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Abstract—We describe simple iterative decoders for low-density
parity-check codes based on Euclidean geometries, suitable for
practical very-large-scale-integration implementation in applica-
tions requiring very fast decoders. The decoders are based on shuf-
fled and replica-shuffled versions of iterative bit-flipping (BF) and
quantized weighted BF schemes. The proposed decoders converge
faster and provide better ultimate performance than standard BF
decoders. We present simulations that illustrate the performance
versus complexity tradeoffs for these decoders. We can show in
some cases through importance sampling that no significant error
floor exists.

Index Terms—Bit-flipping (BF) decoding, low-density parity-
check (LDPC) codes, optical communications, weighted BF
decoding.

I. INTRODUCTION

LOW-DENSITY parity-check (LDPC) codes were first
discovered in 1960s [1] and have received significant

attention recently because of their excellent performance when
decoded using iterative decoders [2], [3]. LDPC codes can be
constructed using random or deterministic approaches. In this
paper, we focus on a class of LDPC codes known as Euclidean
geometric (EG)-LDPC codes, which are constructed determin-
istically using the points and lines of a Euclidean geometry [4].
The EG-LDPC codes that we consider are cyclic, and con-
sequently, their encoding can be efficiently implemented with
linear shift registers. Minimum distances for EG codes are also
reasonably good and can be derived analytically. Iteratively,
decoded EG-LDPC codes generally do not suffer as much from
the error-floor problems that plague some randomly constructed
LDPC codes. For these reasons, EG-LDPC codes are good
candidates for use in applications like optical communications
that require very fast encoders and decoders and very low bit-
error rates (BERs).

LDPC codes can be decoded using hard-decision, soft-
decision, and hybrid decoding methods. Soft decoding
algorithms such as belief propagation (BP) provide good perfor-
mance, but require high decoding complexity, and are therefore
not very suitable for very-large-scale-integration (VLSI) imple-
mentations. Instead, hard-decision and hybrid schemes such as
bit flipping (BF) and quantized weighted BF (QWBF) offer
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a better tradeoff between error performance, complexity, and
decoding speed or latency.

Most standard iterative decoders of LDPC codes require
at least several tens of iterations for the iterative decoding
process to converge, which is not always realistic for high-
speed VLSI implementations. In [5], a decoding scheme called
“shuffled BP” was presented to reduce the required number
of iterations of standard BP decoding. Related BF algorithms
based on the shuffled BP idea are easy to construct. Recently, an
improved but more complex iterative algorithm named “replica-
shuffled iterative decoding” was developed to further decrease
the required number of decoding iterations [6]. In this paper, we
study the performance of shuffled and replica-shuffled versions
of BF and QWBF decoders for EG-LDPC codes.

Another problem for VLSI implementations of LDPC de-
coders is related to the fact that to achieve a good performance,
the LDPC code must have a large codeword length and a cor-
respondingly large parity-check matrix. The large parity-check
matrix makes it difficult to implement the iterative decoder in a
fully parallel manner. To deal with this problem, it makes sense
to consider shuffled and replica-shuffled algorithms which di-
vide the codeword bits into groups and update one group of bits
at a time [5], [6].

The application of closely related LDPC codes based on pro-
jective geometries to optical communications has in fact already
been proposed by Djordjevic and Vasic [7], who demonstrated
the attractiveness of these codes for this application. Some of
the new features present in this paper compared to the work of
Djodjevic and Vasic are the study of longer codes which are
better suited to the application: the use of replica shuffled BF
decoders, which use simpler hardware and are more parallelized
compared to the min-sum algorithm and, therefore, generally
need fewer iterations, and the analysis of the error floor regime
using importance sampling.

This paper is organized as follows. Section II describes the
construction of EG-LDPC codes. Section III briefly reviews
standard BF, weighted BF, and QWBF decoders. Shuffled and
replica-shuffled versions of these decoders are presented in
Sections IV and V, respectively. In Section VI, group-shuffled
and replica group-shuffled schemes are discussed. Finally, in
Sections VII and VIII, we provide simulation results for the
various presented decoding methods.

II. DEFINITION OF EG LDPC CODES

A binary LDPC code is specified by a parity-check matrix
containing mostly zeros and only a small number of ones. A
regular binary (N,K)(dv, dc) LDPC code has a transmitted
codeword block length N , a information block length K, and
a parity-check matrix with precisely dv ones in each column
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and dc ones in each row. We refer to the N elements of an
LDPC codeword w = [wn] as bits, and the M rows of the
parity-check matrix H = [Hml] as checks. Accordingly, in a
regular binary LDPC code, every code bit is checked by exactly
dv parity checks, and every parity check involves exactly dc

code bits. We denote the set of bits that participate in check m
by N (m) = {n : Hmn = 1} and the set of checks in which bit
n participates asM(n) = {m : Hmn = 1}.

EG-LDPC codes [4], [8] are regular LDPC codes charac-
terized by a parity-check matrix which is constructed using
a finite Euclidean geometry. Let α = (α1, α2, . . . , αm) be an
m-tuple whose component αi is from the Galois field GF(2s).
The set of all possible αs has cardinality 2ms and forms
an m-dimensional Euclidean geometry over GF(2s), which is
denoted by EG(m, 2s). Each m-tuple α is called a point in
EG(m, 2s). The all-zeros point is called the origin. Let α1 and
α2 be two linearly independent points in EG(m, 2s). Then, the
collection of {α1 + βα2}, with β ∈ GF(2s), has 2s points and
forms a line (1-flat) in EG(m, 2s). There are J0 = ((2(m−1)s −
1)(2ms − 1))/(2s − 1) lines in EG(m, 2s) that do not contain
the origin.

To construct a cyclic EG-LDPC code based on EG(m, 2s),
we form the parity-check matrix HEG whose columns are all
of the 2ms − 1 nonorigin points in EG(m, 2s), and whose rows
are the incidence vectors of all of the J0 lines in EG(m, 2s)
that do not contain the origin. Note that many of the rows of the
matrix defined in this way are redundant, so that an important
decision that must be made for practical decoders is how many
of the redundant rows should be used, and how many should be
discarded. In the decoders described in this paper, we actually
used a square parity-check matrix with an equal number (N =
M = 2ms − 1) of rows and columns. Thus, we discard most of
the redundant rows, but not all of them.

III. BF AND QWBF DECODING

Assume a codeword w = (w1, w2, . . . , wN ) is transmitted
over an additive white Gaussian noise (AWGN) channel with
zero mean and variance N0/2 using binary phase-shift keying
(BPSK) signaling, and let y = (y1, y2, . . . , yN ) be the corre-
sponding received sequence.

A. Standard BF Decoding

The standard BF decoding is a hard decision algorithm.
Let z = (z1, z2, . . . , zN ) be the binary hard decision sequence
obtained from y as follow:

zn =
{

1, if yn ≤ 0
0, if yn > 0.

Let s be the vector of syndromes of z

s = (s1, s2, . . . , sM ) = z ·HT (1)

where

sm =
N∑

n=1

znhmn. (2)

The received vector z is a codeword if and only if s = 0.
If s 	= 0, errors are detected, and any nonzero syndrome sm
indicates a parity failure. Let Fn be the set of nonzero syn-
dromes checking on bit n, i.e., Fn = {sm : sm = 1 and m ∈
M(n)}. In standard BF decoding, the decoder computes all
the syndromes and then flips any bits which are involved in
more than a fixed number δ of parity failures. Based on these
new values, the syndromes are recomputed, and the process is
repeated until a codeword is found or the maximum number of
iterations is reached.

Thus, the standard BF decoding is carried out as follows.

Step 1) Compute s = (s1, s2, . . . , sM ) = z ·HT.
Step 2) For n = 1, 2, . . . , N , flip zn with |Fn| ≥ δ.
Step 3) Repeat Steps 1) and 2) until s = 0 or the maximum

number of iterations Imax is reached.

It should be noted that this version of BF decoding can be
viewed as a simplified version of the conventional Gallager
algorithm B [1]. This simplification can be justified by the large
values of dc and dv for EG-LDPC codes.

B. WBF Decoding

The performance of standard BF decoding can be improved
upon by using a soft-valued reliability measure for the received
symbols. The standard weighted bit-flipping (WBF) algorithm
[4] first computes form = 1, 2, . . . ,M

|y|min−m = min
n:n∈N (m)

|yn|. (3)

As explained below, |y|min−m is a measure of the reliability
of themth check.

Next, WBF decoding is carried out as follows.

Step 1) For m = 1, 2, . . . ,M , compute the syndrome sm =∑N
n=1 znHmn from z.

Step 2) For n = 1, 2, . . . , N , compute

En =
∑

m∈M(n)

(2sm − 1)|y|min−m. (4)

Step 3) Flip the bit zn for n = arg max1≤n≤N En.

Steps 1) to 3) are repeated until all the parity-check equations
are satisfied, or until the maximum number of iterations Imax is
reached.

WBF decoding achieves better performance than BF decod-
ing by making more accurate decisions for each bit based on a
flipping criteria that considers soft reliability information. For
the AWGN channel, a simple measure of the reliability of a
received symbol yn is its magnitude |yn|. The larger the magni-
tude |yn| is, the larger the reliability of the corresponding hard-
decision digit zn is. For m = 1, 2, . . . ,M , |y|min−m given in
(3) can be viewed as a measure of the reliability of the syndrome
sm computed with zns, n ∈ N (m). For n = 1, 2, . . . , N , the
larger En is, the less likely the hard decision zn is, which is
why the bits with the largest values for En are flipped first.
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C. QWBF Decoding

From the practical point of view, WBF decoding is problem-
atic, because a real number |y|min−m must be stored for each
check, these real numbers must be added to determine the relia-
bility En of each bit, and the bits must then be sorted according
to their values of En. In a more practical version of WBF
decoding, which we call QWBF decoding, each bit is assigned
a “high” or “low” reliability based on whether |yn| is greater
or less than a preassigned threshold ∆1. Then, for each check,
if all the bits involved in that check have “high” reliability, the
check is also considered to have high reliability, but if even a
single bit involved in the check has “low” reliability, the check
is considered to have low reliability. High-reliability checks are
assigned a value of |y|min−m = 2, while low-reliability checks
are assigned a value of |y|min−m = 1. Next, QWBF decoding
proceeds as follows.

Step 1) For m = 1, 2, . . . ,M , compute the syndrome sm =∑N
n=1 znHmn from z.

Step 2) For n = 1, 2, . . . , N , compute

En =
∑

m∈M(n)

(2sm − 1)|y|min−m. (5)

Step 3) Flip all bits zn for which En exceeds a predefined
threshold ∆2.

Steps 1) to 3) are repeated until all the parity-check equations
are satisfied, or until the maximum number of iterations Imax is
reached.

Note that in QWBF decoding, two predetermined thresholds
∆1 and ∆2 have to be specified. In the simulations described
below, these thresholds were chosen by empirical testing. Our
chosen thresholds should be reasonably good, although we can-
not be certain of how far they are from the optimal thresholds;
a theoretical analysis would certainly be desirable.

Compared to WBF decoding, QWBF decoding has the ad-
vantages that only one bit needs to be stored to record the
reliability of each bit and check that all the addition is simple
integer arithmetic and that no sorting of the bits by reliability
needs to be done. For these reasons, we consider QWBF
decoding to be much more realistic than WBF decoding for our
target applications.

IV. SHUFFLED BF AND QWBF DECODING

As mentioned in Section I, standard BF decoders require an
undesirably large number of iterations to converge. Shuffled
BF (or shuffled QWBF) decoding is designed to accelerate the
decoding process. Let us first assume, for the sake of argument,
that the bits are processed serially; one bit is processed in each
unit time. During a given iteration of decoding, we assume
that the nth bit is processed in the nth unit of time. If the
flipping condition is satisfied, this bit is flipped. Generally, the
new value of zn is more likely to be correct than the old one.
Consequently, the syndromes {sm : m ∈M(n)} based on the
new value of zn are more reliable than the corresponding old
ones. In shuffled BF (or QWBF) decoding, at each iteration,
once a bit is flipped, all the syndromes involving in this bit are

flipped too, and the processing of the remaining bits are based
on these new syndrome values. Because the more reliable bit
values are taken advantage of as soon as available, the shuffled
version of BF (or WBF or QWBF) decoding is expected to
converge faster than the standard one.

Shuffled BF is carried out as follows.
Initialization Compute s = (s1, s2, . . . , sM ) = z ·HT.

Step 1) For n = 1, 2, . . . , N , if |Fn| ≥ δ, flip zn and
{sm : m ∈M(n)}. Recalculate Fns.

Step 2) Repeat Step 1) until s = 0 or Imax is
reached.

Similarly, the shuffled WBF is carried out as follows:
For n = 1, 2, . . . , N , assign each bit a value zn, and a one-

bit reliability |yn|. For m = 1, 2, . . . ,M , compute the
reliability value |y|min−m using the one-bit reliabilities
|yn| and the threshold ∆1.

Step 1) For n = 1, 2, . . . , N , compute

En =
∑

m∈M(n)

(2sm − 1)|y|min−m. (6)

Step 2) For n = 1, 2, . . . , N , if |En| ≥ ∆2, flip zn
and {sm : m ∈M(n)}. Recalculate Ens.

Steps 1) and 2) are repeated until all the parity-check equations
are satisfied or Imax is reached.

V. REPLICA-SHUFFLED BF AND QWBF DECODING

The plain shuffled BF (or QWBF) decoding presented in the
previous section is a bit-based sequential approach, and the
scheme just presented is based on a natural increasing order,
i.e., flipping decisions of bits are made according to order n =
1, 2, . . . , N . The larger the value of n, the more newly delivered
values are used in making the flipping decision and the more
accurate that decision becomes. Consequently, the reliability of
the bits increases and the error rate decreases with increasing
n. Clearly then, in a shuffled BF (or QWBF) decoder based on
a natural decreasing order, after each iteration, the reliability of
the bits would decrease with increasing n.

To take advantage of this property of plain shuffled BF (or
QWBF) decoders, in a replica-shuffled BF (or QWBF) decoder
[6], two shuffled subdecoders (“replicas”) based on different
updating orders operate simultaneously and cooperatively. Af-
ter each iteration, the replica subdecoders exchange bit values
with each other (according to the rule that each replica is
“responsible” for those bit values that it decoded later), and
the next decoding iteration is based on these new values. It is
also straightforward to extend replica-shuffled BF (or QWBF)
decoding to cases in which more than two replica subdecoders
are employed. It will require more study to determine the
optimal ordering of the updates for each of the subdecoders,
even for just two replicas. In general, replica-shuffled decoders
obtain faster decoding at the price of duplicating subdecoders.

Let
−→
D and

←−
D be two replica subdecoders using increasing

and decreasing updating orders, respectively. Let−→s ,−→z ,
−→
Fn be

the corresponding notations associated with decoder
−→
D .
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Notations associated with decoder
←−
D are defined in a similar

way. Replica-shuffled BF decoding with two subdecoders is
carried out as follows.

Initialization Compute −→s =←−s =z ·HT. Let −→z =←−z =z.

Step 1) For n = 1, 2, . . . , N , subdecoders
←−
D and

−→
D

simultaneously operate, respectively, accord-
ing to the following rules.
If |−→Fn| ≥ δ, flip −→zn and {−→sm : m ∈M(n)}.
If |←−F N−n| ≥ δ, flip←−z N−n and {←−s m : m ∈
M(N − n)}.

Step 2) For n = 1, 2, . . . , N/2, let −→z n =←−z n,
←−z N−n = −→z N−n and update −→s and←−s .

Step 3) Repeat Step 1) and Step 2) until −→s = 0 (or
←−s = 0) or Imax is reached.

Note that Step 2) is the stage at which information is ex-
changed between the replicas. Each replica is responsible for
those bit values that it updated more recently.

Replica shuffled QWBF decoding is carried out in an analo-
gous way; the full description is omitted here.

VI. GROUP-SHUFFLED AND REPLICA

GROUP-SHUFFLED SCHEMES

An entirely serial implementation of replica-shuffled BF
decoding would be desirable from the point of view of perfor-
mance, but is not very realistic in terms of VLSI implementa-
tion. On the other hand, an entirely parallel implementation is
not so desirable, nor even realistic given the large block-lengths
that one would expect to use.

Thus, a more realistic scenario is for the bits in an EG-LDPC
code to be processed in groups of bits, where the groups are
processed serially, but the bits within a group are processed
in parallel. We call such decoding schemes “group-shuffled”
decoding or “replica group-shuffled” decoding, depending on
whether replica subdecoders are used.

Assume the N bits of a codeword are divided into G groups
and each group contains (N/G) = NG bits (assuming N mod
G = 0 for simplicity). Grouped shuffled BF decoding is carried
out as follows.

Initialization Compute s = (s1, s2, . . . , sM ) = z ·HT.

Step 1) For g = 1, 2, . . . , G
a) process the following step in parallel: for g ·

NG + 1 ≤ n ≤ (g + 1) ·NG + 1, if |Fn| ≥
δ, flip zn;

b) process the following step in parallel: for g ·
NG + 1 ≤ n ≤ (g + 1) ·NG + 1, if |Fn| ≥
δ, flip {sm : m ∈M(n)}.

Step 2) Repeat Step 1) until s = 0 or Imax is
reached.

Replica group-shuffled BF (or QWBF) decoders operate in
an analogous way; the full details are omitted here.

Note that in all these decoders, including the replica group-
shuffled decoders, the order in which all the steps proceed is
always fixed ahead of time, which is convenient for a hardware
implementation. It is possible to consider other ideas, such

Fig. 1. Error rate of the (4095, 3367) EG-LDPC code with the standard
BF and group shuffled BF algorithm, for G = 2, 16, 4095, and at most, two
iterations.

as ordering the updates based on the strength of the channel
information, but we preferred to avoid any approach that would
require sorting or would interfere with the natural cyclic order-
ing of the bits.

VII. SIMULATION RESULTS OF SHUFFLED SCHEMES

Two-dimensional EG-LDPC codes are decoded with various
schemes to show the performance of the proposed schemes. For
any positive integer s ≥ 2, the 2-D EG-LDPC code has length,
dimension, and minimum distance 22s − 1, 22s − 3s, and 2s +
1, respectively. The geometry EG(2, 2s) contains 22s − 1 lines
that do not pass through the origin. The parity-check matrix H
therefore is a (22s − 1)× (22s − 1) square matrix.

Fig. 1 depicts the error rate of iterative decoding of the (4095,
3367) EG-LDPC code with standard BF and group shuffled BF
algorithm, for G = 2, 16, 4095. The maximum number of iter-
ations for group shuffled BF was set to be only two. The word
error rates and bit-error rates (BERs) are shown simultaneously
in many of our plots; obviously, the bit-error rates are the lower
curves.

Note in Fig. 1 that for group-shuffled BF decoding, using 16
groups is nearly as good as 4095 (fully serial operation). Note
also that the word error rate performance using 16 groups and
two iterations in group-shuffled decoding is nearly as good as
that using ten iterations in standard BF decoding.

Fig. 2 depicts the error rate of iterative decoding of the (4095,
3367) EG-LDPC code with standard QWBF and group shuffled
QWBF algorithm, for G = 2, 16, 4095. The maximum number
of iterations for group shuffled BF was set to be five.

The threshold parameters used were ∆1 = 0.09 and ∆2 =
8.0. There is clearly a performance gain from using QWBF
instead of BF (about 0.5 dB at a BER of 10−5).

Fig. 3 depicts the error rate of iterative decoding of the
(16 383, 14 179) EG-LDPC code with the standard BF and
the group shuffled BF algorithm, for G = 2, 16, 4095. The
maximum number of iterations for group shuffled BF was set
to be 2.
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Fig. 2. Error rate of the (4095, 3367) EG-LDPC code with the standard
QWBF and group shuffled QWBF algorithm, for G = 2, 16, 4095, and at most,
five iterations.

Fig. 3. Error rate of the (16 383, 14 179) EG-LDPC code with the standard
BF and the group shuffled BF algorithm, for G = 2, 16, 4095, and at most two
iterations.

VIII. SIMULATION RESULTS OF REPLICA

SHUFFLED SCHEMES

Fig. 4 depicts the error rate of iterative decoding of the (4095,
3367) EG-LDPC code with standard BF and group replica
shuffled BF algorithm with four subdecoders, for G =
2, 16, 4095. The maximum number of iterations Imax for group
replica shuffled BF was set to be two. We observed that the
word error rate (WER) performance of group replica shuffled
BF decoding with four subdecoders and Imax = 2, and group
number, larger or equal to four, was approximately the same
as that of the standard BF with Imax = 10, while the BER
performance is even better.

Fig. 5 depicts the error rate of the same code decoded by
the standard and replica shuffled BF methods, with Imax = 20
and Imax = 10, respectively. The point of this figure is more

Fig. 4. Error rate of the (4095, 3367) EG-LDPC code with the standard
BF and group replica shuffled BF algorithm with four subdecoders, for
G = 2, 16, 4095, and at most two iterations.

Fig. 5. Error rate of the (4095, 3367) EG-LDPC code with the standard
BF and group replica shuffled BF algorithm with four subdecoders, for
G = 2, 16, 4095, and at most, ten iterations.

theoretical than practical; to demonstrate that replica-group
shuffled BF decoding outperforms BF decoding when Imax is
large enough.

An important issue in optical communications systems and
in storage systems is the performance at very low error rates.
The question that must be answered is whether there is a hidden
error floor in the high signal-to-noise ratio (SNR) regime. This
question is difficult to answer through simulations, but we
can make some progress, and set worst case bounds on the
error floor, by using importance sampling for the case of BF
decoding.

To obtain performance for very low error rates, we generated
random errors of fixed weight n, and for each weight n,
we evaluated the corresponding bit-error performance P (n).
Fortunately, we can assume that no errors at all will occur if
n ≤ t, where t is the bounded error correcting capability of the
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Fig. 6. WER of the (4095, 3367) EG-LDPC code with the standard BF
and group replica shuffled BF algorithm with four subdecoders, for G =
2, 16, 4095, and at most, two iterations for fixed number of errors.

code t = �(dmin − 1)/2� (this corresponds to the reasonable
assumption that the decoder has a built-in low-complexity
bounded-distance decoder; such decoders were developed for
these codes already in the 1960s [8]). For the (4095, 3367) code,
dmin = 65, and t = 32.

The overall bit-error performance Ps was then obtained by
the average

Ps =
N∑

n=t+1

P (n)
(
N

n

)
pn

e (1− pe)N−n. (7)

For BPSK signaling over AWGN channel, the transition
probability pe = Q(

√
REb/N0), where R is the code rate and

Eb/N0 is the SNR per information bit.
Fig. 6 depicts the error performance of the standard and

replica group-shuffled BF decoding methods with four subde-
coders for decoding the (4095, 3367) EG-LDPC code with a
fixed number of errors. The maximum number of iterations for
replica shuffled BF was set to 2.

Using the results from Fig. 6, we can determine worst case,
best case, and extrapolated performances for this decoder down
to very low error rates.

For word error rates (WERs) smaller than 10−4 (BER smaller
than 10−7), no reliable evaluation of P (n) was possible, so
we computed: 1) a worst case upper bound on (7) by assum-
ing the same P (nmin) as the smallest simulated for weights
n′, t < n′ < nmin, 2) a best case lower bound on (7) by
assuming P (n) = 0 for weights n′, t < n′ < nmin, and 3) a
likely case approximation by extrapolating P (n′) for weights
n′, t < n′ < nmin.

Fig. 7 depicts these extrapolations. The worst case upper
bound is derived using the horizontal line in this figure, the
best case lower bound is derived using the vertical line, and
the likely case extrapolation is derived using the curved line.

Fig. 7. Group replica shuffled BF decoding of the (4095, 3367) EG-LDPC
code for fixed number of errors with four subdecoders and G = 16, Imax = 2.
The point of this figure is to show the extrapolations used in constructing the
worst case (upper bound), best case (lower bound), and likely case (extrapo-
lated) performance curves at very low error rates.

Fig. 8. Group replica shuffled BF decoding of the (4095, 3367) EG-LDPC
code in high SNR regime with four subdecoders and G = 16, Imax = 2. Note
that the worst case performance is never more than 1 dB worse than the likely
case performance, indicating that there is no error floor.

Fig. 8 depicts the performance of the replica shuffled BF
decoding for the (4095, 3367) EG-LDPC codes in the high SNR
regime based on Fig. 7. Note that the best case and likely case
scenarios are nearly identical. More importantly, the worst case
scenario is only slightly worse (less than 1 dB) than the likely
case scenario for BERs between 10−10 and 10−15. This means
that we can be confident that there will be no significant error
floor using this decoding method.

Fig. 9 depicts the error rate of iterative decoding of the
(16 383, 14 179) EG-LDPC code with standard BF and group
replica shuffled BF algorithm with four subdecoders, for G =
2, 16, 16 383. The maximum number of iterations for group
replica shuffled BF was set to be two. We observe that the WER



ZHANG et al.: LOW-LATENCY DECODING OF EG LDPC CODES 2885

Fig. 9. Error rate of the (16 383, 14 179) EG-LDPC code with the stan-
dard BF and group replica shuffled BF algorithm with four subdecoders, for
G = 2, 16, 16 383, and at most, two iterations.

Fig. 10. Error rate of the (16 383, 14 179) EG-LDPC code with the stan-
dard BF and group replica shuffled BF algorithm with four subdecoders, for
G = 2, 16, 18 383, and at most ten iterations.

performance of group replica shuffled BF decoding with four
subdecoders and maximum number of two, and group number
larger or equal to 16, are approximately the same as that of the
standard BF with maximum number of ten.

Fig. 10 depicts the error rate of the same code decoded by
the standard and replica shuffled BF methods, with Imax =
20 and Imax = 10, respectively. With respect to the ultimate
performance after full convergence, the replica shuffled BF
decoding is observed to outperform the standard BF. This can
be partly explained by less error propagation involved in replica
shuffled method.

Although not presented here, other geometry LDPC codes
were also simulated with the standard and the replica decoding
schemes. Based on the simulation results, replica decoding
shows similar improvements in the required number of decod-
ing iterations for codes with different codeword lengths, either
shorter or longer than those shown here.

IX. CONCLUSION

We have described many different decoders, and it may be
worthwhile to give some final pointers to orient the reader. The
major conclusion is that group-shuffled BF decoders and replica
group-shuffled BF or QWBF decoders give good performance
using a very small number (two) of iterations and a relatively
small number (16, but in fact four is often sufficient) of groups,
comparable or better than that of standard decoders using ten or
more iterations. This reduction in the reduction of the number
of iterations will translate into a better decoding throughput
and/or latency. The gain obtained by upgrading from BF to
QWBF is rather large (probably about 0.5 dB), but one must be
able to quantize the channel output using one bit (“high” versus
“low” reliablility. Replica group-shuffled decoders using four
replicas also have a further performance advantage compared
to ordinary group-shuffled decoders, but the gain is not very
large. Finally, we have demonstrated that group-shuffled and
replica-group shuffled BF decoders will not have a significant
error floor. Although it would be harder to demonstrate using
importance sampling, there is no reason to expect error floors
for QWBF decoders either.
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