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Abstract

We present a novel genre-independent SVM framework for detecting scene changes in broadcast
video. Our framework works on content from a diverse range of genres by allowing sets of fea-
tures, extracted from both audio and video streams, to be combined and compared automatically
without the use of explicit thresholds. For ground truth, we use hand-labeled video scene bound-
aries from a wide variety of broadcast genres to generate positive and negative samples for the
SVM. Our experiments include high-and low-level audio features such as semantic histograms
and distances between Gaussian models, as well as video features such as shot cut positions. We
evaluate the importance of these measures in a structured framework, with performance compar-
isons oriented via ROC curves. We achieve over 70% detection rate for 10% false positive rate
on our corpus of over 7.5 hours of data collected from news, talk shows, sitcoms, dramas, music
videos, and how-to-shows.
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ABSTRACT

We present a novel genre-independent SVM framework for detect-
ing scene changes in broadcast video. Our framework works on
content from a diverse range of genres by allowing sets of features,
extracted from both audio and video streams, to be combined and
compared automatically without the use of explicit thresholds. For
ground truth, we use hand-labeled video scene boundaries from a
wide variety of broadcast genres to generate positive and negative
samples for the SVM. Our experiments include high- and low-level
audio features such as semantic histograms and distances between
Gaussian models, as well as video features such as shot cut positions.
We evaluate the importance of these measures in a structured frame-
work, with performance comparisons obtained via ROC curves. We
achieve over 70% detection rate for 10% false positive rate on our
corpus of over 7.5 hours of data collected from news, talk shows,
sitcoms, dramas, music videos, and how-to shows.

1. INTRODUCTION

In broadcast video content, scene changes provide structure that can
be useful for understanding, organizing, and browsing the content.
Our primary motivation for studying scene change detection is to
improve the video-browsing capabilities of consumer electronics de-
vices to allow users to more quickly and effectively manage their
content. Thus, in this paper, the term “scene change” refers to a se-
mantically meaningful change that may or may not have an obvious
manifestation in the video and/or audio. Furthermore, we choose a
definition of “scene change” that results in an average of one scene
change every few minutes, which we believe is a useful granularity
for content browsing.

Our work depends on hand-labeled ground truth, so the oper-
ational definition of a scene change depends on the opinion of the
human who located scene changes in our video corpus. In sitcoms
and dramas, scene changes typically correspond to changes in film-
ing location or to the entrance of a significant new character. For
news, scene changes correspond to boundaries between news stories.
For talk shows, scene changes correspond to changes from one guest
or skit to another. Similar judgements are made for other genres.
In all genres, the transitions between program content and commer-
cials and the transitions from one commercial to the next are also
considered scene changes.

Detecting these scene changes using simple audio and video fea-
tures is challenging because scene changes for different genres, and
even scene changes within one genre, do not necessarily have any
obvious similarities. Shot changes, the change from one continuous
sequence filmed by a single camera to another such sequence, is a
much-studied problem [1] that can largely be solved using simple,
low-level video features. We will use such a shot-change detector as
a component in our scene change detector, but it is important to note

that our semantic scene change detection task is a distinct and more
challenging problem.

Detecting video scene changes over scripted and unscripted con-
tent has been explored in the past using image differences and vi-
sual motion vectors, as well as differences in audio distributions
[2, 3, 4, 5]. Usually, after a feature extraction step, a comparison
with a set threshold is required. In other cases, research has focused
on developing audio and visual models but without a framework to
compare the effectiveness of features easily. Our work provides a
more thorough performance analysis, and in addition, our testing
and training are done on a much more diverse range of content than
any of [2, 3, 4, 5]. ([2] used only news content. [3] used sitcoms and
short scenes from a few movies. [4, 5] used an hour-long segment of
a single movie.)

There has also been work on the shot change (as opposed to
scene change) problem that parallels our work. [6] proposes an
HMM model for genre-independent shot change detection using au-
dio and video features that does not rely on hand-tuned thresholds;
however, they differ from our approach because they use a gener-
ative, as opposed to discriminative, model. In addition, our paper
investigates the relative performance of several different features,
both individually and in combination. [7] uses an SVM framework
for shot change detection. It focuses more on video features, and it
trains and tests on a much smaller corpus than that of our current
work.

In summary, detecting semantic scene changes is challenging
due to factors including (1) the lack of training data; (2) difficulty in
defining scene changes across diverse genres; (3) absence of a sys-
tematic method to characterize and compare performance of differ-
ent features; (4) difficulty in determining thresholds in hand-tuned
systems. We address issues (1) and (2) by hand-labeling several
hours of data comprising content from several genres. We address
issues (3) and (4) by using an SVM framework which automatically
determines decision boundaries during training and which can ac-
commodate a variety of audio- or video-derived features.

2. FEATURE DESCRIPTION

We use a discriminative Gausssian-kernel SVM framework [8] for
detecting video scene changes. During the training phase, the clas-
sifier requires input vectors for scene changes as well as non-scene
changes, and constructs the optimal (possibly non-linear) decision
boundary separating the vectors in the input space. Our goal is to find
good features for distinguishing scene boundaries from non-scene
boundaries in diverse video content. Because of our finite amount of
training and test data, we also require that our input vectors to the
SVM be relatively low-dimensional. Finally, we base our choice of
features on the fact that certain feature streams are readily available,
computationally efficient, and amenable to our product platform.
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Fig. 1. Feature streams: (A) Low level MFCC spectral coefficients,
high level semantic labels. (B) Video shot cut frame positions.

Video and audio feature streams are shown in Fig. 1. We rely
mostly on audio because visual features are computationally more
expensive. For audio, we start with an MPEG video source and
extract a single-channel audio stream at 44.1 KHz. We compute
12 Mel-frequency cepstral coefficients (MFCCs) over 20 ms frames.
Based on the low-level MFCC features, we classify each second of
audio into one of four semantic classes: {music, speech, laughter,
silence} using maximum likelihood estimation over Gaussian Mix-
ture Models (GMMs) [9]. The mixture models for each semantic
class were estimated from separate data. These semantic labels help
us to detect, for example, the brief snippets of music that accompany
scene changes in some content or the laughter that often comes at
the end of a scene in a sitcom.

To show that our framework supports diverse feature types, we
also extract video frames (at 29.97 fps) and record the frame number
of all shot cuts in the video. We use a basic hard shot cut detector [1].
Prior work on video scene changes has used motion vectors and im-
age differences at the pixel level, which we may incorporate into our
work in the future.

Using the above audio and video features, we define an SVM
input vector Xi for scene(+) and non-scene(-) boundaries as fol-
lows: Xi = {x1, x2, x3, . . . x11, x12}. In our experiments, our best-
performing feature vector contained 12 dimensions, but we experi-
mented with various features and subsets of varying dimensionality.

The input vectors Xi describe the local information about a par-
ticular time position t (in seconds) within the video. We compute an
Xi at the hand-labeled time positions for scenes and (randomly gen-
erated) non-scenes. The first 9 components of Xi are histograms of
semantic labels as explored in recent work [9], the next two compo-
nents represent the difference between the audio distribution before
and after a particular time t, and the final component is based on
video shot cut counts. The components are defined as follows:

1. Pre-histogram: variables x1, x2, x3

The pre-histogram tallies the number of semantic labels in the
set {music, speech, laughter, silence} within a window of [t−
WL, t], where WL is a chosen window size. The histogram is
normalized to sum to 1. We discard one dimension from the
4D histogram because it is fully determined by the remaining
three histogram values.

2. Mid-histogram: variables x4, x5, x6

The mid-histogram is similar to the pre-histogram and tallies

semantic labels within [t − WL
2

, t + WL
2

].

3. Post-histogram: variables x7, x8, x9

The post-histogram tallies labels within [t, t + WL].

4. Bhattacharyya Shape+Distance: variables x10, x11

We calculate the Bhattacharyya shape and Mahalanobis dis-
tance between single Gaussian models estimated from the low
level MFCC coefficients for region [t − WL, t] and region
[t, t + WL].
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The covariance matrices Ci and Cj and the means µi and µj

represent the (diagonal) covariance and mean of the MFCC
vectors before and after a time position t.
Bhattacharyya shape and Mahalanobis distance are sensitive
to changes in the distributions of the MFCCs, so these fea-
tures provide much lower-level cues about changes. For ex-
ample, a scene change accompanied by a change from a male
speaker to a female speaker would generate a large MFCC
Mahalanobis distance even though the semantic histograms
would show that both scenes contained primarily speech. (Our
speech class is trained on both male and female speech.)

5. Average Shot Count: variable x12

The final component is twice the average number of shot cuts
present in the video within a window [t − WL, t + WL].

Since we use a kernel-based SVM with a smoothing bandwidth
that is equal along all dimensions, we ensure that all of the vari-
ables in Xi have approximately the same variance. For histograms,
we also experimented with replacing the semantic histograms with
a related feature equal to the difference between the pre- and post-
histograms. This histogram difference is lower-dimensional and can
potentially provide better performance, but we achieved slightly bet-
ter performance with the full histogram features. For average shot
counts, we originally used the number of shot changes present within
a few seconds of a time t, but due to noise and misalignment, this did
not work as well. Instead, we averaged over a larger window length.
After experimenting with different window sizes, we found that an
optimal window length of WL = 14 seconds provided enough data
to estimate the Bhattacharyya distances and semantic histograms.

3. SVM CLASSIFIER FRAMEWORK

A support vector machine (SVM) [8] is a supervised learning algo-
rithm that attempts to find the maximum margin hyperplane separat-
ing two classes of data. Given data points {X0, X1, . . . XN} and
class labels {y0, y1 . . . yN}, yi ∈ {−1, 1}, the SVM constructs a
decision boundary for the two classes that generalizes well to future
data. For this reason, the SVM has been used as a robust tool for clas-
sification in complex, noisy domains. In our case, the two classes are
scene(+) versus non-scene(-) boundaries. The data points Xi are up
to 12D vectors as described in Section 2. We expect that an SVM
using our 12D feature input vector will be easily implementable on
our product platform.

One advantage of the SVM framework is that the data X can be
transformed to a higher dimensional feature space via a kernel func-
tion. Data may be linearly separable in this space by a hyperplane
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Fig. 2. SVM Classifier Framework.

that is actually a non-linear boundary in the original input space. In
our implementation, we found a radial basis kernel worked well:

K(Xi, Xj) = e−γD2(Xi,Xj) (3)

We use L2 distance although various distance functions are possi-
ble. We fixed the value of the kernel bandwidth γ = 2.0, but could
adjust this value for less smoothing if more training data were avail-
able. With limited training samples, we would like a smooth bound-
ary to account for noise. Noise is introduced in various ways such
as inaccuracies in the audio or video feature streams (misclassified
semantic labels, missed/false shot cuts, alignment of streams), and
in incorrect hand-labeled boundaries.

We used over 7.5 hours of diverse content to generate training
and test samples for the classifier. This amounted to 530 scene(+)
sample points. For non-scene(-) samples, we automatically gener-
ated twice as many random non-scene boundaries chosen at time
positions outside a specific WL of scene(+) positions. Due to the
difficulty in collecting a large amount of scene(+) boundaries, most
previous research has not focused on supervised learning for scene
separation. However, the advantage of casting the scene change de-
tection problem as a classification problem is that we eliminate the
need for explicit thresholds for variables since the decision bound-
aries are tuned by the SVM. Furthermore, we are able to compare
various combinations of features quickly, based on their performance
against ground truth. The SVM provides a unifying framework for
jointly modeling separate features. This allows us to add features
as necessary to accommodate diverse video content. Even if we do
not use a supervised approach in the end, a supervised learning al-
gorithm can indicate which features work well for our application.

Fig. 2 shows a block diagram of the overall SVM framework.
We first split an MPEG video source into audio and video streams,
and extract low/high level audio features and video features. Using
ground truth labeled data, we design input vectors for scene(+) and
non-scene(-) samples using a combination of features. The final step
is to detect scene changes using the binary SVM and characterize
performance via ROC curves. The performance results can be used
as feedback to design better input vectors based on available feature
streams.

4. EXPERIMENTS

In our experiments, we tested (1) the ability of our framework to
compare different sets of features in terms of ROC performance;
and (2) the ability of our framework to detect scene changes over
a wide variety of broadcast genres. We used the OSU SVM Toolbox
(http://sourceforge.net/projects/svm/), and results
are based on 5-fold cross-validation.

In order to generate ROC curves, we varied the SVM cost penalty
for misclassifying a scene(+) boundary versus misclassifying a non-
scene(-) boundary. Based on the cost ratio, the SVM produces a
different separating hyperplane, yielding a performance result with
different true and false positive rates. The true positive rate is the
percentage of scene changes correctly detected by our system. The
false positive rate is the percentage of non-scene boundaries that
were classified incorrectly as scene boundaries. Ideally, we wish
to achieve high true positive rates and low false positive rates. In
classifying a new video piece, it may be necessary to achieve a false
positive rate of 5% and as high a true positive rate as possible. In
other cases, we can lower the false positive rate by other means such
as pre-processing, only choosing candidate locations to test for scene
changes.

Using our 12D input vectors described in Section 2 (with con-
catenated histograms, Bhattacharyya measures, and shot counts) to
describe scene vs. non-scene boundaries, our algorithm scores 62%
for a true positive percentage, corresponding to a false positive per-
centage of 5%. Allowing a higher false positive percentage of 20%,
the algorithm achieves an 83% detection rate. The best result is
shown on Panel A of Fig. 3. Since we used primarily audio features
in finding video scene changes, we believe this is a strong result
for a genre-independent system. We also used a broad, semanti-
cally meaningful definition for scene change. In generating the ROC
curves, we averaged results from 10 runs, each time using a different
set of randomly generated non-scene boundaries.

We also compared different sets of features (Panels A-C in Fig. 3).
In Panel A, we show that the inclusion of shot counts improves
scene change detection significantly. Since shot cut count is a basic
video feature, we believe that including computationally expensive
video motion vectors or image differences would result in higher
performance. In Panel B, we show that the Bhattacharyya measures
and pre/mid/post histograms perform much better together than they
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Fig. 3. ROC performance results: Panels A-C show combined performance over all content genres. Panel A shows the improvement achieved
using average video shot cut counts. Panel B shows the improvement in combining bhattacharya measures with pre/mid/post histograms.
Panel C shows a slight improvement in using concatenated histograms as opposed to histogram differences or the chi-square histogram
statistic. Finally, Panel D shows performance results for a wide variety of video content.

do individually. In Panel C, we show that using concatenated his-
tograms is superior to taking the absolute difference between his-
tograms, or calculating the χ2 statistic between histograms (a scalar
quantity). This highlights the fact that the SVM is able to find a de-
cision boundary automatically, and we do not require thresholding
the difference between histograms.

In Fig. 3, Panel D, we show a comparison across a broad class
of video genres such as sitcoms, dramas, talk shows, music videos,
how-to’s, and news. The optimal 12D input vectors used for this
experiment were described in Section 2. From the results we see
that the SVM framework scores best on talk shows, and performs
the worst on news shows. When hand segmenting news shows, we
noted that when a scene changed, it was more of a context change
in the story, but the indicating factors we use such as audio or video
shot counts did not reflect this change as strongly. In other content,
it was also easier to note a scene boundary as a new guest appeared
or a short music clip was inserted.

5. CONCLUSION

In this paper, we presented an SVM kernel-based classifier frame-
work that is useful for comparing sets of features for scene change
detection. The framework works over a wide class of broadcast con-
tent such as sitcoms, news, dramas, how-to’s, music videos, and talk
shows. In future work, we plan to experiment with additional video
features to improve performance over diverse genres.
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