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Probabillistic Latent Variable Models as
Non-Negative Factorizations

Madhusudana Shashanka, Bhiksha Raj, Paris Smaragdis

Abstract— In this paper we present a family of probabilistic latter as scaled histograms rather than vectors. Spebjficsd
latent variable models which can be used for analysis of non- show that the algorithms used for estimating the parameters
negative data. We show that there strong ties between non- ot 4 |atent class model are numerically equivalent to the
negative matrix factorization and this family, and we also povide
some straightforward extensions which can help in dealing update ru!es for one form Of_NMF' We also propp;e alternate
with shift-invariances, higher order decompositions and parsity  latent variable models for histogram decomposition that ar
constraints. Through these extensions we argue that the usgf similar to those commonly employed in the analysis of text,
this approach allows for rapid development of complex stastical to decompose point data and show that these too are identical
models for analyzing non-negative data. to the update rules for NMF. We will generically refer to the

Index Terms—Non-Negative Matrix Factorization, Latent application of histogram-decomposition techniques tonpoi

Variable Models data as probabilistic decompositidns

Beyond simple equivalences to NMF, the probabilistic de-

I. INTRODUCTION " .
) ) ~composition approach has several advantages, as we explain
Techniques to analyze non-negative data are requiredNgn-negative PCA/ICA and NMF are primarily intended for

several applications such as analysis of images, text c®rpgatrix-like two-dimensional characterizations of datahe t
and audio spectra to name a few. A variety of techniquggalysis is obtained for matrices that are formed by laying
have been proposed for the analysis of such data, suchqaga vectors side-by-side. They do not naturally extend to
non-negative PCA [1], non-negative ICA [2], non-negativgigher-dimensional tensorial representations, this hesnb
matrix factorization (NMF) [3] etc. The goal of all of thesepften accomplished by implicit unwrapping the tensors into
techniques is to explain the given non-negative data asyanatrix. However, the probabilistic decomposition natyra

guaranteed non-negative linear combination of a set of NQ&ktends from matrices to tensors of arbitrary dimensions.
negative “bases” that represent realistic “building bijctor

the data. Of these, probably the most developed is non-inegaf It is often desired to control the form or structure of the

matrix factorization, with much recent research devotethéo earned bases and their projections. Since the procedure fo

topic [4], [5], [6]. All of these approaches view each dat!aeslr_n'tng (;he bases_chat r;prgsent tthel data 'tshSt?t'St'mét%
vector as a point in aV-dimensional space and attempt t nistic decomposition aftords control over the torm o

identify the bases that best explain the distribution ofdhta earned b_ases through the_|mp05|t|ona3|ﬁr|or| p_robab|l|t|es,
within this space. For the sake of clarity, we will refer tadala as we will show. Constramts. such as sparsity can also be
that represent vectors in any spacepast data. incorporated through these priors.

A somewhat related, but separate topic that has garneredVe also describe extensions to the basic probabilistic de-
much research over the years is the analysis of histograg@snposition framework that permits shift-invariance game
of multi-variate data. Histogram data represent the coaftsor more of the dimensions (of the data tensor) that can astra

occurrences of a set of events in a given data set. The aim heggvolutively combined bases from the data.

is to Identlfy the statistical factors that affect the ocemce The rest of the paper is organised as follows. Since, the
of data through the analysis of these counts and approprigfgbabilistic decomposition approach we promote in this pa
modeling of the distributions underlying them. Such anialysper is most analogous to Non-negative Matrix Factorization
is often required in the analysis of text, behavioral patestc. (NMF) among all techniques that analyse non-negative point
A variety of techniques, such as probabilistic latent seandata, we begin with a brief discussion of NMF. We present
analysis [7], latent Dirichlet allocation [8], etc. and ithe the family of latent variable models in Section I that wellwi
derivatives have lately become quite popular. Most, if tiatfa  employ for probabilistic decompositions. We present tenso
them can be related to a class of probabilistic models, knoyBneralizations in Section IV-A and convolutive factotiaas

in the behavioral sciences communitylattent Class Models  jn Section IV-B. In Section IV-C we discuss extensions such
[9], [10], [11], that attempt to explain the observed his®Ys as incorporation of sparsity and in Section IV-D we present

as having been drawn from a set of latent classes, each vBpects of geometric interpretation of these decompasitio
its own distribution. For clarity, we will refer to histogres
and collections of histograms #sstogram data.
In this paper, we argue that techniques meant for analysis of _ ) _
hist data can be equally effectively emploved for o This must not be confused with approaches that model thetdison of
IS Qgram a - qu ’ y Ively p .y d. BCO the set of vectors. In our approach the vectors themsehesistograms, or,
position of non-negative point data as well, by interprgtine alternately, scaled probability distributions.
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II. NON-NEGATIVE MATRIX FACTORIZATION - P(z)
Non-negative Matrix Factorization was introduced by [3] | P& | = - Dné’ﬂqj AN
to find non-negative parts-based representation of datenGi P(z2]2)

an M x N matrix V where each column corresponds to a _ ) N
. . Fig. 1. Latent variable model of equation (2) as matrix fezsgion.
data vector, NMF approximates it as a product of non-negativ
matricesW andH, i.e. V ~ WH, whereW is aM x K
matrix andH is a K x N matrix. The above approximation
can be written column by column as, ~ Wh,,, wherev,, A. Symmetric Factorization
and h,, are then-th columns of V. and H respectively. In
other words, each data vectey, is approximated by a linear

combination of the columns oW, weighted by the entries
Of h,,. The columns oW can be thought of akasis vectors data are modeled as belonging to latent classes such that

that are optimized for the linear approximation'e the random variables within a latent class are independent o

The optimal choice of matrice® and H are defined by one another. The model expresses a multivariate distibuti
those non-negative matrices that minimize the reconsomict ¢ -, asP(z1,z2) as a mixture where each component of the
error betweenV and WH. Different error functions have iy re is a product of one-dimensional marginal distritous.

been proposed which lead to different update rules (€g, [18] he case of two dimensional data suchvasthe model can
[3]). Shown below are multiplicative update rules derived byyg \yritten mathematically as
[3] using an error measure similar to the Kullback-Leibler

Latent class models enable one to attribute the obsengation
as being due to hidden or latent factors. The main charaeteri
tic of these models is conditional independence - multateri

divergence: P(zy,m3)= > P(z)P(a1]2)P(azlz).  (2)
an ka 2 K
Wm m 71{ ny Wm 7/7 . . . .
B kzn: (WH)mn k B > Wink In the above equatior, is a latent variable that indexes the
' Vin hidden components and takes values from the{ set. ., K'}.
Hyn Hk:nz kaW7 (1) This equation assumes thinciple of local independence,

whereby the latent variablerenders the observed variables
andzs independent. This model was presented independently
as Probabilistic Latent Component Analysis (PLCA) by [14].
The aim of the model is to characterize the distribution
underlying the data as shown above by learning the parasneter
I1l. L ATENT VARIABLE MODELS so that hidden structure present in the data becomes dxplici
The model can be expressed as a matrix factorization.
In its simplest form, NMF expresses ai x N data matrix Representing the parametef§x,|z), P(x2|z) and P(z) as
V as the product of non-negative matriddsandH. The idea entries of matrice3V, G andS respectively where
is to express the data vectors (column3ffas a combination  , W js a M x K matrix such tha#¥,,,, corresponds to the
of a set ofbasis components or latent factgrs_(columns ofW). ' probability P(z1 = m|z = k),
Below, we show that a class of probabilistic models emplgyin , G is a K x N matrix such thaGGy,, corresponds to the
latent variables, known in the field of social and behavioral  probability P(z5 = n|z = k), and
sciences ad.atent Class Models (eg., [11], [9], [13]), are  , §isaK x K diagonal matrix such thaf,, corresponds
equivalent to NMF. to the probabilityP (> = k),

Letus repre_sent the two dlmen_smns of the maVnt_)y 1 one can write the model of equation (2) in matrix form as
andzx-, respectively. We can consider the non-negative entries

Ve, @S having been generated by an underlying probability P = WSG,or equivalently (3)
distribution P(z1,x2). Variablesz; and z, are multinomial P - WH @)
random variables wherg,; can take one out of a set @ff ’
values in a given draw and, can take one out of a set &f \yere the entries of matri® correspond toP(z1, z2) and
values in a given draw. In other words, one can magel, the gy _ gG. Figure 1 illustrates the model schematically.

entry in rowm and columm, as the number of times features Parameters can be estimated using EM algorithm. The

@1 =m andxy = n were picked in a set of repeated drawg, jate equations for the parameters can be written as
from the distributionP(z1, x2). Unlike NMF which tries to
P(z)P P
P(sl, 12) = (2)P(21|2)P(22|2)

characterize the observed data directly, latent class lmode
characterize the underlying distributidt(x1, x2). This subtle Y, P(2)P(w1]2)P(22]2)’
difference of interpretation preserves all the advantagfes Sie(rayui Varas P(2|71, 22)

whereA,; represents the value ath row and thej-th column
of matrix A.

NMF, while overcoming some of its limitations by providing P(xz;|z) = VP
a framework that is easy to generalize, extend and interpret 21 2y Varaa P (2|71, 22)
There are two ways of modeling(z1, z;) and we consider P(z) = D ay ag Varza P2|21, 72) 5)

them separately below. )y Ve P21, 20)
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Fig. 2. Latent variable model of equation (7) as matrix fazation.

Writing the above update equations in matrix form using

‘W andH from equation (3), we obtain

an ka
m m ——H ny m <~ 1
o Vo g e ok 53
H — H ZW Vi H.o &(6)
kn kn — mk (WH)mn’ kn o Hp,\

The above equations are identical to the NMF update equsati
of equation (1) upto a scaling factor iH. This is due to
the fact that the probabilistic model decompo®esvhich is
equivalent to a normalized version of the d&ta[14] presents

detailed derivation of the update algorithms and comparis

with NMF update equations. This model has been used
analyzing image and audio data among other applications (
[14], [15], [16]).

B. Asymmetric Factorization

algorithm:
P(z|x2)P(x1|2)

|
P =
(z]@y, z2) S P (e lra) Plra]7)
P(IL‘ |Z) _ Zm2 Vw1w2P(Z|x1afL'2)
' a Zml,xg VT1$2P(Z|7:17$2)
VﬂﬂlIzP 1,
P(Z|],‘2) = ZZ'1 (Z|f1,1 "1’2). (9)

Zml Vﬂﬂlwz

Writing the above equations in matrix form usiy and H
from equation (8), we obtain

Vrrm, Wrnk:
Wrn: mk 71{%7 Wm <~ 11
k= kg: (WH)mn k k< Zm ka
an
Hypp, Hknz Wik W . (10)

on
The above set of equations is exactly identical to the NMF

update equations of equation (1). See [17], [18] for dedaile

derivation of the update equations. The equivalence betwee
NMF and PLSA has also been pointed out by [19]. The model
s been used for the analysis of audio spectra (eg., [20]),

R
21]) and text corpora (eg., [7]).

dgages (eg., [17], [
IV. M ODEL EXTENSIONS

The popularity of NMF comes mainly from its empirical
success in finding “useful components” from the data. As

‘The latent class model of equation (2) considers eagRinted out by several researchers, NMF has certain impbrta
dimension symmetrically for factorization. The two dimenfmitations despite the success. We have presented piistiabi

sional distribution P(x1,x2) is expressed as a mixture o
two-dimensional latent factors where each factor is a pcbd
of one-dimensional marginal distributions. Now, consittex
following factorization of P(z1, z2):

P(:Cl, LL'Q)
Plajlz:)

P(xi)P(xjlzi),
> P(xj]2)P(z]as),

= (7)

wherei,j € {1,2}, i # j and z is a latent variable.
This version of the model with asymmetric factorization
popularly known asProbabilistic Latent Semantic Analysis

(PLSA) in the topic-modeling literature [7].

Without loss of generality, lef = 1 and: = 2. We can
write the above model in matrix form ag, = Wg,,, where
d, IS a column vector indicatind®(x1|z2), g, iS @ column
vector indicatingP(z|z2), andW is a matrix with the(m, k)-
th element corresponding tB(x; = m|z = k). If 2 takes

K values,W is a M x K matrix. Concatenating all column

vectorsq,, andg,, as matrice®Q and G respectively, one can
write the model as

Q
A%

WG, or equivalently

WGS = WH, 8)

whereS is a N x N diagonal matrix whose:-th diagonal
element is the sum of the entries of, (the n-th column of
V), andH = GS. Figure 2 provides a schematic illustratio
of the model.

Given data matriXV, parameters®(z|z) and P(z|z2) are

fmodels that are numerically closely related to or identical
4o one of the widely used NMF update algorithms. Despite
the numerical equivalence, the methodological differeimce
approaches is important. In this section, we outline some
advantages of using this alternate probabilistic view of M
The first and most straightforward implication of using a
probabilistic approach is that it provides a theoreticasiba
for the technique. And more importantly, the probabilistic
underpinning enables one to utilize all the tools and maayin
iof statistical inference for estimation. This is crucialr fo
extensions and generalizations of the method. Beyond these
obvious advantages, below we discuss some specific examples
where utilizing this approach is more useful.

A. Tensorial Factorization

NMF was introduced to analyze two-dimensional data.
However, there are several domains with non-negative multi
dimensional data where a multi-dimensional correlate offNM
could be very useful. This problem has been termed as Non-
negative Tensor Factorization (NTF). Several extensidns o
NMF have been proposed to handle multi-dimensional data
(eqg., [22], [6], [4], [5]). Typically, these methods flattehe
tensor into a matrix representation and proceed furthen wit
analysis. Conceptually, NTF is a natural generalization of
NMF but the estimation algorithms for learning the param-
reters, however, do not lend themselves to extensions easily
Several issues contribute to this difficulty. We do not pnése
the reasons here due to lack of space but a detailed disnussio

estimated by iterations of equations derived using the E&&n be found in [6].



Now, consider the symmetric factorization case of the laten P Approximated PG)
variable model presented in Section IlI-A. This model is
naturally suited for generalizations to multiple dimemsio
In its general form, the model expresseskadimensional
distribution as a mixture, where eaéfi-dimensional compo-
nent of the mixture is a product of one-dimensional marginal
distributions. Mathematically, it can be written as

K
P(x) =ZP(2)HP(%|Z)7 (11)

where P(x) is a K-dimensional distribution of the random °*

variablex = x1, 29, ..., zx. z IS the latent variable indexing
the mixture components an#(z;|z) are one-dimensional
marginal distributions. Parameters are estimated bytiters

of equations derived using the EM algorithm and they are: 5 10 15 20 5 10 15 20 5 10 15 20

1

Fig. 3. An example of a higher dimensional positive data dgmusition.
P(Z)H;VZIP(xj |z) An isosurface of the original input is shown at the top Igig tipproximation

by the model in eq. 11 is shown in the top right and the extdhatarginals
R(x,z2) 12)
’ Z , P(Z’)HN 1P(!L‘j|Z’) (or factors) are shown in the lower plots.
z 1=
P(z) = E E P(x)R(x, z) (13)
Joozj A . .
model, known as ahift-invariant version of PLCA, can be
oy Px)R(x,z T . '
P(z;]z) = Z“’é? E”;;(z)( JR(x,2) (14) mathematically written as [23]

In the two-dimensional case, the update equations reduce to P(x) = Z (P(z) /P(W’ 7|2)P(h - 7|2)dr) (15)
equations (5). z

To illustrate the kind of output of this algorithm consideet Where thekernel distribution P(w, 7|z) = 0,V7 ¢ R where
following toy example. The inpuP(x) was the 3 dimensional ® defines a local convex region along the dimensions of
distribution shown in the upper left plot in figure 4. This<- Similar to the simple model of equation (2), the model
distribution can also be seen as a rank 3 positive tens@¥Presses’(x) as a mixture of latent components. But in-

It is clearly composed out of two components, each beif§¢ad of each component being a simple product of one-
an isotropic Gaussian with means at = 11,11,9 and dimensional distributions, the components are convahstio

muy = 14,14,16 and variances? = 1 and 02 = 1/2 between a multi-dimensional “kernel distribution” and altiau

respectively. The bottom row of plots show the derived sefdmensional “impulse distribution”. The update equatiéors
of P(z;|z) using the estimation procedure we just describetlle parameters are:

We can see that each of them is composed out of a Gaussian

at the expected position and with the expected variance. Th?{ B P(z)P(w,7|z)P(h — T|z)
approximatedP(x) using this mode is shown in the top right. (x,7,2) = S P(2) [ P(w, 7|2\ P(h — /|2 )d7’
Other examples of applications on more complex data and a (16)
detailed derivation of the algorithm can be found in [23}¥][1

P(z)= [ R(x,z)dx 17)
B. Convolutive Decompositions P(w,T|z) = f P(X)];((X’)T’Z)dh (18)
z

Given a two-d|_menS|_onaI dataset, NMF flnd_s hidden str_uc- [ P(w,h+7)R(w,h + 7,7, z)dwdr
ture along one dimension (column-wise) that is charadieris ~ P(h|z) = p - -
to the entire dataset. Consider a scenario where there is J P(w. b+ 7)R(w, W + 7,7, 2)dh'dwdT
localized structure present along both dimensions (rows an (19)
columns) that has to be extracted from the data. An exampleDetailed derivation of the algorithm can be found in [14].
dataset would be an acoustic spectrogram of human spe6ifice the dimensionality of the above model is not explicitl
which has structure along both frequency and time. Trauhiio specified it is able to deal with tensorial data just as well as
NMF is unable to find structure across both dimensions amdth matrix data. To illustrate this model consider the piet
several extensions have been proposed to handle suchtdatasethe top left of figure 3. This particular image is a rank-3
(eg., [24], [25]). tensor (X, y, color). What we wish to do is to discover the

The latent variable model can be extended for such datasit®e components that make it this image. The components
and the parameter estimation still follows a simple EM ahre the digits 1, 2, 3 and appear in various spatial locations
gorithm based on the principle of maximum likelihood. Théhereby necessitating a shift-invariant approach. Using t




P(x) Approximated P(x) P@)

No constraint Sparse impulse constraint Sparse kernel constraint

Kernels

P(w,l|zl) P(w,l\zz) P(w,l\z3)

Impulses

P(hlz,) P(hlz,) P(hlz,)
- - - Fig. 5. Example of the effect of the entropic prior on a set efnel and
impulse distributions. If no constraint is imposed the infation is evenly
distributed among the two distributions (left column), [fassity is imposed
Fig. 4. An example of a higher dimensional shift-invariamisipive data on the impulse distribution, most information lies in there distribution
decomposition. The original input is shown at the top léfg approximation (middle column), and vice verse if we request a sparse keistfibution
by the model in eq. 11 is shown in the top middle and the exicakernels (right column).
and impulses are shown in the lower plots.

to iterate over:

aforementioned algorithm we obtain the results shown in d

figure 3. Other examples of such decompositions on more 0i

complex data are shown in [23]. 90— —w/B (21)
It is possible to extend this model to incorporate additiona W(—wel M2 /B)

types of invariance, such as rotation, scaling etc. Thevdton where)V(-) is Lambert’s function. 16 = P(z,|z) thenw is

of these models is fairly straightforward in this settingdangiven by:

postpone their discussion it due to space constraints.

+ B+ Blogh; + X =0 (20)

w= / --/P(X)R(x,z)d;vk,Vk #J (22)

where R is defined in the update equations in the models
C. Extensions in the form of Priors above. A more thorough description of the entropic prior for
PLCA appears in [18]. To illustrate the utility of this priame
One of the more apparent limitations of NMF is relatewill consider a simple shift-invariant case. Consider aage
to the quality of components that are extracted. Reseachehich is composed out of scattered plus sign charactersnUpo
have pointed out that NMF does not have an explicit way &nalysis if that image we would expect the kernel distrituti
control the “sparsity” of the desired components [26]. $alve to be a “+”, and the impulse distribution to be a set of delta
extensions have been proposed to overcome this limitatiimctions placing it appropriately. However using the epic
(eg., [26], [27], [28]). prior we can distribute the amount of information from one
|nab|||ty to impose Sparsity is just a Specific examp|e (ﬂistribution to another. We show the results from this aSIaIy
a more general limitation. NMF does not provide a way tth figure 5 where we respectively don’t use an entropic prior,
impose known or hypothesized structure about the dataglurien use it for making the impulse sparse, and finally for
estimation. In a probabilistic framework however, one cafaking the kernel sparse.
impose prior distributions on any of the parameters beingother prior distributions that have been used in various
learned. Sparsity has been imposed in latent variable modePntexts include the Dirichlet [8], [30] and log-normal -dis
by utilizing the entropic prior and has been shown to providéibutions [31] among others. The ability to utilize prior
a better characterization of the data [17], [18], [23], [ngistributions during estimation provides a way to incogier
Additionally, it provides an explicit way to control the aomt  Information known about the problem. More importantly, the
of “information content” desired on the extracted compdsen Probabilistic framework provides proven methods of stiatis

The entropic prior is an efficient way to bias the entrop9a| inference techniques that one can employ for parameter

of any of the estimated distributions in the above models. §gtimation. We point out that these extensions can work with
imposes a prior of the formP(6) = ¢~ "(®) where# is the all the generalizations that were presented in the previous

distribution we wish to manipulate, arld(8) is its entropy. S€ctions.

The parametef can be appropriately selected to either raise ] .

or lower the entropy of the resulting. Numerically it only D. Geometrical Interpretation

introduces an extra step in the training in the form of a small We also want to briefly point out that probabilistic models
iteration loop. When estimating a distributiéwe only need can sometimes provide insights that are helpful for an fivei



3 Basis Vectors (010)

(100)™,

---Simplex Boundary| [1
Data Points
M Basis Vectors
(001) . —Convex Hull [2]
Fig. 6. lllustration of the latent variable model. Panel who 3- (3]

dimensional data distributions as points within ttendard 2-Smplex given

by {(001), (010), (100)}. The model approximates data distributions as [4]
points lying within the convex hull formed by the componetiasis vectors).

Also shown are two data points (marked #yand x) and their approxima- (5]
tions by the model (respectively shown Ky and OJ).

6]
. _ (7]
understanding of the workings of the model.

Consider the asymmetric factorization case of the laterff!
variable model as given by equation (7). Let us refer tqg
the normalized columns of the data matik (obtained by
scaling the entries of every column to sum to %),, as [10]
data distributions. It can be shown that learning the modej1y;
is equivalent to estimating parameters such that the model
P(z1|xz2) for any data distributiorv,, best approximates it. [12
Notice that the data distributiorns,,, model approximations [13]
P(z1|x2), and component®(z|z) are all M-dimensional
vectors that sum to unity, and hence points ifd — 1)
simplex. The model expressé¥z:|z2) as points within the [15]
convex hull formed by the component¥z,|z). Since it is
constrained to lie within this convex hulP(z1|z2) can model
vz, accurately only if the latter also lies within the convex
hull. Thus, the objective of the model is to estim&ér;|z) [17]
as corners of a convex hull such that all the data distrihstio[lg]
lie within. This is illustrated in Figure 6 for a toy datasdt o
400 three-dimensional data distributions.

We want to point out that not all probabilistic formulationélg]
provide such a clean geometric interpretation. Howevetinga
different perspectives about a problem usually adds toson&0l
understanding and in certain cases as outlined above, it )
lead to interpretations that are intuitively helpful.

[14]

[22]
V. CONCLUSIONS [23]

In this paper we presented a family of latent variable
models and shown their utility in the analysis of non-negati 24
data. We argue that the use of this approach presents a
much more straightforward way to make easily extensibléd]
models. To demonstrate this we presented extensions that
deal with tensorial data, shift-invariances and use prars [2g]
the estimation. The purpose of this paper is not to highlight
the use of these approaches nor to present them thorougﬁl@,
but rather demonstrate a methodology which allows easjgs
experimentation with non-negative data analysis and opens
up possibilities for more stringent and probabilistic mioug
than before. A rich variety of real-world applications angsoj
derivations of these and other models can be found in the
references. (31]
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