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Abstract—In an Ultra-wide band (UWB) sensor network signal
reflections from objects can be used to accurately determine the
location. UWB signals are preferred in these types of sensor
networks since they provide a very good resolution due to their
fine time granularity. We propose an artificial neural network
based localization algorithm to detect single object in a sensor
network and compare its performance to Cramer-Rao bound and
least squares estimator. Then we propose a two phase algorithm
for multiple object detection and evaluate the algorithm for the
case when there are two objects in a sensor network with three
nodes.

I. I NTRODUCTION

Localization and tracking have been the focus of both the
industry applications and academic research. There are two
main approaches: active (e.g. [6], [7], [8], [9]) and passive
ranging (e.g. [1], [2], [3], [4], [5]).

In the active approach, tags are attached to objects to be
tracked. These tags communicate with the nodes in the sensor
network. Sensor nodes thus estimate the distances between the
objects and the nodes which are used to locate the objects via
triangularization.

In the passive approach, objects do not wear tags and
hence they are not collaborating with the positioning process.
When the nodes communicate with each other, the presence
of the object causes disturbances in the received signals. By
analyzing these disturbances the location of the object canbe
estimated.

Active tags are used in a new range of applications,
including logistics (package tracking), security applications
(localizing authorized persons in high-security areas), medical
applications (monitoring of patients), family communications/
supervision of children, search and rescue (communications
with fire fighters, or avalanche/earthquake victims), control of
home appliances, and military applications [7]

The systems built based on passive approach, on the other
hand, have great potential for perimeter security and intrusion
detection and they can be deployed around buildings or at the
borders between countries.

In this paper, we are considering the passive approach and
proposing a neural network based algorithm to locate objects
in an UWB sensor network.

UWB is preferred in passive approach applications since
it provides high resolution in time domain. UWB signals are

perfect fit for wireless position location since they are able to
resolve multipath components which provide accurate location
estimates without the need for complex estimation algorithms.

UWB sensor network provides a structure where low to
medium rate communication and position location can be
performed simultaneously. UWB technology not only facilitate
centimeter accuracy in ranging but also make low power and
low cost implementation of communication systems possible
[7].

IEEE introduced a new standardization group 802.15.4a
for low data rate communications combined with positioning
capabilities which employs UWB technology as its physical
layer.

Our contributions in this study are: We first define a frame-
work for passive localization in 802.15.4a sensor networks.
Then we introduce a neural network based algorithm (NNBA)
to locate a single object with the known sensor node positions.
The main obstacle in locating multiple objects is to identify
multipaths between different sensor nodes that correspondto
different objects. We devise a two-step algorithm which uses
NNBAs as building blocks to overcome this problem. Finally,
we present performance results for locating two objects in a
3-node sensor network using this algorithm.

We only consider the cases where the objects are relatively
closer to the nodes, which enables us to work in a high
SNR regime. Although we focus on two-dimensional sensor
network, it is straightforward to extend the algorithms to three-
dimensional space.

II. A FRAMEWORK FOR DETECTING PASSIVE TARGETS

The IEEE 802.15.4a packet consists of a synchronization
header (SHR) preamble, a physical layer header (PHR) and
a data field. The SHR preamble is composed of the ranging
preamble and the start of frame delimiter (SFD).

The ranging preamble can consist of{16,64,1024,4096}
symbols. The longer lengths{1024, 4096} are preferred for
non-coherent receivers to help them improve the signal to
noise ratio (SNR) via processing gain. Hence, they can have a
better time-of-arrival estimate. The underlying symbol ofthe
ranging preamble uses one of the length-31 ternary sequences,
Si, in Table I. EachSi of length L = 31 contains 15 zeros
and 16 non-zero codes, and has the much desired property of
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Fig. 1. Effects of external objects on the multipath profile ofUWB signals.
a) Multipath profile when there is not any object in the medium, b) Multipath
profile is modified due to reflecting signals coming from the external object
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Fig. 2. Using the multipath distance target object is locatedon an ellipse
for each sensor pair. Target object is positioned at the intersection of all these
ellipses.

perfect periodic autocorrelation. In other words, the side-lobes
at the periodic correlation output become zero; and what is
observed at the receiver between two consecutive correlation
peaks is only the power delay profile of the channel. Thus,
the channel profile estimation does not get deteriorated by any
side-lobe.

TABLE I
THE BASIS PREAMBLE SYMBOL SET

Index Symbol
S1 -1000010-1011101-10001-111100-110-100
S2 0101-10101000-1110-11-1-1-10010011000
S3 -11011000-11-11100110100-10000-1010-1
S4 00001-100-100-1111101-1100010-10110-1
S5 -101-100111-11000-1101110-1010000-00
S6 1100100-1-1-11-1011-10001010-11010000
S7 100001-101010010001011-1-1-10-1100-11
S8 0100-10-10110000-1-1100-11011-1110100

Assume thatω is the transmitted UWB pulse waveform with
unit energy,Tsym denotes the symbol duration,Nsym is the
number of symbol repetition within the preamble,Tpri is the
pulse repetition interval,Ns is the total number of pulses per
symbol andEs denotes the symbol energy. Then, using any
basis symbolSi, the preamble symbol waveformwi(t) and
the preamble waveformPi(t) can be written as

wi(t) =

√

Es

Ns

L−1
∑

j=0

Si[j]ω
(

t − jTpri

)

(1)

Pi(t) =

Nsym−1
∑

n=0

N[n]wi(t − nTsym

)

(2)

whereN = [11...1]1×Nsym
.

A coherent receiver correlates the received waveform
Yi(t) = Pi(t)

⊗

h(t) with a template matched towi(t). Then,
assuming an AWGN channel the correlator outputCi(k) is

Ci(k) =

∞
∑

k=0

∫ (k+1)Ts

kTs

(Yi(t) + n(t))dt (3)

where n(t) is the AWGN noise. Differences inCi between
two observations are indicative of changes in channel profile.

As seen in Figure 1-a, the multipath profile is recorded
when two sensor nodes are communicating with each other
in the absence of any external object. When an object arrives,
multipath profile alters due to receiving reflections from the
object (see Figure 1-b). By estimating the time difference of
arrival (TDOA), ∆t, between the direct path and reflecting
path, the multipath distance,d, can be computed at the sensor
nodeS2 as:

d = |S1 − S2| + c × ∆t

where c is the speed of light andS1 andS2 are the locations
of the sensors. Sinced gives the sum of the distances from
two sensor nodes whose locations are fixed,S2 can locate the
object on an ellipse (Figure 1-b). We need at least three sensor
pairs since the intersection of three or more ellipses uniquely
identify the object location as it can be see in Figure 2.
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Fig. 3. Feed forward back propagation neural network architecture

Note that we do not need to transmit special signals between
these sensor node pairs during the recording of the multipath
profile, the preamble can simply be used for this purpose while
these nodes are communicating with each other. This way there
is no need for a secondary channel to transmit the recorded
multipath profile to a data processing center, the same network
can be used for this purpose.

III. S IMULATION SETUP

In all simulations1 × 1 unit grid is considered. Sensors
are placed on a circle uniformly. For the sake of simplicity
the shape of the objects and sensors are ignored and modeled
as a point on the grid. Location of the objects are randomly
generated.

In this study, we only consider high SNR regimes where
estimation errors can be modeled as white Gaussian [1],
[2]. White Gaussian assumption holds when the errors are
assumed to be due to thermal noise only. However, in reality
there are other sources of errors, such as clock drifting,
processor latencies, and interferences which may violate the
white Gaussian assumption. We ignore all those types of errors
in this paper.

IV. N EURAL NETWORK MODEL

Neural networks (NN) are a non-algorithmic methods,
which use parallel computing technique. They imitate func-
tioning of the brain. Even though inter-neuron communication
speed is quite slow for the brain, parallel processing allows
it to analyze very complicated data in a short period of time.
Neural networks learn directly from current examples rather
than programming [10].

Feed forward neural networks with multiple hidden layers
have been widely used and showed to operate successfully (see
Figure 3). Multi Layer Perceptron (MLP) learning algorithmis
used in the training of the network. MLP is a back propagation
algorithm and it computes the error at the output of the
network and sets weights of neurons iteratively. This operation
is spread out on all layers and the error in the output is
reduced. Deviations between the real and the predicted values
are computed to evaluate the learning success of the network.

Mean square error (MSE) is used to determine the com-
pliance between the predicted output and computed network
output. The exit criterion for the supervised learning is set on
the value of MSE (e.g. when MSE is below 0.001).

After successful termination of the learning process, the
classification performance is determined by applying test data
to the neural network. If the performance values meet the
desired criteria at the end of the test, the structure of the neural
network is completed and it is ready to classify any external
data.

V. SINGLE OBJECTDETECTION

Using time difference of arrival (TDOA) between the direct
path and a reflecting path, the distance traversed by the
multipath can be estimated. The multipath distance and the
locations of the 2 sensors constitute an ellipse. We need at
least three sensor pairs to figure out the location of the target
object at the intersection of these ellipses. Assume that there
areN nodes and a single object in the sensor network, and let
(xci, yci) denote the mid point between thei-th sensor pair,
then

(x − xc1)
2

a2
1

+
(y − yc1)

2

b2
1

= 1

(x − xc2)
2

a2
2

+
(y − yc2)

2

b2
2

= 1

...
(x − xcN )2

a2
N

+
(y − ycN )2

b2
N

= 1

whereai and bi are the major and minor axes of the ellipse.
There are different techniques to solve this set of non-linear
equations. Least squares estimator is one approach. In this
paper we propose to use artificial neural networks.

We assume that the locations of the sensors are known
apriori. In the training phase, a set of random points on the grid
are generated. Total distance from a transmitter sensor node to
the target object and from the target object to a receiver node
is computed as:

di =
√

(x − xi1)2 + (y − yi1)2)+
√

(x − xi2)2 + (y − yi2)2)+ǫi

where di is the multipath distance between thei-th pair,
(x, y) is the location of the object,(xik, yik), k = 1, 2, is
the coordinate of thek-th sensor node in thei-th pair, and
ǫi N(0, σ2) is the white Gaussian error.

The multipath distances computed as above are then fed into
the NN. The locations of the objects, i.e.(x, y), are used as
the output to be matched by the NN as it is trained. During the
verification phase, another set of random points are used in a
similar fashion to evaluate the performance of the network.

A. Simulation Results

Figure 4 shows the performance of the NN with increasing
number of sensors when the error variance is fixed, namely
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σ2 = 0.01. The error between the actual location,(x, y) and
the estimated location,(x̂, ŷ) of the object is defined as

ε =
√

(x − x̂)2 + (y − ŷ)2

Cumulative distribution function (CDF) shifts to the right,
and hence mean squared error (MSE) gets smaller, as the
number of sensors are increased. Note that the transmit power
of each sensor is limited, which is regulated by Federal
Communications Commission (FCC) in the US. However, the
total power transmitted by the sensor network is not limited.
Therefore, one can benefit using more sensors to increase the
accuracy of the estimates. Also the more sensors are there
in the network, the more robust the network will become by
tolerating individual sensor failures.

B. Evaluating the performance of NN algorithm

In this section we will compare the performance of our NN
based algorithm with Cramer-Rao bound and a least squares
based algorithm introduced in [3], [1]. Cramer-Rao bound
gives a lower bound on the standard deviation of the estimation
error, which can be used as a benchmark.

1) Cramer-Rao Bound: In [3], Cramer-Rao bound on the
position estimation from multipaths is shown to be

V (x) = V (y) ∼
σ2

N2

where V (x) and V (y) are the bounds on the estimations
of x and y coordinates, respectively andN is the number
of transceivers, which are capable of both transmitting and
receiving. Then the total variance becomes:

V (x) + V (y) ∼
2σ2

N2
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Fig. 5. Comparing NN with Cramer-Rao and least squares estimates

2) Least squares estimator: In [3], a two-step least squares
estimator is proposed. First, using the multipath distances,
piece-wise distances between the sensors and the object are
estimated via least squares technique. Then using these es-
timates, the target object is located via triangulation. They
showed that the variance of this technique is:

σ2
LS =

28σ2

3N2

3) Comparison: Figure 5 compares the MSE of the NN
estimator with the Cramer-Rao bound and the least squares
estimator as described above when the number of sensor
networks are 3,4,5, and 6. The NN performance is comparable
with the least squares estimator. As more sensor nodes are used
the performance approaches to the Cramer-Rao bound.

VI. M ULTIPLE OBJECTDETECTION

Tracking multiple objects in a sensor network becomes
difficult since for each sensor pair it is hard to distinguish
which multipath distance belongs to which object. In order
to locate objects, one of the multipath distances from each
sensor pairs are grouped into a set. LetN denote the number
of sensors in the network andL denote the number of objects

to be detected. Then each set will contain

(

N

2

)

= N(N−1)
2

elements and therefore there will beM = L
N(N−1)

2 different
combination of sets to choose from.

Furthermore, these sets can be grouped such that all mul-
tipath distance measurements are used. Each such group uses
a distinct measurement from each of theN(N−1)

2 sensor pairs
and hence each group contains exactlyL sets since there are
L objects. Therefore there are

L
N(N−1)

2

L
= L

N(N−1)
2 −1

such groups. Only one of these groups corresponds to the right
group of sets.

As it can be seen in Figure 6, the overall detection algorithm
is composed of two steps. In the first step, a set of multipath
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measurements are fed as the input and a possible target loca-
tion is estimated with a cost associated with it. Apriori known
sensor locations are internally used in the cost computation.

In the second step, the cost metrics for each set in the group
are added together to form the group metric and the group with
the lowest cost is selected.

The block used in the first step (see Figure 7) uses the
NNBA that is trained for estimating the single object location
given multipath distances from each sensor pairs as described
in Section V. The estimation,̃Pi = (x̃i, ỹi), in conjunction
with the apriori known sensor locations are used to estimate
the multipath distances:

d̂k,αk
= |Sk1 − P̃i| + |P̃i − Sk2|

whered̂k,αk
is the estimated multipath distance andSkj is the

location of thej-th sensor node,j = 1, 2, of the k-th sensor
pair. Hereαk ∈ (1, 2, ..., L) indicates one of theL multipath
distance measurements for this sensor pair.

Then, the difference between the estimated and measured
multipath distances are squared and added to compute the cost
metric, Ci.

Ci =
N

∑

k=1

(

dk,αk
− d̂k,αk

)2

Group metric is then computed by adding the cost of individual
sets in that group

GCj =
L

∑

k=1

Cgj,k
, wherej = 1, 2, . . . , LN−1

wheregi,k is thek-th cost index that belongs to the groupi.
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A. An example: Detecting two objects

In this section, as an example for multiple target detection,
we will consider the case when there are two objects in a
sensor network with three nodes, i.e.N = 3, L = 2. At the
end of this section we will discuss the simulation results.

All possible input combination sets are:

S1 = {d11, d21, d31}
S2 = {d11, d21, d32}
S3 = {d11, d22, d31}
S4 = {d11, d22, d32}
S5 = {d12, d21, d31}
S6 = {d12, d21, d32}
S7 = {d12, d22, d31}
S8 = {d12, d22, d32}

where di,j is the j-th multipath distance measured by the
i-th sensor pair. Then the groups with complimentary sets
becomes:

G1 = {S1, S8}
G2 = {S2, S7}
G3 = {S3, S6}
G4 = {S4, S5}

Finally, the group with the minimum cost is selected.
The CDF of the error between each the actual and the

estimated location of the objects is plotted in Figure 8. As
it can be seen from CDF in the same figure 1 target detection
slightly performs better than 2 detection system as expected.
This is mainly due to false selection of the final group, i.e. the
group with minimum cost differs from the actual one. In the
simulations this error was around 3.9%. Note that even when
the wrong group was chosen, the estimated locations are still
close to the actual targets, therefore the estimation erroris
not adversely affected and hence is still comparable to single
target case.

VII. R ELATED WORK

[1], [2], [3] study the Cramer-Rao bounds of passive local-
izations in an UWB sensor network for the asymptotic case
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with increasing number of sensors. They consider the cases
where both the locations of the sensor networks are known
apriori and unknown. They propose a semi-linear algorithm
that uses least squares estimator for single target detection
and compared the performance of their algorithm to Cramer-
Rao bounds. For multiple target detection they propose a
heuristic centralized algorithm since they claim exhaustive
search requires(L!)NM−1 iterations, whereL is the number
of objects, N and M are the number of transmitters and
receivers, respectively. However we show that there are only
LN(N−1)/2 different combinations to choose from, which is
much smaller than the above figure whenM = N . No error
performance for the multiple target detection algorithm is
provided and therefore we could not compare our algorithm
with this research.

[4], [5] experimentally compare the performance of active
and passive detection algorithms and discuss the pros and cons
of both techniques. Pulse positions are estimated by means of
a high-resolution maximum likelihood estimator.

VIII. C ONCLUSION AND FUTURE WORK

We discussed a framework to detect external object in an
UWB sensor network and showed that neural networks can be
used to detect single objects in such a network. We compared
the performance of our algorithm with Cramer-Rao bound
and least squares estimator. Then we proposed a two step
algorithm to detect multiple objects. We simulated the case
for two objects in a 3-node sensor network and showed that
the performance is as good as detecting a single object in the
same network.

In addition, we will consider mobility of the objects in
our future work. Note that adding the mobility in the system
models provides extra information and therefore estimation

errors will reduce since the location estimates are smoothed.
For instance, a Kalman-Bucy filter similar to the one proposed
in [11] can be used to filter out high variations in successive
estimations.

We only considered the high SNR regime. We would like to
create models for low SNR cases and evaluate the performance
of our neural network based algorithms with this model.
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