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Abstract

The technology available to building designers now makes it possible to monitor buildings on a
very large scale. Video cameras and motion sensors are commonplace in practically every office
space, and are slowly making their way into living spaces. The application of such technologies,
in particular video cameras, while improving security, also violates privacy. On the other hand,
motion sensors, while being privacy-conscious, typically do not provide enough information for
a human operator to maintain the same degree of awareness about the space that can be achieved
by using video cameras. We propose a novel approach in which we use a large number of simple
motion sensors and a small set of video cameras to monitor a large office space. In our system
we deployed 215 motion sensors and six video cameras to monitor the 3,000-square-meter office
space occupied by 80 people for a period of about one year. The main problem in operating
such systems is finding a way to present this highly multidimensional data, which includes both
spatial and temporal components, to a human operator to allow browsing and searching recorded
data in an efficient and intuitive way. In this paper we present our experiences and the solutions
that we have developed in the course of our work on the system. We consider this work to be
the first step in helping designers and managers of building systems gain access to information
about occupants’ behavior in the context of an entire building in a way that is only minimally
intrusive to the occupants’ privacy.
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1 INTRODUCTION

On July 8, 2005, a day after the tragic events of London bombings,
a member of the intelligence community addressed the audience of
computer vision scientists at a meeting that we attended. Hesaid: “It
is most likely that right now dozens of people in London are watching
thousands of hours of videotapes while whoever they are looking for
is getting away.”

That statement emphasized an important problem that, paradoxi-
cally, has been created by advances in technology. Vast amounts of
video data can be collected and stored cheaply, but when it isneeded,
it is ultimately a human operator who needs to look at it and decide if
it is relevant.

In our view, most current approaches aresensor-centric: they
present the world as it is seen through a sensor – say, a camera. How-
ever, people do not live their lives so as to allow a better view of them-
selves to a video camera. Consequently, in computer vision,before
an event can be analyzed, it is often a challenge to normalizepose,
scale, or illumination, or to find a video that contains some event in its
entirety.

Understanding that the hopes for “better data” will never material-
ize, we have developed an alternative approach to building monitoring
systems that we hope is not only applicable to surveillance but to a
larger group of problems, generally utilizing awareness oflarge spaces
that are populated by people. We propose aspace-centric approach,
which gives some information about the entire space as a unified rep-
resentation, allowing analysis and search for events that might span a
large set of sensors and extend for long periods of time. To this end,
we have built a system that uses a sparse array of video cameras but
keeps track of the global context with a large network of motion sen-
sors. This context makes it significantly easier to solve problems of
large-scale monitoring and search.
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We have previously presented the hardware used and a number of
individual components of the interface [6, 7] while focusing on the
technical aspects of managing the data. In this paper, we focus on
the design considerations for the entire project, seamlessly bringing
together these and other components within a unified view of the in-
terface, visualization, and interaction. We detail the user interface and
visualization problems, present the principles that guided us, and elab-
orate on the solutions.

While focusing largely on the problems of inference in sensor net-
works and computer vision, the main principles that we triedto follow
in designing the system were simplicity of use, responsiveness, and
clarity of visualization. In fact, the relative success of the system is
largely due to the painstaking process of trial and error used to discover
exactly how to make the information that we displayed be understood
pre-attentively, i.e., at a single glance. Even though we have not con-
ducted a formal user study, we believe that we have been reasonably
successful in our solutions, perhaps maybe even reinventing the wheel
now and again, as a visualization professional would probably point
out.

2 RELATED WORK

The main visualization challenge that we address in our system is si-
multaneous presentation of time and space. This problem haslong
been known in the visualization community, in particular inmap-based
applications. Some examples can be found in [3, 8, 10], wherean extra
dimension is added to a two-dimensional map display to show tempo-
ral order of events while offering no interaction. However,this method
of visualization cannot be directly used on our data, as its spatial com-
ponent is generally three-dimensional and the number of simultaneous
events causes visual clutter.

More relevant to our applications, is the work of Andrienkoet al.
on the visualization of changing map-based information [1]. They sug-
gest augmenting a map with a graph of temporally changing parame-
ters pertaining to the information displayed on the map. Ourapproach
is similar in spirit, but we give more importance to the interaction of
the two components, using them for display as well as for interaction
and query building.

Geldon and Bouthemiy [4] use motion descriptors obtained from
the recorded video to summarize the shots and index them for future
retrieval. In contrast, our approach uses other sensors andlogical as
well as temporal conditions on them to index into large collections of
video data.
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Fig. 1. Map of one floor of the office space. Shaded areas show public
spaces where the sensors are installed. Locations of the six cameras
are marked by small triangles.

There has been quite a lot of work done on analytic techniquesto
extract index features from video data, e.g. [2, 12]. These index sets
are used to facilitate future searches. The problem is knowing what
index data to create, i.e., correctly predicting what information will
be useful a day, a week, or years in the future. We chose to index
very general data in the form of sensor activations. Each individual
index datum is not very meaningful, but together they represent the
context succinctly and can be visualized in a way that is accessible to
human operators. Such representation of context lends itself to effi-
cient searches that are defined by the interaction with the operator at
the precise time of need.

The primary representation of time in our system is accomplished
by a timeline control, which records the activations of a large array of
sensors in order of their arrival and is similar in appearance to a piano
roll [5]. The effectiveness of this class of controls for multi-stream
data has been demonstrated more recently [9, 11, 14].

3 VISUALIZATION OF SPATIO-TEMPORAL DATA

A frequent problem with sensor networks involves the visualization of
large volumes of spatial data that have a temporal order. Several solu-
tions have been proposed in the past, including the work by Kapler and
Wright [8]. A common approach to displaying the temporally varying
spatial data is to add a visual dimension representing time.Unfortu-
nately for our applications, this approach is not generallyacceptable
due to the higher dimensionality of the spatial data, as we explain be-
low.

3.1 Problem domain
The system that we describe here is built for the purpose of long-term
monitoring of indoor spaces occupied by large number of people. The
system addresses the problem of flexible search of historical data that
is collected from a variety of generally heterogeneous sensors. The
problem is very common in surveillance. For the sensing partof the
system we use a sparse array of Pan-Tilt-Zoom (PTZ) cameras and a
large network of simple wireless motion sensors (detailed in our earlier
papers, e.g. [6, 7]). A typical target application for such asystem
might include a theft taking place in a busy office space for which users
would like to quickly reconstruct the sequence of events andidentify
possible perpetrators and witnesses from whatever partialinformation
might be available.

3.2 Data
The data in our system was recorded from a network of 215 wire-
less ultra-low-power motion sensors over the course of about a year.
We also collected videos from six PTZ video cameras for one month

Fig. 2. User interface for the search module of the system. Clockwise
from top left: camera view, map, timeline, clip bin.

a) b)

c) d)

Fig. 3. Time-lapse capture of the map control while displaying move-
ments of several people in the office space. Location and approximate
number of people can be estimated instantaneously for the entire space.

of this year. Motion sensors were attached to the ceiling at regular
intervals of approximately 2 meters covering the area of 3,000-plus-
square-meter office space. The motion sensors report the presence of
motion in their field of view by sending a single bit to the server, which
stores the time stamp of the activation in the database. For the exper-
iments we chose a randomized Pan-Tilt policy for the video cameras,
which causes them to foveate to a random location every few minutes.
One of the cameras is omni-directional and is located at a central junc-
tion between the north and east wings of our building. In all,we have
approximately 20,000,000 sensor activations and 150,000,000 video
frames, totalling 1.7TB of storage space. The map in Figure 1 depicts
the test area.

The data collected in our lab spans two floors of the office build-
ing. In general, the occupants of the space travel freely between the
floors via the staircase: therefore, the data represents a temporal evolu-
tion of three-dimensional space. This fact makes it difficult to use any
topographic-like visualization methods that represent time by adding
another visual dimension, as it would inevitably increase clutter in the
display. To avoid clutter, we chose to approach the problem of vi-
sualization as a set of linked two-dimensional views, as described in
Section 4.

3.3 Visualization principles

Typical surveillance and monitoring techniques rely heavily on ap-
plications of computer vision to detect interesting activity. As the
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Fig. 4. Determining direction of motion from a sensor map. The sen-
sor that is most recently activated is plotted in a bright color, which then
slowly fades to black. The direction of the gradient helps to quickly iden-
tify the motion at a single frame.

very first glance at the volume and the rate of acquisition of the data
should prove, we cannot use any but the lightest-weight computational
processing. In fact, we opted to build a video monitoring system that
uses practically no computer vision. That is not to exclude computer
vision from this application entirely, but simply to use it sparingly, on
much smaller subsets of data that we select by some other means.

The main guiding insight of the system design was the idea of a
space-centric representation. We tried to avoid the traditional camera-
centric approach and not show what is happening in front of the cam-
era, but rather what is happening in the physical space. In designing
the system we formulated the following requirements and then applied
them to the interaction design (albeit with a varying rate ofsuccess):

1. All information presented on the display should be accessible
pre-attentively. For example, all information about motion in the
space should be evident from a single image.

2. The display should allow the assessment of the situation in the
entire location, not only in front of a single sensor.

3. The interaction should be easily transferable to other interaction
modalities – mouse, pen-based tablet, touch table (Diamond-
Touch, see Figure 6). To this end, we tried to carefully map
the manipulations available with each pointing device, making
sure that all chosen manipulations are available on all devices.
Additionally, we implemented simple control gestures for screen
manipulations and query selection.

4. Unused parts of the data should be out of the way of the main
interaction. We attempted to achieve this by using tabbed panels,
which we will not detail further in this paper.

5. All display elements should be temporally consistent andre-
spond to a single centralized clock. Any change in the global
time reference should cause all visible display elements toshow
the data related to that time.

6. All data processing required for indexing and storage of the data
should be much faster than real-time. If the processing takes
longer than a small fraction of real-time, then the system will not
scale well.

These principles helped us in the development of the system,but
were not always easy to implement. The tracking module of thesys-
tem was especially challenging, as it required simultaneous display of
the paths of several people in correspondence with other parts of the
interface. We describe the visualization design decisionsin Section 6.

4 SPACE-TIME VISUALIZATION IN MONITORING APPLICATIONS

The multidimensional character of the spatio-temporal data dictated
the approach we took in displaying it to the user. Our solution was to
use a dual view methodology by splitting a single display into a pair
of synchronized panels. The first type of display corresponds to an
instantaneous snapshot of the sensor field overlaid on the floor plan of
the office space. We call it themap.

Fig. 5. Timeline control. The top example shows the timeline at its eight-
day resolution. A user can zoom in on any portion of the timeline. The
example on the bottom shows approximately two-hour range.

Fig. 6. One interactive installation of the system uses a DiamondTouch
projection table. Interactions with the table make it useful to have a
gesture-based interface that can allow the same manipulations as would
normally be performed with a multi-button mouse.

The second type of display shows history of sensor activations over
some period of time. We call this display thetimeline.

The two main panels are shown on the right side of the screenshot
of the search module of the system in Figure 2. The figure also shows
thecamera view panel on the top left and aclip bin on the bottom left.

4.1 Visualization of space

The first type of display is shown in a series of screenshots taken at
brief time intervals in Figure 3. Each image in the figure shows the
floor plan with the positions of the sensors represented by gray rec-
tangles. Once a sensor is activated, the color of the corresponding
rectangle is set to light orange, which subsequently fades to black at a
fixed decay rate.

If a person passes under a chain of sensors, they would generate a
fading trail, which is easily interpreted visually, providing cues about
the person’s direction and speed of motion upon a momentary exposi-
tion. This is illustrated in Figure 4. From the direction of the fading
pattern of the color we can easily judge the direction of motion of the
person activating the motion sensors. Since the decay rate is locked
with time, the perceived length of the trail directly corresponds with
the velocity of motion.

4.2 Visualization of time

Complementary to themap display is thetimeline. The timeline shows
the history of sensor activations for the entire space. The sensors are
arranged along the vertical axis of the control while preserving some
notion of neighborhood. The horizontal direction of the panel repre-
sents time in the left-to-right order.



a)
Gesture

Selected sensors

b)

Fig. 7. Top: A query is specified by a gesture traversing a path across
the map. The selected sensors are coded in unique colors. Bottom:
Selected sensors are highlighted with the same color to establish visual
correspondence.

The display is similar to a “piano roll,” where one horizontal row
corresponds to a single unique sensor. Every sensor activation is
marked on the row by a small blue line.

As can be seen in Figure 5, one can estimate very quickly temporal
patterns of space use over time. For instance, the snapshot at the top
of Figure 5 corresponds to a week’s worth of data. In this display, day
and night are clearly identified. Weekends are seen as lower-intensity
vertical blue bands.

A user can also assess anomalies in the use of the space. The bottom
snapshot in Figure 5 shows a zoomed-in view of the middle of one day.
The gap in the sensor activations corresponds to a fire alarm,with the
flurry of activations preceding it showing the evacuation ofthe entire
floor of the building. This data shows that the procedure tookthree
minutes. Curiously, the majority of the people exited through a single
fire escape, while two other exits remained mostly unused. This fact
is clearly evident when the map and timeline visualizationsare used
jointly.

The timeline is used as a central time manipulation control that
drives the system clock. Operators can use a number of manipula-
tions to change the reference time as well as the time range. The time
is changed by simple scrubbing1 of the control in either autoplay or
paused modes. The timeline can be panned and zoomed with simple
familiar gestures and manipulations.

The timeline may be switched to displayhits. Hits are time intervals
that contain sequences of sensor activation in the order requested by
the user (see the following section). In this display all such ranges are
stitched together, while irrelevant time intervals are removed from the
display, as shown in Figure 8a.

5 SPATIO-TEMPORAL QUERIES

Browsing the recorded history is only a small part of the functionality
needed to enable a directed search for interesting events inthe moni-
tored space. To find these events, we currently rely completely on the
set of motion sensors. One reason for that is the search efficiency. We
can use the sensor network to define the context for the video.For
instance, we may be interested in videos of people who traversed a
certain path through space, or we may be interested in findingpartici-
pants of activities that happened outside the camera view. To achieve
these goals, we developed the query module for our system.

1Dragging the time marker across the timeline.

a)

b)

Fig. 8. Top: The timeline in the result display mode. Bottom: Selecting
any of the hits causes the clip bin to fill up with video clips containing
the accompanying video evidence.

5.1 Gestural query interface
The query interface in our system is implemented as a front-end to
an SQL engine that maintains the database of sensor activations. The
“path” queries, described above, are formulated by simply drawing
a path of interest on the map. While drawing, the closest sensor is
identified for each point in the trajectory and its ID is inserted into a
query constraint set. Then all time intervals that contain the sensor
IDs activated in the order traversed by the gesture are retrieved from
the database.

An example of such query is shown in Figure 7a. As sensors are
selected they are colored in a unique set of hues. These colors reflect
the order in which they are selected and serve as visual integration
cues. Sensors that have been selected are highlighted with the same
colors on the timeline (Figure 7b), establishing visual correspondence
between the controls.

The result of the query is displayed in the timeline as a series of
time ranges that contain the specified sequences of sensor activations.
As useful as it is, this range-style hit can still be improved. Indeed,
the range result only suggests to the user that there might bevideo
data from any of the cameras that might have observed the behavior in
question, but it would still be up to the user to determine which camera
has observed which part of the trajectory of the sensor activations.

We solve this problem by first calibrating the cameras to the sen-
sor network. The calibration does not involve finding the extrinsic
parameters of the camera but rather a much simpler calibration of the
control parameters. For each sensor we calculate the range of PTZ
control parameters of each camera that results in the sensorfield of
view being contained in the camera field of view. Then, if we keep
track of the PTZ parameters of the camera at all times2, the query can
be conditioned onsensor visibility. Consequently, for every sensor
activation in the retrieved result set, we can determine whether any
camera observed the participant who activated the sensor and retrieve
the corresponding video clips.

A set of such clips is placed into theclip bin shown in Figures 8b,
2, and 14. Note that this is not a simple linear edit of the video –
the resulting clip set contains the entire set of video evidence from all
cameras that observed any part of the motion pattern returned by the
query. Figure 9 shows several representative frames from the selected
clips. This mechanism effectively implements a camera handover for
even remote non-overlapping cameras.

6 DISCOVERY OF EMBEDDED STRUCTURES

Previous sections have focused on taking dimensional slices through
the data, exposing primarily spatial or temporal information. This

2For example, in our cameras the exact values of Pan, Tilt and Zoom para-
meters are stored in the header of every image. Alternatively, a simple polling
mechanism can be employed with most PTZ cameras.
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Fig. 9. Selected frames of the videos from the clip bin. The clips demonstrate automatic handover and tracking mechanisms.

Fig. 10. Example of crowd movement during a fire drill.

dataset is interesting because it contains significant structures that exist
across these visualizations. As people move through the building they
create a spatio-temporal trace of motion activations. Whenthey pass
by or interact with other individuals their traces become tangled into
a spatio-temporal graph of possibilities. In this section we show how
the use of these graphs helps an operator quickly untangle these trace
relationships and find all video- and sensor-based evidencerelating to
an individual occupant of the space.

6.1 Human-guided tracking

In this section we present the principles and challenges of information
visualization used in the tracking module of our system. Thetechnical
background of track composition and analysis technique that we use
here can be found in our earlier paper [6].

Due to the impoverished nature of the motion sensors, it is not pos-
sible to unambiguously track individuals through a building if they
cross paths or otherwise interact with other individuals inthe space. A
massive crowd would generate an overwhelming mass of ambiguity,
such as during a fire evacuation as depicted in Figure 10. However,
the much more common case is that each individual interacts with a
few others to create webs of ambiguity, such as those represented by
the graph in Figure 11.

These graphs are constructed from nodes of ambiguity connected
by unambiguous spatio-temporal traces calledtracklets. The tracklets
are depicted on the map as distinct lines tracing an unambiguous path
through the space, as seen in Figure 13. At any moment there may be
multiple tracklets under consideration: a series of selected tracks and
several possible future continuations. These tracklets are distinguished
from one another in several ways. First, each tracklet is coded with a
unique color. Second, as is apparent in Figure 13, the tracklets are as-
signed spatially distinct channels on the map to reduce the possibility
of overlap and improve the intelligibility of the display.

Finally, although tracklets may traverse a common space with other
tracklets, they may do so in different directions and different times.

Start

Join

Split

End

Start

Join

Split

End

Fig. 11. Tracklet graph representation of the track bundle. Each edge,
called a Tracklet, represents a contiguous sequence of sensor activa-
tions, while nodes represent ambiguities and endpoints.

Fig. 13. Tracklet display. In order to achieve the pre-attentive assess-
ment of the multitude of tracks and direction of motion we chose an
asymmetric swell as a direction cue.

This temporal component is shown with an asymmetric swell that
communicates both the direction and the current location ofthe in-
dividual. In Figure 13 we see that that the orange tracklet isactive and
the person is moving toward the right, while the blue and cyantracks
are currently not active.

As above, control over the temporal aspect of the visualization oc-
curs in the timeline window. Scrubbing the time marker over the time-
line simultaneously animates the swell of the tracklets on the map.
This provides a very fluid mechanism of interaction with various track-
lets over time.

The forensic surveillance system shown in Figure 14 allows the op-
erator to build a story about the movements of a particular individual,
presumably in response to an alarm or other event. In order torecover
an unambiguous track of a particular person, the human has totra-
verse the graph and resolve all the ambiguities, selecting the correct
continuation at each node.

The system supports this task by helping the operator navigate
through space and time to quickly inspect each ambiguity, providing
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Recovered track

Fig. 12. Human-guided track selection process using tracklet tree representation. a) Example of the selection subgraph which includes camera
views available for each tracklet, as well as split/join locations where track splicing occurs. Tracklets are shown as edges of the graph passing
through the camera views. b) First step of the interactive graph pruning process. One step-lookahead tracklets are presented to the operator. c)
Second step of the graph pruning. d) Final track recovered.

Floor planCamera viewsTracklet selection control

Video clip bin Recovered trackPlayback time marker

Current position

Subject out of view

Fig. 14. User interface of the MERL forensic surveillance system. The interface includes an additional panel that allows for a visual graph traversal
and track construction. Parts of the track where the subject is out of the view of the system are highlighted manually for illustration purposes.
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Fig. 15. Collected video clips illustrated here with selected frames. The
system tracks the individual over the course of 15 minutes, which in-
cludes a large portion of the track that is not seen by cameras.

all the evidence surrounding each ambiguity in a way that makes it
instantly available. For example, Figure 14 shows the spatial informa-
tion displayed on the map (top right). Next to it (center top)a view
from a video camera is shown, which can be selected either manually
or automatically. On the top left the figure shows the currentstate of
the graph traversal. Read top-down, it symbolically shows the current
decision point in the context of past decisions (buttons outlined in red),
along with embedded icons depicting any relevant video observations.

By playing or scrubbing through time, the operator can animate the
tracklet swellings. In this way, we leverage the sophisticated percep-
tual system of the user, combined with their domain knowledge about
the space to solve the difficult tracking problem. It is relatively easy
for a human to see that one tracklet is “obviously” a continuation of
another even when that would not be easy to detect with an algorithmic
analysis.

Figure 12 illustrates the procedure of “walking a graph.” When the
operator selects a starting event, that event links into thedatabase to
specify an entire graph and its associated evidence (Figure12a). At
each ambiguity the operator is presented with a set of choices, repre-
sented in Figures 12b and 12c by boxes. These choices are presented
to the operator in the graph-walking tool on the left side of the inter-
face in Figure 14. Note that if a mistake is made the operator can use
this control to roll back the chain of selections to an arbitrary depth
and traverse a different branch of the graph.

When the operator arrives at the termination of a tracklet, as in
Figure 12d, then the story authoring is complete. The outputof the
process includes spatial, temporal, and evidential portions. The spatial
part of the story is overlaid in red on the map, as in Figure 16.The
spatial component in a single frame shows us where the story begins
and ends and which parts of the building are involved. The temporal
component is overlaid in red on the timeline and in the bottomof Fig-
ure 14. The temporal component reveals a snapshot of the temporal
extent of the event, and if there happen to be gaps in the observations.
Finally, the evidential component is a collection of video clips asso-
ciated with the event, as shown in Figure 15. This video collection is
automatically edited into a video summary of the event.

This set of visualizations and interface tools enables an operator to
build an explanation behind an event quickly and easily. By provid-
ing the relevant information in the appropriate form, the operator can
move from ambiguity to ambiguity, making only a small numberof
decisions.

The final assembled track, covering a 15-minute period, is shown in
Figure 16 in red. The track begins outside the view of any of the cam-
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Fig. 16. Final assembled track covering a 15-minute period. Locations
of the six cameras are marked by small numbered triangles.

eras on the bottom left tip of the line (point 1). It then follows through
three cameras with IDs 6, 4, and 1 (Figure 15a-c, respectively) to the
upper right corner, where the person stops to talk to anotheroccupant
(point 2, camera 3, Figure 15d). Then the track proceeds all the way to
the left, where the person disappears out of the sensor view for about
three minutes (point 3). Finally, after a short period of hovering in the
left-most end of the track, the person retreats to his office via a differ-
ent path, again passing in view of camera 4 (Figure 15e). Notethat
camera 6 did not observe the person on his return trajectory,as at that
time it was pointing away from the sensors in the path.

6.2 Other applications
Context information from the sensors can be utilized algorithmically
to automatically improve the effectiveness of building systems. How-
ever, there is also significant value in the visualizations.Anecdotally,
the visualizations have already provided several insightsinto local be-
haviors around our lab.

In relation to safety, the map visualization in Figure 3 provided in-
sight into evacuation procedures during a false fire alarm. Despite the
flood of activations caused by so many people moving at the same
time, it was still apparent from the visualization that mostpeople did
not exit from the nearest fire escape. Most occupants insteadwalked
halfway across the building to a more familiar exit. This insight pro-
vides an opportunity for education and hopefully improved efficiency
in the event of a real emergency. Without such a system it would be
very difficult to obtain this kind of situation awareness during an actual
evacuation.

The timeline visualization shown in Figure 5 has been usefulin
expanding general awareness of work habits. People who tendto come
in late are surprised that many employees show up before their bosses.
Similarly, at least one manager was surprised that people stayed so
late, sometimes until 3 a.m. or 4 a.m. People are often surprised at the
level of activity on weekends as well. This one visualization explains
quite a lot about local work habits without the need to explore them
interactively.

We expect building safety and the facilitation of emergencyre-
sponse to be early applications for these systems. Classical surveil-
lance systems operate in forensic mode. After an undesirable event
occurs, the surveillance system is used to recover evidence, but of-
ten hours later. Searching large databases of video data is extremely
time-consuming. The automated visual routines available on the mar-
ket are still quite primitive and require significant computational re-
sources. Displays that provide seamless global context andsupport the
sort of spatio-temporal query gestures described in Section 5.1 narrow
the search domain and thereby render the whole process much more
efficient.

Many environments have a heterogeneous population. For example,
a health care facility may have staff who carry active identification



badges and patients who sometimes remove their tags. Intruders or
wandering patients who have lost their tags are both potentially very
interesting populations. Interfaces such as that described in Section 6.1
could be very useful in quickly focusing a search for a missing patient.

Similarly, in warehouse applications the heterogeneous network
might combine RFID tags on crates with motion sensors to track the
crates more efficiently. Instead of the dense network of RFIDreaders,
the system could use motion sensors to provide additional information
about the movement of the crates. The visualizations described in this
paper could be used in systems that allow operators to quickly recover
the history associated with a particular wayward crate.

These are just a few examples of ways that buildings could be safer,
more secure, and better tuned to the inhabitants if there were a sensor
network supplying context to such systems in the building.

7 CONCLUSIONS

In the course of working on the system we encountered numerous de-
sign and visualization challenges. We have addressed some issues of
responsiveness, synchrony, and clarity of the display, butmany other
issues are still waiting for solutions.

One of the big challenges is building an intuitive interfacefor
human-guided tracking, which we describe in Section 6. The inter-
face for graph traversal (see top left of Figure 14) is usablebut still not
satisfactory. There are two related aspects of that challenge: visual and
computational. The computational aspect has to do with the ordering
of candidate branches in a graph for continuing a selected track. Cur-
rently, these candidates are presented in the order of retrieval from the
database. However, to more efficiently utilize the limited real estate of
the control, it is necessary to better rank the candidates. In order to ac-
complish that now (after observing the space for a year), we calculate
what we call agraph prior – a probability that a person will take a par-
ticular route through the space. What remains to be done is touse the
videos themselves to find better correspondence between a parent and
child branches in the graph. We plan to do that with computer vision
algorithms, using shape and texture statistics of the moving objects as
well as face detection, tracking, and recognition algorithms [13]. Ad-
dressing this problem will help us design a better interaction with the
graph traversal control.

The system described in this paper is the embodiment of the idea
that, in reality, most information of interest is containedin the context
of the entire building, for which the complexity and the bandwidth
of camera-based applications are not needed. In fact, even to us it
was surprising to find out exactly how much information the simple
1-bit sensors can deliver if viewed in an ensemble. It is an important
validation to our idea that the tasks described here can be performed in
our system flexibly, intuitively, and at a very fast pace. A central aspect
of the success was the decisions made for design of visualization and
interaction methods:

1. Joint synchronized use of specialized time and space controls.

2. Pursuing the pre-attentive visualization, or a “single glance”
principle for estimating direction and speed of motion, as well
as patterns of the temporal activity in the entire building.

3. Keeping unused elements of the user interface out of the way by
using tabbed panels.

4. Removing all irrelevant data from the display. In particular, es-
timating the sensor visibility (see Section 5) and filteringof the
video feeds to show only the frames that contain the persons of
interest dramatically improved the quality of the search.

5. Automatic camera switching policy in displaying the results of
the query.

6. Admitting that no matter how hard we try, we will not solve
the problem of multi-camera tracking with 100 percent accuracy.
This motivates a search for alternative methods to support the
operator’s efficiency.

7. Using the concept of tracklets and the mechanism of human-
guided graph traversal to reconstruct the actions of individuals.

We believe that we achieved a good balance in the level of visual-
ization and control in our system.

ACKNOWLEDGEMENTS

The authors are indebted to the anonymous reviewers for an outstand-
ing quality of the reviews and many helpful comments that made the
presentation of this paper better.

REFERENCES

[1] N. Andrienko, G. Andrienko, and P. Gatalsky. Towards exploratory vi-
sualization of spatio-temporal data. In3rd AGILE Conference on Geo-
graphic Information Science, Helsinki/Espoo, Finland, 2000.

[2] R. Brunelli, O. Mich, and C. Modena. A survey on the automatic indexing
of video data.Journal of Visual Communication and Image Representa-
tion, 10(2):78–112, 1999.

[3] P. Gatalsky, N. Andrienko, and G. Andrienko. Interactive analysis of
event data using space-time cube. InInformation Visualization, pages
145–152. IEEE, 2004.

[4] M. Gelgon and P. Bouthemy. Determining a structured spatio-temporal
representation of video content for efficient visualization and indexing.
Lecture Notes in Computer Science, 1406:595, 1998.

[5] H. B. Horton. Machine for registering music, 1855. US Patent Office
13,946.

[6] Y. Ivanov, A. Sorokin, C. Wren, and I. Kaur. Tracking people in mixed
modality systems. InVCIP, San Jose, CA, USA, February 2007.

[7] Y. Ivanov and C. Wren. Toward spatial queries for spatialsurveillance
tasks. InPervasive: Workshop on Pervasive Technology Applied to Real-
World Experiences with RFID and Sensor Networks, volume EI123, May
2006.

[8] T. Kapler and W. Wright. Geotime information visualization. In IN-
FOVIS ’04: Proceedings of the IEEE Symposium on Information Visual-
ization (INFOVIS’04), pages 25–32, Washington, DC, USA, 2004. IEEE
Computer Society.

[9] R. Kincaid and H. Lam. Line graph explorer: scalable display of line
graphs using focus+context. InWorking Conference on Advanced Visual
interfaces, pages 404–411, May 2006.

[10] M.-P. Kwan and J. Lee.Geovisualization of Human Activity Patterns
Using 3D GIS: A Time-Geographic Approach, pages 48–66. Oxford Uni-
versity Press, 2004.

[11] C. Plaisant, B. Milash, A. Rose, S. Widoff, and B. Shneiderman. Life-
lines: visualizing personal histories. InCHI ’96: Proceedings of the
SIGCHI conference on Human factors in computing systems, pages 221–
ff., New York, NY, USA, 1996. ACM Press.

[12] C. Snoek, M. Worring, J. Geusebroek, D. Koelma, F. Seinstra, and
A. Smeulders. The semantic pathfinder: Using an authoring metaphor
for generic multimedia indexing. 28(10):1678–1689, October 2006.

[13] P. Viola, M. Jones, and D. Snow. Detecting pedestrians using patterns of
motion and appearance. InIEEE International Conference on Computer
Vision (ICCV), pages 734–741, 2003.

[14] M. Wattenberg. Baby names, visualization, and social data analysis. In
INFOVIS ’05: Proceedings of the Proceedings of the 2005 IEEE Sympo-
sium on Information Visualization, page 1, Washington, DC, USA, 2005.
IEEE Computer Society.


	Title Page
	Title Page
	page 2


	Visualizing the History of Living Spaces
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8


