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Abstract

We present a new statistical technique for the estimation of the high frequency components (4-
8kHz) of speech signals from narrow-band (0-4 kHz) signals. The magnitude spectra of broad-
band speech are modeled as the outcome of a Polya Urn process, that represents the spectra as
the histogram of the outcome of several draws from a mixture multinomial distribution over fre-
quency indices. The multinomial distributions that compose this process are learnt from a corpus
of broadband (0-8kHz) speech. To estimate high-frequency components of narrow-band speech,
its spectra are also modeled as the outcome of draws from a mixture-multinomial process that
is composed of the learnt multinomials, where the counts of the indices of higher frequencies
have been obscured. The obscured high-frequency components are then estimated as the ex-
pected number of draws of their indices from the mixture-multinomial. Experiments conducted
on bandlimited signals derived from the WSJ corpus show that the proposed procedure is able to
aaccurately estimate the high frequency components of these signals.
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ABSTRACT

We present a new statistical technique for the estimation of the high
frequency components (4-8kHz) of speech signals from narrow-band
(0-4 kHz) signals. The magnitude spectra of broadband speech are
modelled as the outcome of a Pólya Urn process, that represents the
spectra as the histogram of the outcome of several draws from a mix-
ture multinomial distribution over frequency indices. The multino-
mial distributions that compose this process are learnt from a corpus
of broadband (0-8kHz) speech. To estimate high-frequency compo-
nents of narrow-band speech, its spectra are also modelled as the out-
come of draws from a mixture-multinomial process that is composed
of the learnt multinomials, where the counts of the indices of higher
frequencies have been obscured. The obscured high-frequency com-
ponents are then estimated as the expected number of draws of their
indices from the mixture-multinomial. Experiments conducted on
bandlimited signals derived from the WSJ corpus show that the pro-
posed procedure is able to accurately estimate the high frequency
components of these signals.

Index Terms— Signal restoration, Signal reconstruction, Speech
enhancement

1. INTRODUCTION

In this paper we address the problem of bandwidth expansion – the
automated imputation of absent frequency components of a band-
limited speech signal. Numerous techniques for bandwidth expan-
sion have been proposed in the literature. Typically, these tech-
niques address the problem of constructing high-frequency compo-
nents of telephone quality speech, since, as is well known that ap-
propriate introduction of high-frequency components in such sig-
nals makes them perceptually more pleasing, although not neces-
sarily more intelligible. Aliasing based methods, e.g. [1], construct
the absent high-frequency components by aliasing low frequencies
through non-linear transformations of the signal. Codebook map-
ping techniques (e.g. [2]) map the spectrum of the narrow-band sig-
nal onto a codeword in a codebook, and derive the upper frequen-
cies from a corresponding high-frequency codeword. Linear model
approaches (e.g. [3]) attempt to derive upper-band frequency com-
ponents as linear combinations of lower-band components. Statisti-
cal approaches utilize the statistical relationships between the lower
and higher-band frequency components of speech to derive the latter
from the former. Typically, the statistical relationships are charac-
terized through joint distributions of high- and low-frequency com-
ponents, represented by models such as Gaussian mixture models,
HMMs or multi-band HMMs (e.g. [4]). Alternately, they may be
captured through dimensionality reduction techniques such as non-
negative matrix factorization [5].

The approach presented in this paper is statistical in nature and
follows the above-mentioned premise of exploiting interdependen-

cies between the occurrence of frequency bands to estimate missing
frequency components. The statistical model used, however differs
from conventional statistical models in the de nition of the under-
lying random variable. Conventional statistical models for speech
model the distribution of spectral energies (or log energies) in var-
ious frequency bands. The random variable – the energy – is con-
tinuous in nature whose distribution must be characterized through
hypothesized functional forms, such as Gaussian density functions.

In contrast, in this paper we de ne the frequencies in the speech
signal (rather than the energy at any frequency) as the random vari-
able. If spectral decomposition of the signal is achieved through a
discrete Fourier transform, the frequencies are discrete, thus forming
a discrete random variable. The magnitude spectrum of any segment
of speech is modelled as the outcome of many draws of frequencies
from a mixture multinomial distribution over the discrete frequency
indices1. Every spectrum thus has an underlying mixture multino-
mial distribution. The component multinomials of the mixture are
assumed to belong to a prespeci ed set; only the mixture weights
with which the components combine are speci c to the spectrum it-
self.

The set of component multinomials are learned from a corpus
of broadband speech. In order to expand the bandwidth of a band-
limited signal, the mixture multinomial distribution underlying the
magnitude spectrum of each analysis window is estimated. Missing
frequency bands are marginalized out of the component multinomi-
als in order to estimate mixture weights. The missing frequencies are
then estimated as the expected number of draws of these frequencies
from the estimated mixture multinomial, given the number of draws
of other observed frequencies. While the proposed method is suit-
able for the imputation of any set of absent frequency bands, we
have speci cally evaluated it in the context of expanding the band-
width of telephone-quality speech. Perceptual and qualitative evalu-
ations show that the technique is able to accurately reconstruct miss-
ing high-frequencies of band-limited signals, even for sounds such
as low-energy fricatives for which bandwidth expansion has tradi-
tionally been considered dif cult.

The rest of the paper is organized as follows. In Section 2 we
describe our mixture multinomial model for speech spectra. In Sec-
tion 3 we describe how absent frequencies in a spectrum may be
estimated using the proposed model. In Section 4 we describe how
we determine the phases of absent frequencies. In Section 5 we de-
scribe the complete bandwidth expansion algorithm in detail, and in
Section 6 we present experimental results.

Although the proposed method is highly effective, it still has
several shortcomings as noted in the conclusions in Section 7. The
statistical models learned must be speaker-speci c for the method to
be most effective in its current form. Temporal correlations etc. are

1This may be viewed as an instance of a Pólya urn model with simple
replacement
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not being considered. Thus, the current paper must only be consid-
ered to be a presentation of the basic premise of a new technique.
Various extensions that will address its current shortcomings will be
devised in future work.

2. THE MIXTURE MULTINOMIAL MODEL
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Fig. 1. a) Urn and ball illustration of mixture-multinomial model for
spectra. A ”picker” randomly selects urns and draws balls marked
with frequency indices from the urns. The spectrum is a histogram
of the draws. b) Corresponding graphical model. A latent variable z
determines the probability with which frequency f is selected.

The mixture multinomial model described in this section mod-
els the structure of the magnitude spectral vectors (henceforth sim-
ply referred to as “spectral vectors”) of speech. It is assumed that all
speech signals are converted to sequences of spectral vectors through
a short-time Fourier transform. The term “frequency” in the follow-
ing discussion actually refers to the frequency indices of the DFT
employed by the STFT.

We explain the mixture multinomial model for magnitude spec-
tra through the urn-and-ball example of Figure 1a. A stochastic
picker has a number of urns, each of which contains a number of
balls. Every ball is marked with one of N frequency values. Each
urn contains a different distribution of balls. The picker randomly
selects one of the urns, draws a ball from it, notes the frequency on
the ball and returns it to the urn. He repeats the process several times.
He nally plots a histogram of the frequencies noted from the draws.
The probability distribution of the balls from any urn in this example
is a multinomial distribution. The overall distribution of the process
is a mixture multinomial distribution. By our model, the number
of times a particular frequency is drawn represents the value of the
spectrum at that frequency. The complete histogram represents the
magnitude spectrum of the analysis frame. Graphically, the mixture
multinomial model may be represented by Figure 1b: a latent vari-
able z determines the probability with which a frequency f is drawn.
The latent variable z represent the urns and the probability of draw-
ing a frequency P (f |z) represents the probability with which f may
be drawn from the zth urn.

It must be noted that Figure 1 represents the mixture multinomial
distribution underlying a single spectral vector – the spectral vector
itself is obtained by several draws from the distribution. The para-
meters of the underlying model vary from analysis frame to analysis
frame with one important constraint: we assume that the component
multinomial distributions remain constant across all analysis frames,
while the mixture weights for the components vary. In terms of the
urn-and-ball simile, this means that the set of urns remains the same
for all frames; however the picker selects urns according to a differ-
ent probability distribution in every frame. Thus the overall mixture
multinomial distribution model for the spectrum of the tth frame is

given by

Pt(f) =
�

z

Pt(z)P (f |z) (1)

where Pt(z) represents the a priori probability of z in the tth analy-
sis frame and Pt(f) represents the multinomial distribution underly-
ing the spectrum of the tth frame.

The parameters of the distributions are learnt from a corpus of
training speech signals through iterations of the following equations,
that have been derived using the EM algorithm:

Pt(z|f) =
Pt(z)P (f |z)�
z′ Pt(z′)P (f |z′)

(2)

P (f |z) =

�
t Pt(z|f)St,f�

f ′
�

t Pt(z|f ′)St,f ′
(3)

Pt(z) =

�
f Pt(z|f)St,f�

z′
�

f Pt(z′|f)St,f
(4)

where St,f represents the f th frequency band of the the tth spectral
vector in the training corpus.

0 4 8 0 4 8

frequency in kHz

Fig. 2. Multinomial bases learnt for a speaker. The top panels show
examples of bases that capture harmonic characteristics of voiced
sounds. The lower panels show broadband bases that represent
fricated components of speech.

The time-invariant multinomial distributions P (f |z) represent
the basic building blocks for the mixture multinomials underlying all
spectral vectors. They may hence be viewed as the “basis vectors”
that explain speech spectra. Figure 2 shows several basis vectors
learnt from training examples for a male speaker.

In order to learn the generic spectral characteristics of all speech
in a speaker independent manner, the training corpus must include
speech from a large number of speakers, and a correspondingly large
number of multinomial bases must be learnt. However, if the spectral
vectors are obtained from N-point DFTs, no more than N/2 + 1 in-
dependent multinomial bases can be learnt, limiting the ability of the
model to capture spectral patterns in a speaker-independent manner.
To counter this problem, techniques that enable learning of overcom-
plete representations, (e.g. [6]2) must be employed. In this paper
however, we restrict ourselves to speaker-dependent modelling for
simplicity.

2also submitted to ICASSP 2007
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3. IMPUTING UNSEEN FREQUENCIES IN A SPECTRAL
VECTOR

Once the parameters of the mixture multinomial model have been
learned, it can be used to impute the values of unseen or obscured
frequency components in a spectral vector. Let S represent a spectral
vector whose components Sf : f ∈ F are observed, and the rest,
Sf : f ∈ F̄ are obscured or missing. For example, for the spectrum
of a frame of a telephone-bandwidth signal F would represent the
set of all frequencies between 300Hz and 3.7Khz (that are actually
present in the signal) and F̄ would represent all other frequencies
(that are missing3).

The rst step in the imputation process is the determination of
the mixture multinomial distribution underlying the complete spec-
trum. This distribution is given by:

PS(f) =
�

z

PS(z)P (f |z) (5)

where the multinomial bases P (f |z) are the ones that have been
learnt from training data. The mixture weights PS(z) are learnt from
the partially observed spectrum by iterations of the following equa-
tions:

PS(z|f) =
PS(z)P (f |z)�
z′ PS(z′)P (f |z′)

∀f ∈ F

PS(z) =

�
f∈F PS(z|f)Sf�

z′
�

f∈F PS(z′|f)Sf
(6)

Equation 6 has been derived from Equations 3 and 4, with the dis-
tinction that all computation is now performed only over the set of
observed frequencies F .

The complete spectral vector represents the histogram of an un-
known number of draws from the distribution of Equation 5. The ex-
pected number of total draws from the distribution can be estimated
from the observed frequencies as

N̂ =

�
f∈F Sf�

f∈F PS(f)
(7)

The unobserved frequency components of the spectrum can now
be estimated as

Ŝf = N̂PS(f) ∀f ∈ F̄ (8)

4. PREDICTING THE PHASE OF UNSEEN FREQUENCIES

The bandwidth expansion algorithm must not only estimate the mag-
nitude of the missing spectral components, but also their phase. The
mixture multinomial model described in the earlier section is only
effective at predicting the magnitudes of unseen frequency compo-
nents of spectral vectors. A separate procedure is required to esti-
mate their phase. It is known that the human ear is relatively insen-
sitive to phase variations in higher frequencies. As a result, prior ap-
proaches to bandwidth expansion of narrow-band signals have used a
variety of simplistic methods for the estimation of the phase of high-
frequency components, such as the replication of the phase or lower-
band components. Telephone bandwidth signals, however, are also
missing very low frequencies, at which human sensitivity to phase

3it is assumed that the signal is sampled at the same rate as the broadband
signals from which multinomial bases have been learnt.

is signi cant. At these frequencies, techniques such as phase dupli-
cation or random selection can result in artefacts in the bandwidth-
expanded signal.

We have found that the most effective way for estimating the
phase of frequency components is to model them through a linear
transform of the phase of observed frequency components. Let ΦF
represent a vector of the phases of the frequency components in F .
Similarly, let ΦF̄ represent the vector of phases of the unseen fre-
quency components. We estimate ΦF̄ as

ΦF̄ = AΦΦF (9)

where AΦ is a matrix.
AΦ is also learnt from the training corpus. Let ΦF represent

a matrix composed of phase vectors comprising the phases of fre-
quency components in F of spectral vectors from the training data.
Similarly let ΦF̄ represent the matrix of the corresponding phase
vectors from the training data representing frequencies in F̄ . AΦ is
obtained as the following least-squared error estimate

AΦ = Pinv(ΦF )ΦF̄ (10)

where Pinv(ΦF ) represent the pseudo inverse of ΦF .

5. COMPLETE BANDWIDTH EXPANSION ALGORITHM

We assume generically that the sampling frequency for all signals
is suf cient to capture all desired frequencies (including both lower
and upper band frequencies). Test data that have been sampled at
lower frequencies must be upsampled to this rate. In this paper we
have assumed a sampling frequency of 16 Khz, and all window sizes
etc. are given with reference to this number. We compute a short-
time Fourier transform of the signal using a Hanning window of
1024 samples (64ms) with an hop of 256 samples between adjacent
frames. The magnitudes and phases of the frequency components
are derived from the STFT.

In the training phase, a training corpus of broad-band speech
is parameterized as described above. Mixture multinomial bases
P (f |z) are extracted from the magnitude spectra of the training
speech using the algorithm described in Section 2. The linear trans-
form matrix AΦ that relates the phases of the frequency components
that we expect to observe in the band-limited signal and the phases
of frequencies that will not be observed is also estimated.

In the operational phase, any band-limited signal whose miss-
ing frequency components must be lled is rst resampled, if neces-
sary, to 16Khz and parameterized using an STFT as described above.
Magnitude and phase components of the observed frequencies are
obtained from the STFT. The magnitudes of missing frequency com-
ponents of each spectral vector are estimated using the procedure
described in Section 3. The phases of the missing frequency com-
ponents are estimated as described in Section 4. The bandwidth ex-
pansion operation is performed separately for each spectral vector in
the band-limited signal. Once the missing frequency components of
all spectral vectors have been estimated, the now-complete STFT is
inverted to obtain a full-bandwidth signal.

6. EXPERIMENTAL EVALUATION

Experiments were conducted on recordings from six speakers, three
male and three female, from the “speaker independent” component
of the Wall Street Journal Corpus. For each speaker, approximately
ten minutes of full-bandwidth recordings were used to train mix-
ture multinomial bases, while the rest were used as test data. The
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Fig. 3. The top panel shows the spectrogram of a broad-band speech
signal from a male speaker. The center panel is shows the spectro-
gram of the signal after the 0-300Hz and 3700-8000Hz frequency
bands have been ltered out. The bottom panel shows the spectro-
gram of the output of the bandwidth-expansion algorithm.

full-bandwidth training data are sampled at 16Khz. Test recordings
were ltered using a 10th order Butterworth lter to only include
frequencies in the range 300Hz-3700Hz, such as might be expected
in signals captured over a telephone channel.

Both training and test signals were analyzed using 64ms analy-
sis windows, corresponding to 1024 samples, resulting in Fourier
spectra with 513 unique points. Adjacent frames overlapped by 768
points. 100 multinomial bases were computed for each speaker.

The missing frequency bands corresponded to the the frequency
indices in the range 1-19 and 238-513. The magnitudes and phases
of missing frequency bands were estimated and the complete bandwidth-
expanded signals obtained as described in the paper.

Figure 3 shows the results of bandwidth expansion on a sig-
nal from a male speaker. Figure 4 shows a similar example from
a female speaker. In both cases, the algorithm is able to recon-
struct a very good facsimile of the missing upper (>3700Hz) and
lower (<300Hz) frequencies. Perceptually, we nd that the recon-
structed signals are very close (although not identical) in quality to
the original broadband signal. There are no discernible distortions.
These and other example reconstructions can be downloaded from
http://www.cs.cmu.edu/ bhiksha/audio.

7. CONCLUSIONS

The proposed bandwidth expansion technique is able to reconstruct
higher frequencies of the signal very accurately. As the audio sam-
ples demonstrate, the reconstructed signals are perceptually very sim-
ilar to the original broadband signals that the test data were derived
from. However, the algorithm as presented here has several restric-
tions associated with it. In the experiments reported in Section 6, the
bases used to expand any speaker’s speech were speaker speci c. For
speaker independence, a large number of bases are required; how-
ever the maximum-likelihood formulation for the learning of bases
that has been presented in this paper does not permit the learning

F
re

q
u

e
n

c
y

0

4000

8000

0

4000

8000

0

4000

8000

Time

Fig. 4. Spectrograms of broad-band, narrow-band and bandwidth-
expanded signals for a female speaker.

of more bases than the number of independent frequency compo-
nents in the spectrum. To learn a larger number of bases, as might
be needed to sustain speaker-independent implementation of the al-
gorithm, sparse overcomplete learning methods must be employed.
The current implementation does not utilize temporal dependencies
between spectral vectors. Such dependencies, however, are easily
incorporated into the proposed model. The current work does not
employ priors on the distribution of mixture weights for the mixture
multinomial densities. The incorporation of priors into the proposed
framework is also straightforward. We will be investigating these
extensions in future work.
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