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Abstract This paper presents a joint clustering-and-tracking
framework to identify time-variant cluster parameters for
geometry-based stochastic MIMO channel models.

The method uses a Kalman filter for tracking and predicting
cluster positions, a novel consistent initial guess procedure that
accounts for predicted cluster centroids, and the well-known
KPowerMeans algorithm for cluster identification.
We tested the framework by applying it to two different

sets of MIMO channel measurement data, indoor measurements
conducted at 2.55 GHz and outdoor measurements at 300 MHz.
The results from our joint clustering-and-tracking algorithm
provide a good match with the physical propagation mechanisms
observed in the measured scenarios.

I. INTRODUCTION
In order to validate algorithms that exploit the opportunities

offered by MIMO systems, MIMO channel models that are
accurate, yet tractable are in high need. A promising approach
involves cluster-based MIMO channel models [1]. As a matter
of fact the majority of standardized MIMO channel models
like 3GPP-SCM [2], IEEE 802.1 ln [3], COST 259 DCM, and
COST 273 [4] are cluster based.

In measured MIMO channels the multipath components
(MPCs) tend to occur in clusters, i.e., groups of MPCs with
similar parameter values such as delay, directions of arrival
(DoA) and directions of departure (DoD) [5] [6] [7] It was
shown in [8] [9] that channel models disregarding clustering
effects overestimate the channel capacity.

In order to coniSte-ntly paraneterize recent cluster-based
MIMO channel models [10], the clusters must be identified
and parameterized from measurements. Initially, cluster iden-
tification was done visually [11], [6], [7], but this procedure
is cumbersome and tiring for a large amount of measurement
data, for multi-dimensional parametric data it becomes im-
possible. Moreover, visual clustering lacks a clear definition
of what is a cluster. Thus, automatic cluster identification
algorithms for parametric MIMO channels were developed
[12], [13], [14]. These algorithms were all designed to identify
clusters in individual time instants, and did not address the
issue of cluster tracking over time. Since clusters can be used
to model timevariant scenarios as well, a consistent approach
is required for joint cluster identification-and-racking over
time. A simple cluster tracking algorithm was presented in

[15], but it did not take joint clustering and tracking into
account. An alternative method is to track individual paths
directly in the impulse response [16].

In the present work we develop a joint clustering-and-
tracking framework that uses (i) a Kalman filter [17] to track
and predict cluster positions together with (ii) a new initial-
guess procedure allowing to include the prediction of the
Kalman filter, and (iii) the KPowerMeans clustering algorithm
using the MCD distance metric [13] to identify clusters.
To test the framework we used two different sets of time-
variant MIMO channel measurements one indoor environment
showing rich scattering and an outdoor environment showing
few, very distinct propagation paths and many weak scattered
paths We found that this framework enabled to extract the
cluster characteristics from time-variant MIMO channel mea-
surements consistently.
The paper is organized as follows: Section II will describe

the problem and introduce the parameters used In Section III
we provide a comprehensive description of the joint clustering-
and-racking framework. Results from applying the framework
to the measurement data are presented in Section IV. Finally,
we conclude the paper in Section V.

II PROBLEM DESCRIPTION

Like in existing clustering applications, the starting point
is a large number of measurements with a MIMO channel
sounder. The parameters of the MPCs are estimated from the
measured impulse responses using a high-resolution algorithm
e.g. SAGE, for each snapshot, individually.

In standard clustering, each snapshot is clustered indepen-
dently [18] [13] and the clusters might be tracked afterwards
[14]. The problem to solve is how to combine clustering and
tracking in order to improve the clustering performance and
to consistently track clusters.
We consider N data windows, n 1 .. N, each with a

number of L(') MPCs, where every single MPC is represented
by its power p(n), I = ...L(n), and a parameter vector

(n(n) (in) (7a) T
x

n)
= [ SOAOA,I SOAOD,I] containing the delay, azimuth

AoA and azimuth AoD, respectively. The data for all paths
are collected in the power vector p(n) = [p(n) p(n)]T and
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Fig 1. Clustering framework Clusters with parameters O(n) are identified and tracked in the input data (X(n) P the Kalman filter updates the cluster
paforameroteri2 theo n,rprediction provides an irnput to the itunitiguessusparameIters, I_ 1_th preicIatio proids an inpt .>to the initia guesV1A1;4:.

Each cluster is determined by following parameters.
I A unique cluster ID c

2 The cluster power at time n. Denoting the set of path
indices belonging to cluster c at time snapshot n by n)
the cluster power is calculated as(n) (n)
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(n) (n)3. The number of paths within the clusters Lc = |1c
where every path is assumed to belong to one cluster,
uniquely.

4. The cluster centroid position in the angle-angle-delay
domain (c The cluster centroid position can be cal
culated as

(nT) = [T (n) ~o(n) (n)ci T =i-Lc - 7 Rx,c WoTx,c -

angLle(El,< n
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where the mean angle is calculated by averaging angles
over their respective complex representation.
For tracking, also the centroid speed is of in-
terest, so we combine the position and speed
in the cluster tracking parameter vector Ocr)

(n) (n) ,(n) (n) (n)
'

n¢A,,(n)< ATC Rx c Af Rxc CTxc CTxQc]'
5 The clustor's oint spread C(r w,hich is the pcower

weighted covariance matrix of the path parameters
within one cluster at time n. The main diagonal contains
the cluster spreads of the individual dimensions, i.e. the
cluster delay spread the cluster AoA spread and the
cluster AoD spread. Tbe off-diagonal elements describe
the correlation between these spreads
The cluster spread matrix is calculated by

p(n) (X(n) (n) ) X(n) (n) T
C(n Pit7 (X IH)(l-C)

t(n)

(2)
Note that in this equation, whenever adding or subtract-
ing angles, the result must be mapped to the principal
value in the interval of (-7wr,7], which can be achieved
easily by the operation

pv(Qj) = angle(exp( S)) (3)

Based on this cluster data model, we will now introduce the
clustering-and4racking framework.

111. FRAMEWORK

For each time snapshot, the following steps are performed
(see Figure 1)

1. A Kalman filter [17] both tracks the cluster position
over time, and predicts the cluster position in the next
snapshot.

2. The initial-guess routine provides a trustworthy initial
guess of the cluster centroids taking the predicted
cluster centroids into account.

3 The clustering algorithm identifies clusters in the mea-
surement data based on the initial guess.

A. Kalman cluster trucking

1) State-space model: For the Kalman tracking [17], only
the cluster centroid position 0c is used. We use the following
state equation

(n)
c

(4)c(n- I) wn)
c

where w(r) denotes the state-noise with covariance matrix Q,
and @ is the state4ransition matrix given by

r.134) = I3 (9
I 1 0

wbere identity matrices are denoted by Id with d denoting the
dimension, and 9 denotes the Kronecker matrix product.

Since we can observe only the cluster centroids and not
their speed, we use following observation model

(5)

where , describes the observed cluster centroid position,
thus H is given by

H=I30[ 1 0 (6)

and v(') denotes the observation noise with covariance matrix
R.

2) Tracking equations: The derivation of the Kalman filter
is straight-forward and leads to following prediction and

(n) HO (n) +v (n)Ac c
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(7)
(8)

M]nl-' T(HM(nn-1) T + RH) (9)

o(nnl-1) + K(nrn) (is - HO(nln-1))(10)Hc c

(I -K(nln)H)M(nlnr-1§) (I1 1)

3) Cluster association: A major problem in multi-target
tracking is how to associate the predicted with the identified
cluster centroids. Usually, such an association is based on the
Euclidean distance in parameter space. Since we are tracking
clusters that show a certain extent in parameter space we use

following probability-based method.

* The distance between a cluster with parameters (tc cc)
and a cluster centroid is defined by

(0t, CC)

I

(2)3/2C /

exp -__ _t TC1 - P)82
(12)

Since a small distance between the two centroids now

corresponds to a large value of this function, we refer to

it as the closeness function
The closeness function is evaluated between all predicted
and all new cluster centroids in both directions, i.e.
between the old and the new centroids using the old
covariance matrix, and between the new and old cluster
centroids using the new covariance matrix
For each old cluster we determine the closest new cluster
by finding the maximum value of the closeness function
and vice versa, for each new cluster we determine the
closest old clLuster in the same way.
Whenever these two clusters are closest mutually, these
two clusters are associated and being considered as the
tracked cluster.
Clusters that were not associated from the old snapshot
stop to exist, clusters that were not associated from the
new snapshot are considered as new clusters.

B. Cluster initial guess

A crucial point in any iterative clustering algorithm is the
initial guess of the cluster centroids Our new method chooses
the centroids by maximizing the distances between them. In
the following we will present how to choose the initial-guess
centroids #c.

1. Initialization:
No cluster prediction available.
The first centroid /il is chosen as the path having
strongest power.

'Note that the principal-value calculation rules apply for the angular
dimensions

. Cluster Prediction available:
Copy the initial-guess centroids from the predicted
values

2 Calculate a weighted distance between any path and all
(initial-guess) centroids using the multipath component
distance (MCD) [19] by

=o,((n) -MCD) X(n) ,

This leads to an I x c distance matrix D for every

snapshot n. Here, te MCD is log-power weigbted.

3. From these paths we select the one which has the
maximum minimum distance to any centroid, i.e. I =
arg max[min D, where arg max[.] returns the index of

c

the maximum element
4. Reallocate all paths to their closest centroid (as in

the KPowerMeans algorithm) and calculate the cluster
power. Note that, in this case, the power-weighted MCD
is also used but the powers contribute linearly.

5 If the maximum number of clusters was not reached,
and all centroid powers are larger then 1% of the total
snapshot power then repeat from Step 2
Else discard the last centroid and stop. This algorithm
leads to a trustworthy identification of the number of
clusters.

C. Clustering algorithm
We use the KPowerMeans clustering algorithm presented

in [13] with following modifications. (i) we apply the initial
guess as described above, (ii) since the initial guess is deter-
ministic, the algorithm is performed only once.

Should the outcome result in clusters carrying less than 10
of tbe snapshot power, tbe result is discarded and the procedure
is restarted with the initial guess but reducing the maximum
number of clusters by one. Note that in this algorithm the
existence of singletone clusters is possible as long as they
show enough power. In this way we can also account for
strong, far reflections.

IV. RESULTS

We applied this joint clustering-andtracking framework to

two sets of channel measurements performed in to completely
differrnt scenarios.

The first set of measurements was conducted in an indoor
scenario at 255 GHz using an Elektrobit Propsound.m CS
MIMO channel sounder. We will present results for a measure-

ment route in a students lab More details on this measurement
campaign and a floor plan of the scenario is presented in [14].
The measured impulse responses were post-processed using
the ISIS high-esolution algorithm [20] to obtain propagation
paths for each snapshot of the channel.
The second set of measurements were conducted in an

outdoor scenario in the 300 MHz band using the RUSK Lund
MIMO channel sounder. A description of the measurement
campaign can be found in [21]. The measured impulse re-

sponses were post-processed by a SAGE algorithm to obtain
propagation paths for each snapshot of the channel.

update equations

Prediction:
6@(nln-1)

M(ntln- 1)

Ulpdlate:
K(nln)
o(n1n)
c

M(nln)=
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Fig. 3. Tracked clusters from outdoor scenario; (a)-(c) show the clusters' evolution over time

the cluster IDs placed at the cluster centroid.
In the indoor scenario in Figure 2 we observe up to 14

clusters, which can be well tracked over time. Cluster 3

Fig. 4. Tracked centroid of exemplary imoving cluster

We applied our Joint clustering-and4racking framework
to both sets of measurements and found that the algorithm
provides clusters that well-match the time-varying physical
propagation mechanisms observed in the measured scenarios.
Exemplary plots from both measurements are shown in Fig-
ures 2 and 3. The individual plots show the evolution over

time. Propagation paths are marked by dots, their power is
colour coded from red (strong power) to blue (weak power).
Clusters are shown by ellipsoids (capturing 99.9% of the
power of the included paths), where the colour describes the
mean power of the included paths, and the numbers indicate

shows strongest power, but imany other clusters show rather
high power, too. Cluster 2 is very narrow indicating a strong
reflection with larger delay. When following cluster 14 over
time, one can see that it vanishes slowly. The same holds true
for cluster 15. Also note the movement of both clusters 12
and 13 toward larger AoDs.
The trajectory of the centroid of one exemplary strongly

moving clusters is provided in Figure 4. The cluster is rapidly
moving toward increasing AoD and smaller delay, while it
shows only slow movement in the AoA.

In total, 218 clusters were tracked in 393 snapshots, where
59 clusters existed for just one snapshot and could not be
tracked. A histogram of the (logarithmic) lifetimes of the other
159 clusters is provided in Figure 5. This histogram does not
indicate a good fit to any analytical distribution.
The outdoor scenario in Figure 3 shows few very distinct

small cluster with high powers (clusters I and 2) and a large
number of clusters with very low power. The strong clusters
stem from the LOS path and a strong specular reflection,
whereas the weak clusters are due to scattering on trees and
rough surfaces. Also in this scenario the clusters can be tracked
very well.

In this scenario, 169 clusters were tracked in 197 snapshots,
where 132 clusters existed for more than one snapshot. The
histogram in Figure 6 would indicate an exponential distribu-
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tion of the cluster lifetimes.

V. CONCLUSIONS

This paper presented a novel joint clustering-and-tracking
algorithm in order to identify time-variant cluster parameters
for geometry-based stochastic MIMO channel models.

Using a Kalman filter to track the clusters and to predict the
cluster position for the next time instant significantly improves
the ability to track clusters

For tracking multiple clusters, we introduced a novel
method for cluster association of predicted and identified
clusters. By using the cluster spreads we could improve the
cluster association considerably.

Applying the framework on two highly different types of
MIMO channel measurements led to consistent results. The
combination of tracking and clustering allows to identify the
timevariant properties of clusters coherently.
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