are required to cover
the full ����� � range of directions. We did not fully explore
the trade-off between number of direction-specific detectors
and accuracy, and so the use of 8 detectors may not be op-
timal. Finally, in this work we combined the 8 detectors
in the simplest possible way, by running all detectors on
every image window and merging any overlapping detec-
tions. More sophisticated techniques could lead to further
improvements.

Each detector is trained at the base scale (24x26 pixels).
To detect pedestrians at larger scales we use an image pyra-
mid and scan over each scale of the pyramid independently.
More details will be given on training and scanning later.

The difficulty in using 10 frames instead of one or two is
designing a feature set that can take advantage of the extra
information without growing exponentially and becoming
computationally too large to handle.

4. Features

Like the face detection work of Viola and Jones [17],
our pedestrian detection procedure classifies gray scale im-
age windows based on the values of simple features. The
features are selected from a large pool of possible features
using Real AdaBoost [15]. The learning procedure is de-
scribed in the next section. First we will describe the various
types of features that make up the pool of possible features.

A feature in this work is a simple binary classifier. It

��

��
��
��
��
��

��
A B

C D

Figure 2. Example Haar-like filters shown relative to the enclos-
ing detection window. The sum of the pixels which lie within the
white rectangles are subtracted from the sum of pixels in the grey
rectangles. Haar-like filters with two rectangles are shown in (A)
and (B). Figure (C) shows one with three rectangles filter, and (D)
with four rectangles.

consists of a filter that takes image windows from n consec-
utive frames as input, a threshold and a positive and negative
vote. Thus, a feature, �! , is defined as

� #"%$ �'& $!(&*)+)+)+& $-,-.0/
132

if 4' "%$5� & $ (&+)*)+)+& $, .�687 9
otherwise

(1)
where $;: is an image window from frame < and $>= is the
same image window from frame ? , 4� "@. is a filter, 7 is a
threshold, and

2
and

9
are real valued true and false votes

respectively. In the experiments reported here, A /CB � .
There are three basic types of filters. The first type is an

appearance filter. It consists of a Haar-like filter that acts
on a window from a single input frame. The Haar-like fil-
ters used in this work are shown in figure 2. As in [17],
these filters simply take the sum of pixel brightness values
within the white rectangles and subtract the sum of bright-
ness values within the dark rectangles. In addition, an abso-
lute value version of each appearance filter is also included
in the filter set. This is important for pedestrian detection
because it allows, for example, a darkly clothed person on
a light background to give the same response as a lightly
clothed person on a dark background. Thus, appearance fil-
ters have one of the following two forms:

4D "E$>� & $ (&+)+)*)F& $, .0/HGD"E$. (2)

or 4 #"%$ �'& $-(&+)*)+)F& $-,I.0/KJ GD"E$! @.*J (3)

where GD"%$. is one of the Haar-like filters of the types shown
in figure 2 computed on image window $.

The second type of filter is a difference filter which com-
putes the absolute value of the difference between a Haar-
like filter acting on image windows in two different input
frames. This allows various patterns of motion to be de-
tected. In this case, the Haar-like filters include the types

Figure 3. Three different types of filters are shown. The first row
illustrates one particular appearance filter. Such filters act on a sin-
gle window, which could be any of the 10. The second row shows
a particular difference filter. Such filters consist of one filter act-
ing on one window and the negative of that filter acting on another
window. The third rows shows a particular shifted difference filter.
Such filters are similar to difference filters except the second filter
is a shifted negative version of the first.

in figure 2 as well as ones with a single rectangle acting on
each frame. Difference filters have the following form:

4 L"E$ �D& $-(&*)+)*)+& $!,;.M/NJ GD"%$- O.QPRG'"E$: .+J) (4)

The third type of filter is a shifted difference filter which
computes the absolute value of the difference between a
Haar-like filter acting on a window in one input frame and a
shifted version of the same filter acting on the same window
in a second input frame. This allows motions in a particular
direction (the direction of the shift) to be detected. Shifted
difference filters have the following form:

4 L"E$ �'& $!(&*)+)+)*& $!,;.M/NJ GD"E$! @.SPRGFTU"%$: .*J (5)

where G T "%$V:W. represents the Haar-like filter G'"E$I:U. shifted byX pixels up, down, left or right. In practice, we trained using
only filters with shifts of 1 or 2 pixels.

Although a filter takes windows from A frames as input,
any particular filter only uses 1 or 2 of those windows to
compute its value. The three basic types of filters are illus-
trated in figure 3. The main reason for using these types
of simple features is that they are very fast to compute. The
integral image representation [17] can be used to make com-
putation of such filters extremely efficient.

If all possible filters of the types described above were
generated, the filter set would be extremely large which
would make training time and memory requirements im-
practical. To solve this problem, we use the simple ap-
proach of subsampling the total filter set to yield a man-
agable size of a few tens of thousands of filters. In practice
we have found that increasing the size of the filter set be-
yond this only leads to small improvements in accuracy.

The main difference between these filters and those in
Viola, Jones and Snow [18] are that these can take advan-
tage of the larger number of frames in the input. Also, in our
case the filters are shifted in the case of shifted difference

filters instead of having filters act on shifted difference im-
ages as in [18]. Shifting the filters is computationally much
more efficient especially when windows from 10 frames are
used as input.

5. Learning Framework

The learning framework we use is almost the same as in
[18] except that instead of building a cascade of classifiers
we use a soft cascade [1]. A soft cascade is a single strong
classifier (linear combination of weak classifiers) in which
evaluation of the classifier can terminate early if the cumula-
tive sum of weak classifier outputs falls below one of the re-
jection thresholds associated with each weak classifier. The
advantage of this approach over a cascade is that it is easier
to trade off between speed and accuracy by simply chang-
ing the rejection thresholds. The rejection thresholds are set
after AdaBoost training and can be adjusted later depending
on speed and accuracy requirements.

The AdaBoost learning algorithm [15] is used to both
select a series of features (weak classifiers) from the pool of
possible features and to set the parameters for each feature.
The parameters of a feature are 7 , 2 and

9
as described

in section 4. The result of AdaBoost training is a strong
classifier of the form

Y "E$5� & $ (&*)+)+)*& $, .0/
1 B[Z � �\ � �I "E$>� & $ (&*)+)*)+& $, .�]_^� otherwise.

(6)
To turn this into a soft cascade, ` rejection thresholds

are selected. After the value of each feature is added to the
sum in equation 6, the sum is compared against that fea-
ture’s rejection threshold. If the sum is less than the rejec-
tion threshold, computation halts and the strong classifier
returns 0, “not pedestrian”. Otherwise computation contin-
ues. The rejection thresholds, a are determined after Ad-
aBoost training based on desired speed and accuracy trade-
offs. Please see Bourdev and Brandt [1] for an algorithm
for computing rejection thresholds as well as more details
on soft cascades.

The training procedure requires difficult negative exam-
ples to learn a detector with high accuracy. This problem
arises from the fact that the set of negative examples is so
astronomically large that a reasonable sample for training
cannot possibly be representative. In practice it is easy to
gather an extremely large set of negative examples since a
single image contains hundreds of thousands of image win-
dows most of which are negative examples. We assume that
the learning procedure has such a large set of training ex-
amples which we will call the full training set. We will call
the manageable subset of the full training set that is used
for training at any one time the working set. In [1], a boot-
strapping method is used to add a few difficult negative ex-
amples to the training set during every boosting round. We

use a related but different approach to incoporating difficult
training examples. In our training procedure, AdaBoost is
interrupted occasionally so that a new working set can be
computed that contains difficult training examples. The new
working set is found by sampling from the full training set
using a distribution that puts more weight on difficult ex-
amples. An example is considered difficult if it has small
or negative margin with respect to the current strong classi-
fier. The margin of example b is defined as c �Z = � = " b @.)
where c edgfDhiB & PjB'k is the ground truth label of exampleb and � = is the kth feature. We call this process of sam-
pling from the full training set according to the distribution
of margins resampling. Because pedestrians are extremely
rare compared to non-pedestrians, the resampling is done
separately for positive and negative examples to yield an
equal number of each.

Thus, to train a strong classifier with resampling, an ini-
tial working set is gathered (for example by resampling us-
ing a uniform distribution) and AdaBoost is used to select
weak classifiers until the error on the current training set
falls below some threshold. At that point, resampling is
done to pick a new more difficult working set and AdaBoost
training is resumed. This process of resampling and then
AdaBoost training is repeated until the desired number of
features are learned or the desired accuracy is achieved on
a validation set.

6. Experiments

Using the framework described above, we trained eight
different pedestrian detectors for the following directions of
motion: north, south, east, west, northeast, southeast, north-
west, southwest. In practice, only five of the detectors were
actually trained. The other three were computed by “flip-
ping” other detectors. Flipping a detector means that the
mirror image of each filter is computed by reflecting it over
the central vertical axis of the image window. Using this
idea, the east pedestrian detector is used to derive a west
pedestrian detector, the southeast detector is used to derive
the southwest detector, and the northeast detector is used to
derive the northwest detector. This works because a person
walking west is a mirror image of a person walking east.

The training data consisted of frames from 25 video se-
quences of various lengths with a total of 78,858 frames.
The training sequences came from shooting short (a few
minutes long) video sequences using a consumer mini-DV
camcorder in various outdoor locations. Each sequence was
of an outdoor scene in which the camera was relatively high
(from about 1 to 8 stories high). Bounding boxes around
each pedestrian for every frame were marked by hand.

From this raw data, an initial set of positive and negative
training examples (consisting of 10 image windows each)
were extracted for each direction. The direction of motion
was estimated by computing the angle between the center of

Figure 4. The first four filters selected by AdaBoost for each direction-specific detector. Most of the windows in each sequence of 10 input
windows are represented by small rectangles since the selected filter does not use them. The one or two windows used by the filter are
drawn larger with the Haar-like filter illustrated within it. It would be difficult to distinguish shifted difference filters from non-shifted
difference filters, however, none of the first four filters is shifted for any detector. See the text for a discussion of the selected filters.

the pedestrian box in frame 1 and in frame 10. The amount
of motion had to be at least 0.5 pixels per frame. This set
a minimum on the speed of the pedestrian used for train-
ing. Each pedestrian bounding box was scaled to be 24x26
pixels (width l height). This yielded examples such as in
figure 1. For negative examples, image windows from 10
consecutive frames that did not significantly overlap with
pedestrian boxes were selected (and scaled to 24x26 pixels).
The initial training set consisted of 2500 positive examples
and 2500 negative examples.

For training, about 40,000 filters were randomly selected
from the much greater set of possible filters of the three ba-
sic types shown in figure 3. All of the labeled video frames
from all 25 sequences were used for the negative resampling
set. Real AdaBoost learning with resampling was run for
400 iterations to yield strong classifiers with 400 features
for each of the 5 directions trained. As mentioned above,
the three classifiers for the remaining three directions were
computed by flipping the appropriate trained classifier.

To evaluate a detector, it must be scanned across all po-
sitions, scales and frames of a video sequence. The details
of the scanning process are as follows. First, an image pyra-

mid is created for each frame. We used a scale factor of 0.75
between frames of the pyramid. For a set of 10 consecutive
frames, the detector is evaluated in each position of each
level of the image pyramid while shifting the detection win-
dow with a 1 pixel step size. For a particular position, the
ten 24x26 pixel image windows are given as input to the soft
cascade detector which outputs a 0 or 1 to indicate whether
a pedestrian was detected in that position. If two or more
detections overlap significantly then their bounding boxes
are merged by averaging their top left x and y coordinates
and their heights and widths. For a 360 x 240 pixel image,
our scanning process evaluates 176,920 windows.

Each of the 8 detectors is evaluated in sequence on each
window in the image and the union of all merged bounding
boxes are returned as detections. One could undoubtedly
use more efficient technique for combining the eight detec-
tors (such as following the recent work in multi-view face
detection), but this improvement has not been pursued here.

7. Results

A test set consisting of 21 video sequences was collected
in similar but different scenarios to the training sequences.

Figure 5. ROC curve for all 8 direction-specific detectors plus the combined detector. The combined detector achieves a detection rate of
93% with a 1 in a million false positive rate per window.

All but one of these sequences were collected with the same
camera as the training set. The final test sequence we took
from the PETS 2001 dataset [5]. We doubled the size of
the testing set by flipping (mirror image) all frames of each
video. This means that for each pedestrian walking east,
for example, the flipped video contains pedestrians walk-
ing west. The total number of frames (including the flipped
frames) was 83,152 and the total number of tracks was 450.

The detection rate for a detector is computed over all
pedestrians in all frames independently. This means that
the total number of pedestrians to be detected in the test
set is the sum off all pedestrians in all frames. No track-
ing information is used. The same pedestrian in frame 1
and frame 2 is counted as two instances to be detected. The
pedestrian in frame 1 will be detected while looking at the
appropriate window in frames 1 through 10 while the pedes-
trian in frame 2 will be detected while looking at the appro-
priate window in frames 2 through 11. For each direction-
specific detector, the positive examples only include pedes-
trians walking in the appropriate direction.

A receiver operating characteristic (ROC) curve which
plots detection rate versus false positive rate was computed
for each direction specific pedestrian detector on the test set

and for the combined detector (consisting of the merged re-
sults of all 8 detectors). These ROC curves are shown in
figure 5. The results show that each direction-specific de-
tector achieves a detection rate from 93% to 84% with a
false positive rate of B � �!m . The combined detector achieves
93% detection rate with about a B � �!m false positive rate.
This is about an order of magnitude improvement over Vi-
ola, Jones and Snow [18]. Since a single 360 x 240 pixel
frame has 176,920 windows in it, this false positive rate is
equivalent to .177 false positives per frame.

How can the combined detector do better than the in-
dividual detectors? The most common false positive for a
direction-specific detector is a detection on a pedestrian or
part of a pedestrian moving in a different direction from the
direction it was trained on. Such detections are false detec-
tions for the direction-specific detectors. However, for the
combined detector good detections on pedestrians moving
in any direction are true positives. Furthermore, some of
the partial detections (detections that fall on just a part of
the pedestrian) are merged with good detections and essen-
tially get absorbed by the detection merging process.

A note about creating ROC curves. To generate the
points of the ROC curve, the rejection thresholds for the

detector must be adjusted to trade-off between correct de-
tections and false positives. This is done by the following
equation:

aW / a* PnJ aW J�o 4
When 4 is less than 0, the rejection thresholds are increased
(which decreases false positives and decreases the detection
rate). When 4 is greater than 0, the rejection thresholds are
decreased (which increases false positives and increases the
detection rate). There are other reasonable methods for ad-
justing the rejection thresholds to generate the ROC curve,
but we have not explored these here.

It is interesting to look at the first four features learned
for each direction-specific pedestrian detector. These are
shown in figure 4. Most of the detectors picked only
motion-based filters among the top four filters. Only the
north and the south detectors chose appearance-based fil-
ters instead of motion-based filters among the top four filters
learned. This is probably due to the fact that when a person
walks directly toward or away from the camera, the amount
of motion is much smaller than when a person walks per-
pendicular to the camera view. Thus motion is not as strong
of a cue for the north and south directions. It is also inter-
esting to note that none of the first four filters of any de-
tector use the ninth or tenth frame. Although the ninth and
tenth frames do get used in later features, this does suggest
that retraining with only seven or eight frames may result
in very little loss in accuracy. Also, none of the first few
filters chosen compare the first frame to the second which
confirms our suspicion that the minimal amount of motion
information used in [18] was far from optimal. Across all
8 detectors, 25% of the filters selected by AdaBoost train-
ing were appearance type filters, 56% were difference type
filters and 19% were shifted difference type filters.

The test set included very small pedestrians as well as
moving trees, bushes, cars, baby strollers, etc. These video
sequences are intended to represent typical outdoor surveil-
lance scenarios. We are not able to use standard test sets for
comparison since the publicly available test sets are either
static images or in the case of Dalal et al. [4], have a mov-
ing camera for which our method does not currently apply.
Our method is undoubtedly much more accurate than the
recent work based on static images. The typical pedestrians
in our test set are too small to rely solely on the appearance
information that static methods must rely on.

The running time to scan all 8 detectors over all scales
of a �����plrq'��� (using scale factor 0.75) is about 0.2 sec-
onds or 5 frames per second on a Pentium 4 2.8 GHz com-
puter (not including the time to load an image from disk
or from a camera). Since the speed of the detector is di-
rectly related to the average number of features computed
per window it is interesting to examine this number. On
average the number of features computed per window for a

Figure 6. Scene with many moving cars

Figure 7. Pedestrians walking in various directions

single direction-specific detector is a little less than 4. Total-
ing over all eight detectors, the average number of features
computed per window is 31.2. Some example detections are
shown in figures 6 through 9 (only the first frame of the 10
frame sequence is shown).

8. Conclusions

We have presented an extension to the pedestrian detec-
tor of Viola, Jones and Snow [18] that uses many frames
in a scanning window style detector. This extension allows
much more sophisticated motion analysis than was possible
in [18]. In addition, the detector is split into eight direction-
specific detectors analogously to the way multi-view face
detection is typically handled. The resulting detector is able
to detect pedestrians in typical surveillance scenarios with
a detection rate of about 93% with a false positive rate per
window of 1 in a million which is an order of magnitude
improvement over [18].

Most other work in human/pedestrian detection either

Figure 8. PETS 2001 test sequence

Figure 9. Scene with moving trees and cars

looks only at a single image or builds on top of a general
tracker for video. Our approach does neither of these. It
builds a scanning window type detector that acts directly
on the pixels from a window in 10 consecutive frames of
video. The improvement in accuracy we achieved shows the
importance of motion information for detecting pedestrians
in surveillance video in which the pedestrians are relatively
low resolution.

References

[1] L. Bourdev and J. Brandt. Robust object detection via soft
cascade. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages II:236–243,
2005. 1, 4

[2] R. Cutler and L. Davis. Robust real-time periodic motion
detection: Analysis and applications. IEEE Patt. Anal. Mach.
Intell., 22:781–796, 2000. 2

[3] N. Dalal and B. Triggs. Histograms of oriented gradients for
human detection. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 886–893,
2005. 1

[4] N. Dalal, B. Triggs, and C. Schmid. Human detection using
oriented histograms of flow and appearance. In European
Conference on Computer Vision, pages 428–441, 2006. 1, 7

[5] P. . dataset. http://www.cvg.cs.rdg.ac.uk/pets2001/ pets2001-
dataset.html. 6

[6] A. Efros, A. Berg, G. Mori, and J. Malik. Recognizing ac-
tion at a distance. In International Conference on Computer
Vision, pages 726–733, 2003. 2

[7] D. Gavrila. The visual analysis of human movement: A sur-
vey. Computer Vision and Image Understanding, 73(1):82–
98, 1999. 1

[8] D. Gavrila, J. Giebel, and S. Munder. Vision-based pedes-
trian detection: The protector system. In Proceedings of the
IEEE Intelligent Vehicles Symposium, 2004. 1

[9] C. Huang, H. Ai, Y. Li, and S. Lao. High-performance ro-
tation invariant multiview face detection. IEEE Patt. Anal.
Mach. Intell., 29(4):671–686, 2007. 1, 2

[10] M. Jones and P. Viola. Fast multi-view face detection. Mit-
subishi Electric Research Lab Technical Report TR-2003-96,
2003. 1, 2

[11] B. Leibe, E. Seemann, and B. Schiele. Pedestrian detec-
tion in crowded scenes. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
878–885, 2005. 1

[12] S. Li and Z. Zhang. Floatboost learning and statistical face
detection, 2004. 1, 2

[13] A. Mohan, C. Papageorgiou, and T. Poggio. Example-based
object detection in images by components. IEEE Patt. Anal.
Mach. Intell., 23:349–361, 2001. 1

[14] C. Papageorgiou, M. Oren, and T. Poggio. A general frame-
work for object detection. In International Conference on
Computer Vision, 1998. 1

[15] R. Schapire and Y. Singer. Improving boosting algo-
rithms using confidence-rated predictions. Machine Learn-
ing, 37(3), 1999. 2, 4

[16] O. Tuzel, F. Porikli, and P. Meer. Human detection via clas-
sification on riemannian manifolds. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, 2007. 1

[17] P. Viola and M. Jones. Robust real-time face detection. Int.
J. Computer Vision, 57:137–154, 2004. 2, 3

[18] P. Viola, M. Jones, and D. Snow. Detecting pedestrians using
patterns of motion and appearance. Int. J. Computer Vision,
63(2):153–161, 2005. 1, 3, 4, 6, 7

[19] Q. Zhu, M. Yeh, K. Cheng, and S. Avidan. Fast human de-
tection using a cascade of histograms of oriented gradients.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 1491–1498, 2006. 1

	Title Page
	Title Page
	page 2

	Pedestrian Detection Using Boosted Features over Many Frames
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8

